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1. Introduction

Since the pioneering work of Mandelbrot et al fhlg statistical characterization
of fracture surfaces is nowadays a very activedfiel research. The fracture
surfaces of various materials show surprising sgaproperties (see [2-3] for
reviews) and especially self-affine scaling invada over a wide range of length
scales. Indeed, the fracture surfaces obtainedatenmls as different as metallic
alloys [4-7], ceramics [8-9], glass [10-11], quasystals [12-13], rocks [14-15],
mortar [16-17], sea ice [18], and wood [19-20] éxhiself-affine scaling
properties characterized by a local roughness exd@rr 0.8 and this in spite of
huge differences in the fracture mechanisms. It thasefore suggested that this
local roughness exponefit measured along the direction of crack front, migh
have a universal value [21], i.e., a value indepahaf the fracture mode and of
the material.

However, quite recently, significantly differentlvas of the local roughness
exponent, have been measured due to the anisotropy ancetbmheneity of the
material structure [7,21-23], the kinetics of cragtowth [24] or the possible
multifractal character of the crack surfaces [28h the other hand, fracture
surfaces were shown to exhibdnisotropic scaling morphological features,
characterized by two different roughness exponessther observed along the
direction of crack front or crack growth [10,12-13his anisotropic scaling was
shown to take a universal specific form indepenaegrthe considered material,
the failure mode and the crack growth velocity 13- Finally, recent
experiments in sandstone [26-27], artificial ro@8][ and granular packing of
sintered glass beads [11,29], which are materidisbding a brittle failure, have
shown self-affine scaling properties, especially large length scales,
characterized by a roughness exponent measured #hendirection of crack
front closer to 0.4-0.5. These latter experimemesdults deserve some more
thinking especially since the measured roughnessexies (0.4-0.5) are
significantly smaller than 0.8 and hence they sagtjee existence of second
universality class for failure problems.

A possible interpretation of both universality das was proposed recently by
Bonamy et al. [11]. It was indeed reported that fBghness exponent was



measured in materials where surfaces are obsetvedgih scalebelow the size

of the Process Zone (PZ) while the 0.4 roughnepsrent is estimated at length
scalesabove this PZ size. Such an interpretation is fundedrecent results
obtained from two distinctive models. First, Bonagtyal. [11] have derived a
model from Linear Elastic Fracture-Mechanics (LEFMat predicts 0.4 self-
affine fracture surfaces for perfectly brittle méss, i.e., according to LEFM, in
the absence of any damage and/or plastic defornsatithus, the 0.4 roughness
exponent could reflect the roughness of fractuméasas at length scales where
the material can be approximated as a linear elastedium and, as a
consequence, at length scales above the PZ siegen@eusing a paradigm of the
mode | fracture model (quasistatic fuse model), ddanand Schmittbuhl [30]
have suggested that the universality of 0.8 roughmxponent could be due to a
fracture propagation being a universal damage soafee process described by a
stress-weighted percolation phenomenon in a sekmgeed quadratic damage
gradient. In this sense, the 0.8 roughness expamend reflect the roughness of
fracture surfaces at length scales below the P&, sig., where such a damage
percolation process can take place. However, tle regimes had never been
observed on the same material and, all the morersthe same fracture surface.
It is the central point of this study to show thath regimes can be observed on a
mortar fracture surface.

2. Experiment

The studied fracture surface is obtained from atangrotched beam subjected to
four points bending leading to a mode | failure-fIg. The length of the beam is
1400 mm and its height and thickness are both dqubd0 mm. The initial notch
is performed with a steel sheet (thickness 0.4 puatled out when the mortar is
24 hours old. The notch length is fixed to 70 mrhjol corresponds to half the
beam height (Fig. 1).

8/3D

10D

Figure 1. Left :Geometry of the notched bendingcspen O = 140 mm). Right :
Topography of the mortar crack surface . The aig/ and Z are parallel to the
propagation, loading and crack front directionpessively

The mortar is constituted by a sand for which therngsize ranges between 0.1
mm and 1.8 mm, and by a high strength Portland nen@n the other hand, the



specimen geometry and test set-up lead to a matible crack growth for the
first 10-15 mm of the crack. Within this range o&ck lengths, fracture can be
considered as quasi-static.

The topographies of the fracture surfaces have beeorded using an optical
profilometer. In all the following, the referenaaiine (X,y,Z) is chosen so thax,

y and Z are parallel to the propagation, loading and cr&okt directions
respectively (i.e., the average plane of the cegface corresponds to tt&,z
plane). The topographic maps are built up with 306files of 4096 points
parallel to the initial notchZ direction). The sampling stejw along profiles is
20 pm while the distance between two successivilgedx is fixed to 50 pm.
The first profile & = 0) is sampled in the immediate vicinity of timial straight
notch tip and so corresponds to a quasi zero rasgghrAs the distanceto the
initial notch increases, the magnitude of the raegis develops up to 7 mm
(Fig.1). The lateral precision (i.e., along thandz directions) is 2 pum while the
vertical accuracy (i.e., along theaxis), estimated from the height differences
between two successive profiles along the sameiragpproximately 5 pm.

1.1. Local roughness regimes.

The roughness of the crack profiles and especidie/ development of this
roughness with respect to the distamcieom the initial notch can be estimated
through the root mean square (RMS)(,x) of the height(z,X)1<i<n | inside a
window of sizel [m] along thez-axis (\; corresponds to the number of points in
the window of sizd) and averaged over all possible origjnef the window
belonging to the profile:

1< 1< \”
Ah(l,x) = —Zh(zi,x)z—{—Zh(zi,x)} . (1)

NI i=1 NI i=1 j
Figure 2 corresponds to a log-log plot of the v@res of the RMS roughnegsh
with respect to the window sizefor two distinct profiles; the first profile,
corresponding tax = X3, is close to the initial notch while the seconde,on
corresponding tox = Xp, is far from the notch. On each profile, two disti
behaviors corresponding to two power laws can Isefed. The first power law
observed at small length scales is characterizesdroyghness exponefit= 0.79,
while the second power law, observed at large lesgales, is characterized by a
different roughness inde§ = 0.41. Note that, both roughness indexes .79
and (. = 0.41), observed on the same crack profile, arsistent with the two
universality classes of the roughness (relatedht® éxponents 0.8 and 0.4)
proposed in [11]. On the other hand, if one defias< the abscissa of the
intersection between the fits of both power lawss trossover length is found to
increase with the distanceto the initial notch&(x;) < &(x2), as shown in Fig. 2.
Note that, the increasing of the distaceom the initial notch, which leads to a
corresponding increase of the crossover lengtre £¢a), favors the small scales
regime related to the roughness index 0.8, to #tendent of the large scales
regime associated to the index 0.4.



1.2. Roughening of the crack surface: anomalougmsca
As can be seen in Figure 2, the magnitude of th&Rdlighness of the profile at
positionx = X, is larger than the one of the profile at positioor x; and this
whatever the considered length schl&his global vertical shift of thé&h(l,x)
curves with respect to the distancérom the initial notch is well known to be
symptomatic of an anomalous scaling [16-17,20-2B32 Nevertheless, in the
present case, the original anomalous scaling peapos literature [20-21,32-33]
needs to be modified in order to take into accdhbatexistence of both the local
roughness regimes characterized by the indices0.8 and{. ~ 0.4 (as shown
Fig. 2). Thus, let us assume that the crossovethescalet between these two
regimes scales with the distangefrom the initial notch, as a power law
characterized by the dynamic expongaté(x) ~ x**. On this basis, the original
anomalous scaling can be modified in the followivey:

|ZX(59‘5)/Zx if | << x¥%,

An(l,x) ~ {vex(fg-fe)/ZX if 1 >> x> :

Note that{q is called as global roughness exponent and isideres! as different
from and independent on both local roughness irel&xaddc.
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Figure 2. RMS roughnegsh(l) with respect to the window sizdor two profiles
located at the beginning € X3, circles) and at the enda € x,, squares) of the
transient roughening domain. The slopes of bothigt lines give estimates of
the local roughness exponeigts 0.79 (forl << ¢§) and{e = 0.41 (forl >>¢§). All
length scales are given in um.

Thus, if one considers a profile at a given positip the RMS roughness is
expected to scale, according to Eq.(Z)Mﬂ << é,X :cte) ~ |¢ for length scales




| <<é(x) while, for length scalesl>>¢(x), the roughness scales as
Ah(l >> &, x =cte) ~ I which is in agreement with the scaling observeHig. 2.
On the other hand, if the roughness developmeabserved with respect to the
distancex from the initial notch, the roughness estimatedafgiven small length
scale, i.e., | =cte and | <<£(x), scales asah(l =ctex)~x¥ )™ while, the
roughness for a given large length scale, l.e.cte and | >> £(x), is expected to

scale asth(l = cte,x) ~ x>,

The latter roughening expected at small and lagggth scales from Eq.(2) can be
observed in plotting the RMS roughness with respeette distanca as shown in
Figure 3. Note that in Fig. 3, only some windowesizanging front = 20 pm to
60 mm are kept, for the sake of clarity. The RM8glmessAh grows as a
functionx from approximately zero for profiles close to thiéial straight notch.
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Figure 3. Log-log plot of the RMS roughnedyl,x) with respect to the distange
from the initial notch. The roughness growth domeorresponds to the part
between the positiorx; and x,. According to Eq.(2), the lower straight line
corresponds to the fit of the roughness growth eskefor a small length scale,
e, I << E(x), and its slope (0.24) is expected to give an edanof the scaling

exponent (Zg—Z)/zA while, the upper line is expected to correspondh®
roughness growth for a large length schie> £(x) and its slope (0.35) leads to
the estimate of the scaling exponddif -¢.)/z, .

In Fig. 3, the roughness development is essentiddferved fox values ranging
betweenx; andx, which correspond to the positions of the profidstted in Fig.



2. For distances < x; [1400um, the roughness magnitude remains approXynate
whatever the positiorx. This phenomenon can be attributed to the non-zero
thickness of the initial notch (0.4 mm as previgusientioned) which leads to a
corresponding non-zero roughness at the onsetok gropagation. On the other
hand, distances > x, [15.9 mm, it can be observed in Fig. 3 that the hoegs
magnitude saturates for a wide range of lengthesdalNevertheless, for the
largest length scalds the roughness exhibits fluctuations which arebdiessly
due to a slight macroscopic warping of the fractsueace. Within the growing
zone, i.e., for distances < x < Xy, it can be observed from Fig. 3 that the
roughness growth is different if considered forgénscales smaller or greater
than the crossover length sca&s). Note that such different roughness growths
can be also observed in Fig.2 from the verticaftsiof the RMS roughness
observed for positiox; andx, which are different if observed at length scales
| <<£(x) and | >>¢(x).

On the other hand, the more efficient way to edtnthe global roughness index
(g and the dynamic exponerd, consists to introduce the scaling function
describing the scaling behavidh(l,x) expected from EQq.(2). Thus, from the
modified anomalous scaling defined in Eq.(2), let us defme scaling function
gn(U) as gm(l/x’/ZX):Ah(l,x)/IZQ and hence, the scaling functign(u) is expected

to scale as

_((9_() i
u if u<<l1
~ 1 3
() {u'(zﬂe) if u>>1. ©)

where u=1/x"*. The method used to estimate the global roughinees {, and
the dynamic exponers, consists to compute the experimental valgg@) for
various values oy andz, while the values of the local roughness exponargs
kept equal to the previous estimate (e, 0.79 and. = 0.41 as shown in Fig. 2)
and this for all profiles corresponding to the rongss growth domain (i.e.,
corresponding to positions ranging betwegerandx,). The best data collapse,
which corresponds to the least scattering of thgeemental valuegm(u), is
obtained for the scaling exponent valdgs 1.60 + 0.10 and, = 3.4 + 0.20 as
shown in Figure 4. Note that the global roughnestex {y and the dynamic
exponent{y and z, have distinct influences on the date collapseeéul the
dynamic exponentz, acts on the scattering of the experimental datagathe
abscissa axis while the global roughness indgxhas an influence on the
scattering along the ordinates axis (Fig. 4). Gndther hand, the optimal values
of the scaling exponents obtained from the scédlimgtion ¢y = 1.60 + 0.10 and
z = 3.4 £ 0.2) are in agreement with the correspogdialues which can be
estimated from the slopes of the straight linest@tbin Fig. 3. Indeed, according
to Eq.(2), the slope of the lower line (0.24) whicbrresponds to the fit of
roughness estimated for a small length scale, Iise<,é(x), gives an estimate of

the scaling exponer((g —Z)/zx while the one of the upper line (0.35) which is
related to the roughness observed for a large Hesgpile, i.e.] >>&(x) leads to
the estimate of the scaling expondif -¢.)/z, .



3. Discussion

From the roughness analysis of a mortar crack ceyfd has been shown that
both roughness regimes characterized by the logadreents ~ 0.8 andlc =~ 0.4
can co-exist on the same fracture surface and redlgealong the same crack
profile. Moreover, both local roughness regimes ehdeen observed in the
presence of anomalous roughening and this has dechddify the original
anomalous scaling [32]. The remarkable collapsh@fl 10 profiles located in the
growing zone of roughness (Fig. 4) is in fair agneat with the modified
anomalous scaling proposed in Eg.(2). On the dthed, the two local roughness
exponents( ~ 0.8 and{e ~ 0.4 are observed at small and large length scales
respectively. These observations are consistertt Wie picture proposed by
Bonamy et al [11] which suggests that the 0.4 roegk index should be
observed at length scales where the material caappeoximated as a linear
elastic medium, i.e., et length scales larger than PZ size, while the 0.8
exponent reflects the presence of damage at lestgtles smaller than the size of
the PZ.
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Figure 4. Modified anomalous scaling functigi(u) defined in Eq. (3). The best
data collapse of the 110 profiles correspondingdsitions ranging betweeq =
400 pm and, = 5.9 mm (roughness growth domain) is obtainedHterscaling

exponent valueg; = 0.79,{¢ = 0.41,{g = 1.60 £ 0.10 and, = 3.4 + 0.2.

According to this scenario, the crossover lengtilesg is expected to set by the
PZ size or, more exactly, by a correlation length of th2 i the direction
perpendicular to the crack propagation one. Thisetation length could be



linked to a correlated gradient percolation prodasBZ as suggested by Hansen
and Schmittbuhl [30]. On the other hand, the inseeaf the correlation length
within the transient roughening regime with thetaliee x from the initial straight
notch (i.e., for distanceg < x < xp) is then fully consistent with the quasibrittle
fracture behavior of mortar, characterized by admnt initial regime reflecting
the increase in size of the microcracked PZ anthlerincrease in microcracks
density in PZ before reaching its critical and dieaalue. In this sense, the
extension of the transient roughening regime giwethe positiorx, could reflect
the trace of the PZ development (attached to tltealimotch tip) before the
propagation of the main crack with its critical Plhus, the maximum crossover
length scal€max = &(%2)$ as well as the extension of the transient roughening
regime could provide post mortem estimates of lersgtles linked to the critical
PZ in the directions perpendicular and parallethi crack propagation direction.
Note that these values of the length scales exgeaotde linked to the PZ, i.e.,
&max = 2.3 mm andx; = 5.9 mm, are of the same order of magnitude as th
estimates of the equivalent LEFM length of PZ ulsuabtained in mortar [34].
Note also thakmax = 2.3 mm is slightly larger than the largest gsam sand (1.8
mm).

On the other hand, the dynamic expongntould characterize the evolution in
size of the microcracked PZ and/or the increasaianocracks density in PZ with
respect to the distance from the initial notch through the evolution ofeth
correlation Iengthf(x) ~x¥% . In the same way, estimated at the crossoverhengt

scalel = & according to Eq.(2), the roughneh(l = ¢,x) ~ &ocould provide an
estimate of the maximum height fluctuations in #&, and, indirectly, of the
magnitude of the toughness fluctuations/microcrag&asity inside this zone.
Therefore, the global roughness exponégtcould be the signature of the
transient damage spreading and this is why it cdidmaterial dependent as
previously proposed in [16,17,20,21] contrary tahblmcal roughness indices
and{ which should be considered as universal.

4. Conclusion

On the basis of the results presented in this papex can now reinterpret the

values of the roughness exponents (measured faufeaprofiles parallel to the

direction of crack front) reported in the literaguf4,5,7-21,26-29] for various

materials:
(i) When the PZ size remains small with respecth® specimen size, as for
brittle failure, the crossover length scdles expected to be very small. In this
case, the 0.8 roughness regime should be only wdxséor the smallest length
scales (and hence, may be difficult to observecex@ntally) while the 0.4
roughness regime is expected to take place oveda range of length scales.
This is the case of materials such sandstone [P6a2ffficial rocks [28] and
granular packing of sintered glass beads [29] fbictv the 0.4 roughness
regime is well observed while the 0.8 roughnessmegseems inexistent (or
difficult to observe because only effective for #mallest length scales). Then,
models derived from LEFM such as [11,35] shouldade to capture the



morphology of fracture surfaces. In particular,lsueodels can reproduce 0.4
roughness regimes in agreement with observatiop®rted in [26-29].
Moreover, damage spreading within the process &bhmild be scarce in
brittle failure, and one expects to observe a waksFamily-Vicsek
roughening [36] rather than an anomalous scali@g33.
(i) When the process zone size becomes importantanpared to the
specimen size, as for quasi-brittle failure, ong@egets to observe a large
crossover length scake In this case, the 0.8 roughness regime should tak
place over a wide range of length scales whil&dtdaoughness regime should
be only observed for the largest length scales aftetan be perturbed by a
finite size effect making its observation difficuMoreover, the quasi-brittle
damage spreading from a straight notch (i.e., tkeease of the microcracked
PZ size and/or the increase in microcracks dengityin the PZ) is expected
to lead to an anomalous scaling rather than a kaviniisek one, as reported
for mortar [16] and wood [20]. Finally, the facttithe value of the roughness
exponent is observed close to 0.8 in very differewaterials with various
damage processes as e.g. plastic deformation, tiacking, ductile cavity
growth or microcracking is in agreement with theggestion [30] of a
universal correlated gradient percolation process @ process independent of
the precise nature of the damage).

To test this scenario experimentally will represatgresting challenges for future

investigations.
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