
 1 

Transient Damage Spreading and Anomalous Scaling in Mortar 
Crack Surfaces 

 
S. Morel,1 D. Bonamy,2 L. Ponson,3 E. Bouchaud, 4 

 

1 Université Bordeaux 1, US2B (UMR5103), 351 cours de la Libération, 
33405 Talence Cedex, France 

 

2 C.E.A.-Saclay, DSM/IRAMIS/SPCSI, 91191 Gif-Sur-Yvette Cedex, France 
 

3 California Institute of Technology, Division of Engineering and Applied Science, 
Pasadena, CA 91125, USA 

4 C.E.A.-Saclay, DSM/IRAMIS/SPEC, Groupe Instabilités et Turbulence, 
Orme des Merisiers, 91191 Gif-Sur-Yvette Cedex, France 

 
 
1. Introduction 
Since the pioneering work of Mandelbrot et al [1], the statistical characterization 
of fracture surfaces is nowadays a very active field of research. The fracture 
surfaces of various materials show surprising scaling properties (see [2-3] for 
reviews) and especially self-affine scaling invariance over a wide range of length 
scales. Indeed, the fracture surfaces obtained in materials as different as metallic 
alloys [4-7], ceramics [8-9], glass [10-11], quasi-crystals [12-13], rocks [14-15], 
mortar [16-17], sea ice [18], and wood [19-20] exhibit self-affine scaling 
properties characterized by a local roughness exponent ζ ≈ 0.8 and this in spite of 
huge differences in the fracture mechanisms. It was therefore suggested that this 
local roughness exponent ζ, measured along the direction of crack front, might 
have a universal value [21], i.e., a value independent of the fracture mode and of 
the material. 
However, quite recently, significantly different values of the local roughness 
exponent ζ have been measured due to the anisotropy and the heterogeneity of the 
material structure [7,21-23], the kinetics of crack growth [24] or the possible 
multifractal character of the crack surfaces [25]. On the other hand, fracture 
surfaces were shown to exhibit anisotropic scaling morphological features, 
characterized by two different roughness exponents whether observed along the 
direction of crack front or crack growth [10,12-13]. This anisotropic scaling was 
shown to take a universal specific form independent of the considered material, 
the failure mode and the crack growth velocity [12-13]. Finally, recent 
experiments in sandstone [26-27], artificial rock [28] and granular packing of 
sintered glass beads [11,29], which are materials exhibiting a brittle failure, have 
shown self-affine scaling properties, especially at large length scales, 
characterized by a roughness exponent measured along the direction of crack 
front closer to 0.4-0.5. These latter experimental results deserve some more 
thinking especially since the measured roughness indexes (0.4-0.5) are 
significantly smaller than 0.8 and hence they suggest the existence of a second 
universality class for failure problems. 
A possible interpretation of both universality classes was proposed recently by 
Bonamy et al. [11]. It was indeed reported that 0.8 roughness exponent was 
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measured in materials where surfaces are observed at length scales below the size 
of the Process Zone (PZ) while the 0.4 roughness exponent is estimated at length 
scales above this PZ size. Such an interpretation is funded on recent results 
obtained from two distinctive models. First, Bonamy et al. [11] have derived a 
model from Linear Elastic Fracture-Mechanics (LEFM) that predicts 0.4 self-
affine fracture surfaces for perfectly brittle materials, i.e., according to LEFM, in 
the absence of any damage and/or plastic deformations. Thus, the 0.4 roughness 
exponent could reflect the roughness of fracture surfaces at length scales where 
the material can be approximated as a linear elastic medium and, as a 
consequence, at length scales above the PZ size. Second, using a paradigm of the 
mode I fracture model (quasistatic fuse model), Hansen and Schmittbuhl [30] 
have suggested that the universality of 0.8 roughness exponent could be due to a 
fracture propagation being a universal damage coalescence process described by a 
stress-weighted percolation phenomenon in a self-generated quadratic damage 
gradient. In this sense, the 0.8 roughness exponent could reflect the roughness of 
fracture surfaces at length scales below the PZ size, i.e., where such a damage 
percolation process can take place. However, the two regimes had never been 
observed on the same material and, all the more so, on the same fracture surface. 
It is the central point of this study to show that both regimes can be observed on a 
mortar fracture surface. 
 
2. Experiment 
The studied fracture surface is obtained from a mortar notched beam subjected to 
four points bending leading to a mode I failure [16-17]. The length of the beam is 
1400 mm and its height and thickness are both equal to 140 mm. The initial notch 
is performed with a steel sheet (thickness 0.4 mm) pulled out when the mortar is 
24 hours old. The notch length is fixed to 70 mm, which corresponds to half the 
beam height (Fig. 1).  
 
 

 

Figure 1. Left :Geometry of the notched bending specimen (D = 140 mm). Right : 
Topography of the mortar crack surface . The axis   

r 
x ,   
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y  and   

r 
z  are parallel to the 

propagation, loading and crack front directions respectively 
The mortar is constituted by a sand for which the grain size ranges between 0.1 
mm and 1.8 mm, and by a high strength Portland cement. On the other hand, the 
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specimen geometry and test set-up lead to a mode I stable crack growth for the 
first 10-15 mm of the crack. Within this range of crack lengths, fracture can be 
considered as quasi-static.  
The topographies of the fracture surfaces have been recorded using an optical 
profilometer. In all the following, the reference frame 
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x ,
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y ,
r 
z ( ) is chosen so that   
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x , 
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z  are parallel to the propagation, loading and crack front directions 

respectively (i.e., the average plane of the crack surface corresponds to the 
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x ,
r 
z ( ) 

plane). The topographic maps are built up with 300 profiles of 4096 points 
parallel to the initial notch (  

r 
z  direction). The sampling step ∆z along profiles is 

20 µm while the distance between two successive profiles ∆x is fixed to 50 µm.  
The first profile (x = 0) is sampled in the immediate vicinity of the initial straight 
notch tip and so corresponds to a quasi zero roughness. As the distance x to the 
initial notch increases, the magnitude of the roughness develops up to 7 mm 
(Fig.1). The lateral precision (i.e., along the x and z directions) is 2 µm while the 
vertical accuracy (i.e., along the y axis), estimated from the height differences 
between two successive profiles along the same line, is approximately 5 µm. 
 
1.1. Local roughness regimes. 
The roughness of the crack profiles and especially the development of this 
roughness with respect to the distance x from the initial notch can be estimated 
through the root mean square (RMS) ∆h(l,x) of the heights h(zi,x)1<i<N_l inside a 
window of size l [m] along the z-axis (Nl corresponds to the number of points in 
the window of size l) and averaged over all possible origins j of the window 
belonging to the profile: 

∆h l,x( )= 1

N l

h zi,x( )2 − 1

N l

h zi,x( )
i=1

N l

∑
 

 
 

 

 
 

i=1

N l

∑
2

j

1 2

. (1) 

Figure 2 corresponds to a log-log plot of the variations of the RMS roughness ∆h 
with respect to the window size l for two distinct profiles; the first profile, 
corresponding to x = x1, is close to the initial notch while the second one, 
corresponding to x = x2, is far from the notch. On each profile, two distinct 
behaviors corresponding to two power laws can be observed. The first power law 
observed at small length scales is characterized by a roughness exponent ζ = 0.79, 
while the second power law, observed at large length scales, is characterized by a 
different roughness index ζe = 0.41. Note that, both roughness indexes (ζ = 0.79 
and ζe = 0.41), observed on the same crack profile, are consistent with the two 
universality classes of the roughness (related to the exponents 0.8 and 0.4) 
proposed in [11]. On the other hand, if one defines as ξ the abscissa of the 
intersection between the fits of both power laws, this crossover length is found to 
increase with the distance x to the initial notch, ξ(x1) < ξ(x2), as shown in Fig. 2. 
Note that, the increasing of the distance x from the initial notch, which leads to a 
corresponding increase of the crossover length scale ξ(x), favors the small scales 
regime related to the roughness index 0.8, to the detriment of the large scales 
regime associated to the index 0.4.  
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1.2. Roughening of the crack surface: anomalous scaling. 
As can be seen in Figure 2, the magnitude of the RMS roughness of the profile at 
position x = x2 is larger than the one of the profile at position x = x1 and this 
whatever the considered length scale l. This global vertical shift of the ∆h(l,x) 
curves with respect to the distance x from the initial notch is well known to be 
symptomatic of an anomalous scaling [16-17,20-21,32-33]. Nevertheless, in the 
present case, the original anomalous scaling proposed in literature [20-21,32-33] 
needs to be modified in order to take into account the existence of both the local 
roughness regimes characterized by the indices ζ ≈ 0.8 and ζe ≈ 0.4 (as shown 
Fig. 2). Thus, let us assume that the crossover length scale ξ between these two 
regimes scales with the distance x from the initial notch, as a power law 
characterized by the dynamic exponent zx: ξ x( ) ~ x1 zx . On this basis, the original 
anomalous scaling can be modified in the following way: 

∆h l,x( ) ~
lζ x

ζ g −ζ( ) zx if l << x1 zx ,

lζ e x
ζ g −ζ e( ) zx if l >> x1 zx .

 
 
 

  
 (2) 

Note that ζg is called as global roughness exponent and is considered as different 
from and independent on both local roughness indexes ζ and ζe. 

 
Figure 2. RMS roughness ∆h(l) with respect to the window size l for two profiles 
located at the beginning (x = x1, circles) and at the end (x = x2, squares) of the 
transient roughening domain. The slopes of both straight lines give estimates of 
the local roughness exponents ζ = 0.79 (for l << ξ) and ζe = 0.41 (for l >> ξ). All 
length scales are given in µm. 
Thus, if one considers a profile at a given position x, the RMS roughness is 
expected to scale, according to Eq.(2), as ∆h l << ξ,x = cte( ) ~ lζ  for length scales 
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l << ξ x( ) while, for length scales l >> ξ x( ), the roughness scales as 

∆h l >> ξ,x = cte( ) ~ lζ e  which is in  agreement with the scaling observed in Fig. 2.  
On the other hand, if the roughness development is observed with respect to the 
distance x from the initial notch, the roughness estimated for a given small length 

scale, i.e., l = cte and l << ξ x( ), scales as ∆h l = cte,x( ) ~ x
ζ g −ζ( ) zx  while, the 

roughness for a given large length scale, i.e., l = cte and l >> ξ x( ), is expected to 

scale as ∆h l = cte,x( ) ~ x
ζ g −ζ e( ) zx .  

The latter roughening expected at small and large length scales from Eq.(2) can be 
observed in plotting the RMS roughness with respect to the distance x as shown in 
Figure 3. Note that in Fig. 3, only some window sizes ranging from l = 20 µm to 
60 mm are kept, for the sake of clarity. The RMS roughness ∆h grows as a 
function x from approximately zero for profiles close to the initial straight notch.  
 

 
Figure 3. Log-log plot of the RMS roughness ∆h(l,x) with respect to the distance x 
from the initial notch. The roughness growth domain corresponds to the part 
between the position x1 and x2. According to Eq.(2), the lower straight line 
corresponds to the fit of the roughness growth observed for a small length scale, 
i.e., l << ξ x( ), and its slope (0.24) is expected to give an estimate of the scaling 

exponent ζ g −ζ( ) zx  while, the upper line is expected to correspond to the 

roughness growth for a large length scale l >> ξ x( ) and its slope (0.35) leads to 

the estimate of the scaling exponent ζ g −ζ e( ) zx . 

 
In Fig. 3, the roughness development is essentially observed for x values ranging 
between x1 and x2 which correspond to the positions of the profiles plotted in Fig. 
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2. For distances x < x1 ≅ 400µm, the roughness magnitude remains approximately 
whatever the position x. This phenomenon can be attributed to the non-zero 
thickness of the initial notch (0.4 mm as previously mentioned) which leads to a 
corresponding non-zero roughness at the onset of crack propagation. On the other 
hand, distances x > x2 ≅ 5.9 mm, it can be observed in Fig. 3 that the roughness 
magnitude saturates for a wide range of length scales l. Nevertheless, for the 
largest length scales l, the roughness exhibits fluctuations which are doubtlessly 
due to a slight macroscopic warping of the fracture surface. Within the growing 
zone, i.e., for distances x1 < x < x2, it can be observed from Fig. 3 that the 
roughness growth is different if considered for length scales smaller or greater 
than the crossover length scales ξ(x). Note that such different roughness growths 
can be also observed in Fig.2 from the vertical shifts of the RMS roughness 
observed for position x1 and x2 which are different if observed at length scales 
l << ξ x( ) and l >> ξ x( ). 
On the other hand, the more efficient way to estimate the global roughness index 
ζg and the dynamic exponent zx consists to introduce the scaling function 
describing the scaling behavior ∆h(l,x) expected from Eq.(2). Thus, from the 
modified anomalous scaling defined in Eq.(2), let us define the scaling function 
gm(u) as gm l x1 zx( )= ∆h l,x( ) lζ g and hence, the scaling function gm(u) is expected 

to scale as  

gm u( ) ~
u

− ζ g −ζ( ) if u <<1,

u
− ζ g −ζ e( ) if u >>1.

 
 
 

  
 (3) 

where u = l x1 zx . The method used to estimate the global roughness index ζg and 
the dynamic exponent zx consists to compute the experimental values gm(u) for 
various values of ζg and zx while the values of the local roughness exponents are 
kept equal to the previous estimate (i.e., ζ = 0.79 and ζe = 0.41 as shown in Fig. 2) 
and this for all profiles corresponding to the roughness growth domain (i.e., 
corresponding to positions ranging between x1 and x2). The best data collapse, 
which corresponds to the least scattering of the experimental values gm(u), is 
obtained for the scaling exponent values ζg = 1.60 ± 0.10 and zx = 3.4 ± 0.20 as 
shown in Figure 4. Note that the global roughness index ζg and the dynamic 
exponent ζg and zx have distinct influences on the date collapse. Indeed, the 
dynamic exponent  zx acts on the scattering of the experimental data along the 
abscissa axis while the global roughness index ζg has an influence on the 
scattering along the ordinates axis (Fig. 4). On the other hand, the optimal values 
of the scaling exponents obtained from the scaling function (ζg = 1.60 ± 0.10 and 
zx = 3.4 ± 0.2) are in agreement with the corresponding values which can be 
estimated from the slopes of the straight lines plotted in Fig. 3. Indeed, according 
to Eq.(2), the slope of the lower line (0.24) which corresponds to the fit of 
roughness estimated for a small length scale, i.e., l << ξ x( ), gives an estimate of 

the scaling  exponent ζ g −ζ( ) zx  while the one of the upper line (0.35) which is 

related to the roughness observed for a large length scale, i.e., l >> ξ x( ) leads to 

the estimate of the scaling exponent ζ g −ζ e( ) zx . 
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3. Discussion 
From the roughness analysis of a mortar crack surface, it has been shown that 
both roughness regimes characterized by the local exponents ζ ≈ 0.8 and ζe ≈ 0.4 
can co-exist on the same fracture surface and especially along the same crack 
profile. Moreover, both local roughness regimes have been observed in the 
presence of anomalous roughening and this has led to modify the original 
anomalous scaling [32]. The remarkable collapse of the 110 profiles located in the 
growing zone of roughness (Fig. 4) is in fair agreement with the modified 
anomalous scaling proposed in Eq.(2). On the other hand, the two local roughness 
exponents ζ ≈ 0.8 and ζe ≈ 0.4 are observed at small and large length scales 
respectively. These observations are consistent with the picture proposed by 
Bonamy et al [11] which suggests that the 0.4 roughness index should be 
observed at length scales where the material can be approximated as a linear 
elastic medium, i.e., et length scales larger than the PZ size, while the 0.8 
exponent reflects the presence of damage at length scales smaller than the size of 
the PZ.  
 

 
Figure 4. Modified anomalous scaling function gm(u) defined in Eq. (3). The best 
data collapse of the 110 profiles corresponding to positions ranging between x1 = 
400 µm and x2 = 5.9 mm (roughness growth domain) is obtained for the scaling 
exponent values: ζ = 0.79, ζe = 0.41, ζg = 1.60 ± 0.10 and zx = 3.4 ± 0.2.  
 
According to this scenario, the crossover length scale ξ is expected to set by the 
PZ size or, more exactly, by a correlation length of the PZ in the direction 
perpendicular to the crack propagation one. This correlation length could be 
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linked to a correlated gradient percolation process in PZ as suggested by Hansen 
and Schmittbuhl [30]. On the other hand, the increase of the correlation length ξ 
within the transient roughening regime with the distance x from the initial straight 
notch (i.e., for distances x1 < x < x2) is then fully consistent with the quasibrittle 
fracture behavior of mortar, characterized by a transient initial regime reflecting 
the increase in size of the microcracked PZ and/or the increase in microcracks 
density in PZ before reaching its critical and steady value. In this sense, the 
extension of the transient roughening regime given by the position x2 could reflect 
the trace of the PZ development (attached to the initial notch tip) before the 
propagation of the main crack with its critical PZ. Thus, the maximum crossover 
length scale ξmax = ξ(x2)$ as well as the extension x2 of the transient roughening 
regime could provide post mortem estimates of length scales linked to the critical 
PZ in the directions perpendicular and parallel to the crack propagation direction. 
Note that these values of the length scales expected to be linked to the PZ, i.e., 
ξmax = 2.3 mm and x2 = 5.9 mm, are of the same order of magnitude as the 
estimates of the equivalent LEFM length of PZ usually obtained in mortar [34]. 
Note also that ξmax = 2.3 mm is slightly larger than the largest grains of sand (1.8 
mm). 
On the other hand, the dynamic exponent zx could characterize the evolution in 
size of the microcracked PZ and/or the increase in microcracks density in PZ with 
respect to the distance x from the initial notch through the evolution of the 
correlation length ξ x( ) ~ x1 zx . In the same way, estimated at the crossover length 

scale l = ξ according to Eq.(2), the roughness ∆h l = ξ,x( ) ~ ξζ g could provide an 
estimate of the maximum height fluctuations in the PZ, and, indirectly, of the 
magnitude of the toughness fluctuations/microcracks density inside this zone. 
Therefore, the global roughness exponent ζg could be the signature of the 
transient damage spreading and this is why it could be material dependent as 
previously proposed in [16,17,20,21] contrary to both local roughness indices ζ 
and ζe which should be considered as universal. 
 
4. Conclusion 
On the basis of the results presented in this paper, one can now reinterpret the 
values of the roughness exponents (measured for fracture profiles parallel to the 
direction of crack front) reported in the literature [4,5,7-21,26-29] for various 
materials: 

(i) When the PZ size remains small with respect to the specimen size, as for 
brittle failure, the crossover length scale ξ is expected to be very small. In this 
case, the 0.8 roughness regime should be only observed for the smallest length 
scales (and hence, may be difficult to observed experimentally) while the 0.4 
roughness regime is expected to take place over a wide range of length scales. 
This is the case of materials such sandstone [26,27], artificial rocks [28] and 
granular packing of sintered glass beads [29] for which the 0.4 roughness 
regime is well observed while the 0.8 roughness regime seems inexistent (or 
difficult to observe because only effective for the smallest length scales). Then, 
models derived from LEFM such as [11,35] should be able to capture the 
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morphology of fracture surfaces. In particular, such models can reproduce 0.4 
roughness regimes in agreement with observations reported in [26-29]. 
Moreover, damage spreading within the process zone should be scarce in 
brittle failure, and one expects to observe a classical Family-Vicsek 
roughening [36] rather than an anomalous scaling [32,33]. 
(ii) When the process zone size becomes important as compared to the 
specimen size, as for quasi-brittle failure, one expects to observe a large 
crossover length scale ξ. In this case, the 0.8 roughness regime should take 
place over a wide range of length scales while the 0.4 roughness regime should 
be only observed for the largest length scales where it can be perturbed by a 
finite size effect making its observation difficult. Moreover, the quasi-brittle 
damage spreading from a straight notch (i.e., the increase of the microcracked 
PZ size and/or the increase in microcracks density within the PZ) is expected 
to lead to an anomalous scaling rather than a Family-Vicsek one, as reported 
for mortar [16] and wood [20]. Finally, the fact that the value of the roughness 
exponent is observed close to 0.8 in very different materials with various 
damage processes as e.g. plastic deformation, crack blunting, ductile cavity 
growth or microcracking is in agreement with the suggestion [30] of a 
universal correlated gradient percolation process (i.e., a process independent of 
the precise nature of the damage).  

To test this scenario experimentally will represent interesting challenges for future 
investigations. 
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