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Abstract Material failure often gives rise to strong
fluctuations that reflect on the rough trajectory followed
by cracks and on their intermittent dynamics. Deci-
phering these fluctuations is a major challenge as they
reveal howcracks interactwith thematerialmicrostruc-
ture. Here, we illustrate through recent studies how the
statistical properties of these fluctuations shed light on
the elementary failure mechanisms taking place at the
microstructure scale. The implications of these find-
ings in terms of material characterization and failure
analysis are discussed and some promising directions
for future investigations are presented.

Keywords Statistical approach · Crack roughness ·
Velocity fluctuations · Disordered materials · Scaling
properties · Fractography

1 Introduction

Crack propagation is the central mechanism leading
to material failure. However, crack growth phenomena
are far from being fully understood. A major challenge
underlying fracture problems relates to its multiscale
nature: The macroscopic failure behavior of materi-
als is largely governed by microstructural features and
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processes localized in the crack tip vicinity. Cracks
that are efficient stress concentrators exacerbate their
impact that can be felt on macroscopic quantities like
toughness and crack speed.

For brittle cracks, this strong coupling between
length scales has been used as an opportunity to design
systems with improved failure properties, as pattern-
ing their structure at the small scale can enhance their
resistance at the large scale (Xia et al. 2012; Hos-
sain et al. 2014). But when complex dissipative mech-
anisms come into play, going from the small to the
large, i.e. from the microscale features of materials to
their macroscale failure behavior, remains a challeng-
ing task. The multiscale nature of fracture phenom-
ena can then be used as a means to probe local failure
mechanisms. Although they might not be amenable to
direct observations due to the small length and time
scales involved, their impact on the macroscopic mate-
rial response may indeed be more easily character-
ized. A direct manifestation of microscale processes
at the large scale is the strongly fluctuating behavior
of cracks. The challenge raised by this approach then
concerns the interpretation of these fluctuations in term
of physical processes.

Extracting meaningful information from fluctua-
tions has been a preferred line of research in various
domains, including the physics of condensed matter.
As a result, the approaches and concepts developed in
these fields have been largely borrowed and applied
to fracture problems (Alava et al. 2006; Bonamy and
Bouchaud 2011). A major output of these works has
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12 L. Ponson

(a) (b) (c)

Fig. 1 a Isolated system of total energy Etot = Em(t) + Ef (t)
constituted of a notched specimen under dead weight loading
conditions. Before failure, the energy is stored as potential energy
Etot = Em(0) that has been fully dissipated in fracture energy
Etot = Ef (tend) after failure. b Experiments in heterogeneous
solids show that this transfer from mechanical into fracture
energy is very intermittent. This avalanche-like dynamics can

be studied through the variations of the crack velocity 〈v〉 that is
proportional to the dissipation rate P = −dEm/dt = dEf/dt
as shown in inset. c Probability density of the dissipation rate.
The different symbols correspond to different experimental sam-
pling rates, while both curves correspond to two average crack
growth velocities. [Figs. (b) and (c) are courtesy of Barés et al.
(2014)]

been to establish a connection between the failure of
disordered materials and critical phenomena like per-
colation or depinning transition. In critical phenom-
ena, the system behavior and its fluctuations are char-
acterized by power laws that emerge from the inter-
play between disorder and interactions that tend to
order the system. In the context of material failure,
the observed power laws emerge from the competi-
tion between microstructural disorder and elasticity,
very often influenced by damage processes. In the fol-
lowing, we will illustrate through some recent research
studies how to make sense to these scaling behaviors
and use them to identify and characterize elementary
crack growth mechanisms. We will focus on two quan-
tities that are ready-made directions of investigation in
failure problems, the crack speed and its fluctuations in
Sect. 2 and the crack path and its fluctuations in Sect. 3.
The Sect. 4 discusses promising research directions for
future investigations.

2 Statistics of fluctuations in the dynamics of
cracks

2.1 Experimental observations

Crack dynamics has been extensively used to investi-
gate failure mechanisms in materials. Here, the empha-
sis is put on the fluctuations of crack speed that can be
either investigated at the local scale, i.e. at some loca-
tion along the crack front, or at the global scale, through

the evolution of the average crack position. Interest-
ingly, this second approach amounts to investigate the
rate of dissipated energy through failure. To establish
this connection, consider the isolated system depicted
in Fig. 1a made of a notched specimen and a dead load
pulling on its upper face through frictionless pulleys.
The total energy Etot = Em+Ef can be partitioned into
mechanical and fracture energy. The process of failure
proceeds through a transfer of the first contribution into
the second one.

In the example depicted in Fig. 1, the initial condi-
tion corresponds to a state of the system where the
energy is entirely stored in mechanical energy with{
E0
m = Etot, E0

f = 0
}
at t = 0. On the contrary, once

the sample is broken, all the mechanical energy ini-
tially available has been dissipated into fracture so that{
Eend
m = 0, Eend

f = Etot
}
at t = tend. In practice, for

more general loading conditions, the total dissipated
energy corresponds to the work of the force applied to
the sample during the test that reduceswell to the poten-
tial energy E0

m = mgδ of the dead load m displaced
over the height δ in the specific example considered
here.

To describe this energy transfer, we introduce
the elastic energy release rate G(z, t) that measures
the decrease dEm(t) = − ∫ b

0 G(z, t) ḟ (z, t)dtdz of
mechanical energy for an incremental crack advance
ḟ (z, t)dt , where ḟ (z, t) provides the crack velocity in
z at time t and b denotes the sample width along the
z-axis. Wherever the crack propagates, G(z, t) is equal
to the rate of energy dissipated or fracture energy Gc,
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Statistical aspects in crack growth phenomena 13

so that themechanical energy released compensates the
energy dissipated dE f (t) = ∫ b

0 Gc ḟ dtdz. It follows
that the transfer rate

P(t) = dEs

dt
= −dEm

dt

=
∫ b

0
G(z, t)

∂ f

∂t
dz � b Gc〈v〉(t) (1)

is proportional to the average crack growth velocity
〈v〉. This linear relation has been tested experimentally
inBarés et al. (2014) and is shown in the inset of Fig. 1b.
The proportionality constant is set by the material frac-
ture energy Gc.

Interestingly, in disordered solids, the dissipation
rate is far from being constant in time. Instead, it dis-
plays a strong intermittency characterized by bursts of
failure activities, as exemplified in Fig. 1b for an artifi-
cial rockmade of sintered PMMAbeads. This observa-
tion contrasts with the smooth variation of the displace-
ment imposed to the fracturing specimen that produces
a smoothly varying rate dW/dt of mechanical energy
injected into the system. To reconcile these two dif-
ferent dynamics, we separate the mechanical energy
Em = W + Eel into the work of the external force that
varies smoothly with time and the elastic energy stored
in the sample from which emerges these strong fluc-
tuations. The elastic solid, by storing potential energy
and suddenly releasing it through avalanches, acts as a
complex filter that drains intermittently the energy flux
from the external loading to the crack tip. This stick-
slip dynamics is a direct consequence of the disorder
nature of the fracturing material.

The velocity signal 〈v〉(t), or equivalently the dis-
sipation rate since P ∼ 〈v〉, are natural candidates to
disentangle this complex dynamics. Their statistics is
investigated in Fig. 1c that shows the probability den-
sity function of P . The experiments of Barés et al.
(2014) show two regimes characterized by power law
behaviors with the exponents ηp � 1.4 and ηd � 2.5
at small and large dissipation rates, respectively. The
presence of two distinct regimes reflects the two-states
dynamics of cracks in disorderedmaterials that is dom-
inated by a few peaks of intense activity where the dis-
sipation rate is exceptionally large, separated by almost
silent periods where the crack speed and so the dissi-
pation rate is much lower.

To identify the physical processes behind these puz-
zling observations, it is fruitful to observe crackmotion
at the local scale, where the front interacts with the

(a)

(b)

(c)

Fig. 2 a Sketch of the experimental setup: two PMMA plates
are sintered together, creating a weak plane for the fracture to
propagate.bTime spent by the front in the different regions of the
fracture plane. The dark lines correspond to long waiting times
and thus low velocities while the white domains correspond to
micro-instabilities and so fast velocities. c Distribution of local
crack growth velocities. [Courtesy of Måløy et al. (2006)]

material microstructure. Figure 2a shows an exper-
imental setup designed by Måløy and Schmittbuhl
(2001) to explore the local dynamics of crack fronts
in disordered solids. In this system, the crack front is
confined at the weak interface between two transparent
PMMA plates where toughness heterogeneities have
been artificially introduced by sandblasting one of the
two plates before sintering them together. The com-
plex evolution of the crack recorded at the micrometer
scale using a fast camera is illustrated in Fig. 2b. It
shows in grey scale the time spent by the front in the
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14 L. Ponson

different regions of the fracture plane. The intermit-
tency evidenced at the large scale in Fig. 1b is also
obvious at the local scale: The black lines visible in
Fig. 2b that correspond to low local velocity reveal
front configurations that have remained trapped by the
strongest material heterogeneities. The white regions
on the contrary are reminiscent of micro-instabilities
during which the front goes rapidly from one pinned
configuration to another. The coexistence of two antag-
onistic states is also evidenced in the statistics of
local crack velocity shown in Fig. 2c. Their proba-
bility density shows two distinct regimes where the
small v < 〈v〉 provides the time spent by the front
before escaping from a pinned configuration while the
large v > 〈v〉 characterizes the front dynamics dur-
ing the so-called avalanches right after depinning and
before it gets pinned again in another configuration.
Interestingly, the power law behavior observed at the
local scale in the depinning regime is characterized by
the exponent ηd � 2.5 also measured at the global
scale in the experiments of Barés et al. (2014) pre-
sented in Fig. 1. How do fluctuations resulting from
the pinning of the front by heterogeneities introduced
at small scale produce speed variations measurable at
the sample scale? This survival of the power law sta-
tistics with exponent ηd � 2.5 has been explained
by Tallakstad et al. (2013): The central limit theo-
rem that very often ensures Gaussian fluctuations of
global velocities as for example in imbibition (Clotet
et al. 2014) breaks down here since for large exponents
ηd > 2, the variance of the local crack speed probabil-
ity diverges.

Does this imply that cracks systematically display
such strong velocity fluctuations? Not necessarily, as
for sufficiently weak heterogeneities under some spe-
cific loading conditions detailed in Roux et al. (2003)
and Barés et al. (2013), the dynamics of the crack
retrieves a continuum like motion at large scale as
expected for a coarse-grained homogeneous medium.

Interestingly, even in presence of a strong intermit-
tency in the dynamics of the crack, fluctuations can
still exhibit two distinct statistical features. Figure 3a
depicts an experimental setup where a crack is driven
between a transparent PDMSblock and a stiff thin plate
patterned with randomly located defects of controlled
strength and density. This system is inspired from the
experiments of Dalmas et al. (2009), Xia et al. (2012)
and Chopin et al. (2015) where cracks are pinned by
designed obstacles. Similarly to Måløy et al. (1992a)’s

(a)

(b)

(c)

Fig. 3 a Sketch of the experimental setup: a thin rigid can-
tilever is detached from a thick PDMS specimen. The interface
where the crack propagates is patterned with randomly distrib-
uted obstacles of controlled strength and size. b Intermittent
dynamics of the crack front in the fracture plane. Thedark regions
correspond to long waiting times and thus a low velocity while
the bright regions correspond to avalanches and so fast veloci-
ties. cDistribution of local crack growth velocities (Chopin et al.
2016)

observations (Fig. 2), the front dynamics is also very
intermittent, as illustrated by the local velocity map of
Fig. 3b. However, the scaling behavior of the probabil-
ity density of local crack speed is characterized by an
exponent ηd � 1.9 significantly lower. We will see in
the next section that this difference reveals two differ-
ent failure growth mechanisms.

2.2 Models of crack propagation in disordered
materials

Two types of models have been proposed to describe
crack growth in disordered materials. In the first
approach, damage processes taking place in the crack
tip vicinity are assumed to be localized in a process
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Statistical aspects in crack growth phenomena 15

Broken zone Broken zonez z

f (z, t) f (z, t)

�pz

�pzd

(a) (b) 

Fig. 4 Brittle versus quasi-brittle failure of heterogeneousmate-
rials. a For brittle failure, the process zone size �pz is much
smaller than the characteristic microstructural length scale d of
the material. The crack growth process is well described by the

motion of a sharp interface f (z, t) separating the broken from the
unbroken domain of the fracture plane. b For quasi-brittle fail-
ure, �pz � d so crack propagation is dominated by the processes
of damage nucleation, growth and percolation

zone of size �pz small with respect to the heterogene-
ity size d, as illustrated in Fig. 4a. This assumption
justifies the description of failure processes at a contin-
uum scale through the basic concept of Linear Elastic
FractureMechanics (LEFM): During crack growth, the
rate of elastic energy released compensates the rate of
energy dissipated through fracture. Thus, fracture is
described as a transfer of mechanical energy consist-
ing of the elastic energy stored into the loaded specimen
and the work of the external force, into fracture energy
that consists of the energy dissipated within the crack
tip process zone to make the crack propagates. The
second type of models takes into account the discrete
nature of failure processes by describing crack growth
as a succession of discrete failure events in a network
of fuses, bonds or beams. Failure takes place when the
stress applied locally exceeds a resistance threshold
that is randomly distributed among the constitutive ele-
ments (Herrmann and Roux 1990). Contrary to LEFM
based model that ensures proper energy conservation
during failure, this approach does not rely on thermody-
namics principles, and so does not provide any interpre-
tation of the process of crack growth in terms of fracture
energy. However, it allows the exploration of complex
crack geometries and fracture patterns as the one pre-
sented in Fig. 4b where crack growth proceeds through
the nucleation, growth and coalescence of damage cav-
ities. Both approaches are complementary and apply to
different crack propagation problems, as illustrated in
the following. Interestingly, a clear connection between
both approaches were recently made, as it was shown
that discrete models could recover LEFM predictions
when investigated at a scale much larger than the
process zone size �pz (Gjerden et al. 2014).

Continuous models of crack propagation in hetero-
geneous media builds on two ingredients: The accu-
rate description of the stress field at the vicinity of a

distorted crack front (Lazarus 2011) and the descrip-
tion of the material microstructure at a mesoscale
though a heterogeneous field of fracture energy. The
first one provides the distribution of crack driving force
along the front, prerequisite to predict its evolution
within a medium with heterogeneous failure proper-
ties. This distribution canonlybeobtained explicitly for
small front perturbations with respect to straightness,
even though larger front perturbations through second
order expansions could recently be explored using this
approach (Vasoya et al. 2015).

Following this line, Rice (1985)’s formula derived
for a semi-infinite planar crack embedded in an infi-
nite elastic medium has been extensively used for
investigating the dynamics of cracks in heterogeneous
media (Gao and Rice 1989; Schmittbuhl et al. 1995;
Bonamy et al. 2008). It provides the distribution of
elastic energy release rate

G(z, t)

G0
= 1 + f0 − f (z, t)

L

+ 1

π
PV

∫ +∞

−∞
f (z̃, t) − f (z, t)

(z̃ − z)2
dz̃ (2)

as a function of the crack front geometry f (z) defined
from a reference straight configuration f0 (see Fig 4a).1

The structural length L = − G0

dG0/d f0
is positive

for stable macroscopic loading conditions for which
the unperturbed elastic energy release rate G0 decays
with the unperturbed crack position under fixed load-
ing. This formula actually applies also for a crack
lying at the interface between a rigid substrate and
an incompressible material (Pindra et al. 2008), so it
can be safely applied to the two experimental situa-
tions presented previously. Note that formula similar

1 The principal value PV
∫
in Eq. (2) ensures the convergence

of the integral.
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16 L. Ponson

to Eq. (2), but involving different kernels in the inte-
gral, can be derived for more specific fracture geome-
tries, e.g. to take into account the finite thickness of the
specimen (Legrand et al. 2011).

Equation (2) reflects that the local driving force on
the front depends not only on the distance of the crack
line to the reference position, but also on the full crack
front configuration through the integral term embed-
ding the long-range interaction kernel∼ 1/z2. It means
that a geometrical perturbation localized along the front
affects the crack driving force everywhere else, butwith
a strength that decays as the inverse of the square of the
distance. Such a non-local behavior is reminiscent of
the underlying perturbations of the elastic field in the
bulk ahead of the crack front: A local geometrical per-
turbation of the crack front produces an extended per-
turbation of the elastic field ahead of the crack in the
still intact region of the material that ultimately modi-
fies the elastic energy release rate everywhere along the
front. To capture the essence of this non-local behav-
ior, it is helpful to consider the Fourier transform of the
integral term in Eq. (2) that follows −|k|δ f̃ (k) where
f̃ (k) is the Fourier transform of the front perturbations.
Under this form, the elastic restoring force that applies
on the front appears to be inversely proportional to the
perturbation wavelength 1/k so the smaller the wave-
length, the stiffer the crack front.

The derivation of an evolution equation for the crack
front builds on the perturbation of the Griffith’s equi-
librium condition

G[ f (z, t)] = Gc[ f (z, t), ḟ (z, t)]
that should be satisfied everywhere along the front at
any time. Note that the variations of the fracture energy
with the crack speed ḟ are also taken into account. We
then follow the approach described previously where
the elastic energy release rate has been expanded to the
linear order in the crack front perturbation, and develop
the fracture energy distribution along the front as

Gc(z, t)

Gc
= 1 + δgc(z, x = f (z, t)) + ḟ (z, t) − 〈v〉

v0
.

(3)

The first term in this development describes the nor-
malized toughness variations

δgc(z, x) = Gc(z, x, 〈v〉) − Gc

Gc

from a reference valueGc = 〈Gc(z, x, 〈v〉)〉z,x defined
as the average toughness within the fracture plane for
the crack speed 〈v〉 = 〈 ḟ (z, t)〉z,t . Note that we do
not linearized this term in f (z, t) − 〈 f (z, t)〉z,t , as
it would limit our model to small front perturbations
with respect to the heterogeneity size d. The second
term in Eq. (3) takes into account the variations of frac-
ture energy that generally increases with crack speed.
This variation is approximated by a linear relation with
coefficient G ′

c = d〈Gc(x, z, ḟ )〉z,x/d ḟ
∣
∣〈v〉. For prac-

tical purposes, we introduce the velocity v0 = Gc/G
′
c

that is a characteristic constant of the material that may
depend on the average crack speed 〈v〉.

The insertion of Eqs. (2) and (3) into the Griffith’s
equilibrium conditionG(z, t) = Gc(z, t) gives the fol-
lowing crack evolution equation

ḟ − 〈v〉
v0

= f0 − f

L
+ 1

π
PV

∫ +∞

−∞
f (z̃, t) − f (z, t)

(z̃ − z)2

dz̃ − δgc(z, f ). (4)

It relies on the assumptionof small toughness variations√〈δgc(z, x)2〉z,x 	 1 that justifies the linear develop-
ment of G with the front perturbation in Eq. (2). It
also assumes linear variations of G0( f ) −G0( f0) and
Gc( ḟ ) − Gc(〈v〉) within the range of crack length and
speed investigated.

This equation of motion captures many features of
the statistics of crack growth observed experimentally.
In particular, it describes accurately the mechanism of
collective pinning of the front by an assembly of obsta-
cles at the origin of the giant fluctuations evidenced in
Fig. 1b. As a result, it has been used to interpret several
experimental observations like the power law distribu-
tion of failure bursts measured at the local scale from
spatio-temporal diagrams like the one of Figs. 2b and
3b (Bonamy et al. 2008), the scale invariant roughness
of the front characterized by a roughness exponent ζ �
0.4 (Santucci et al. 2010) or the fine temporal struc-
ture of global avalanches and their asymmetry (Laurson
et al. 2010). Here, wewould like to focus on the distrib-
ution P(v) ofmacroscopic velocity in order to interpret
the experimental results presented in Sect. 2.1.

The equation of motion (4) can be solved numeri-
cally for parameters valueL and v0 in agreement with
the experimental conditions. The predicted distribution
of local velocity is shown in Fig. 5. Similarly to the
experimental observations, it also shows two different
regimes with a low velocity regime at v < 〈v〉 corre-
sponding to pinned crack configurations characterized
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Statistical aspects in crack growth phenomena 17

(a)

(b)

Fig. 5 Distribution of local crack speeds as predicted from a a
LEFM based model that describes brittle crack propagation in a
disordered material (see Eq. (4); Ponson and Pindra 2016); b a
fiber bundle model that describes crack propagation as a dam-
age percolation process [Courtesy of Gjerden et al. (2014)]. In
both cases, the velocity distribution shows two regimes: The low
velocity or pinning regime is reminiscent of zones of the front
that are trapped bymaterial heterogeneitieswhile the large veloc-
ity or depinning regime describes the crack dynamics within
avalanches. Note that the exponents involved in the depinning
regimes are different in both models and capture well the differ-
ence also observed in the experiments (see Figs. 2c, 3c)

by apower lawwith exponentηp � 1.6 and adepinning
regime for v > 〈v〉 characterized by ηd � 2.0. Note
that the slopes of the distribution represented in Fig. 5
are actually ηd −1 and ηp −1, since the velocities have
been defined here from the waiting times of the crack
front following the procedure proposed by Tallakstad
et al. (2011). The correspondence between the theoreti-
cally predicted and the experimentally measured expo-
nents of Figs. 2c and 3c is not clear.

To disentangle the scaling behavior of the velocity
distribution, it is useful to explore the dynamics of the

crack in a simpler situation. Consider the relaxation
of a crack front as it recovers a straight configuration
after depinning from a single obstacle. This problem
can be addressed by considering Eq. (4) but with a
homogeneous toughness field δgc = 0. The initial front
geometry at the onset of depinning corresponds to the
solution

f (z) = C d

π

[(
1 + z

d

)
ln

∣
∣
∣1 + z

d

∣
∣
∣ +

(
1 − z

d

)
ln

∣
∣
∣1 − z

d

∣
∣
∣
]

(5)

of the classical problem of a front at equilibrium in a
fracture plane containing an isolated obstacle of width
2d and toughness contrast C = (GO

c −Gc)/Gc where
GO

c > Gc is the toughness of the obstacle (Chopin
et al. 2011; Vasoya et al. 2013). The resolution of the
relaxation dynamics provides the velocity field

ḟ (z, t) � Cv0

[
1 − 1

π

(
arctan

(
v0 t

d + z

)

+ arctan

(
v0 t

d − z

))]
(6)

for small defects d 	 L compared to the structural
length introduced in Eq. (2) and small average growth
velocity 〈v〉 	 v0. First, it provides a simple physi-
cal interpretation of the characteristic velocity v0 intro-
duced in the crack front evolution equation since it sets
the initial crack speed ḟ (z, 0) = Cv0 at the onset of
depinning. Second, it predicts a relaxation dynamics in
ḟ ∼ 1/t after a short transient t � d/v0, from which
one deduces the scaling behavior of the velocity distrib-
ution P(v) ∼ 1/v2 duringmicro-instabilities produced
by the depinning of the front from single obstacles.

Avalanches observed during the propagation of a
crack through a disordered interfaces result from the
depinning from several obstacles. However, the numer-
ical resolution of Eq. (4) show that the scaling of
the velocity distribution remains similar and follows
P(v) ∼ 1/v2, irrespective of the avalanche size and
so the number of obstacles involved in the depinning
process (Ponson and Pindra 2016).

An interpretation of the scaling behavior of the local
velocity distribution is now in order. In the direct simu-
lations of the crack growth equation, the power law sta-
tistics P(v) ∼ 1/v2 observed in the depinning regime
is the signature of the relaxation mechanisms when
the front detaches from obstacles. This is consistent
with the observation of a similar scaling in the experi-
ments of Fig. 3 where a crack propagates at the disor-
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18 L. Ponson

dered interface between a PDMS block and a rigid sub-
strate. Indeed, for that particular experimental setup,
the process zone size is of the order of a few tenth of
nanometers (Ciccotti and Creton 2016), much lower
than the patterned heterogeneities introduced at the
micrometer scale, guaranteeing that the hypothesis of
brittle crack growth depicted in Fig. 4a is satisfied.

The agreement between the LEFM based model and
the experiments of Fig. 3 raises the question of the ori-
gin of the large exponent ηd � 2.5 characterizing the
depinning regime in the experiments on PMMA pre-
sented in Fig. 2. This deviation to the LEFM prediction
can be understood by investigating the local crack front
dynamics using a discrete model of fracture that goes
beyond brittle fracture. Gjerden et al. (2014) investi-
gated the propagation of a crack through a weak disor-
dered interface separating two blocks connected by an
array of parallel brittle fibers. When the force applied
to one of the fiber exceeds its failure threshold, the
fiber breaks and tensile forces are redistributed through
the intact region of the interface assuming that blocks
behave elastically. This redistribution mechanism pro-
duces cascades of failure events, qualitatively similar to
the avalanche dynamics described by the LEFM based
model of Eq. (4). For a weakly disordered interface, the
simulation even recovers quantitatively the predictions
of the depinning models and in particular the value of
the roughness exponent ζ � 0.4 predicted from the
LEFM. But a more interesting regime takes place for
strongly disordered interfaces. Indeed, in that regime,
the front dynamics is not governed by the competition
between the elasticity of the crack line and the disor-
der, but instead by the coalescence of regions of broken
fibers located ahead of the crack with the advancing
crack itself. Interestingly, this transition from brittle to
quasi-brittle crack growth reflects also on the veloc-
ity probability density: When the process of damage
coalescence dominates, as illustrated in Fig. 4b, the
velocity distribution follows another scaling behavior
P(v) � v−ηd with ηd � 2.5 as shown in Fig. 5b.
This finding is in excellent agreement with Måløy
et al. (1992a)’s experimental observations shown in
Fig. 2c.

The comparison between coalescence model and
experiments suggests that crack growth between two
sintered PMMA plates as performed in Måløy et al.
(1992a)’s experiments is dominated by damage coa-
lescence. This point would certainly deserve further
experimental investigations.

The existence of two distinct scaling regimes with
exponent ηd � 2.0 for brittle failure and ηd � 2.5 for
quasi-brittle crack growth also invites a discussion of
Barés et al. (2013)’s experimental results presented in
Fig. 1c. Here, a scaling lawwith ηd � 2.5 was reported
in the depinning regime. Since such scaling actually
does survive to upscaling (Tallakstad et al. 2011), it is
tempting to interpret this observation in terms ofmicro-
scopic failure mechanism, and conjecture that micro-
cracking does take place at a scale comparable to the
grain size d � 500 µm of the sintered materials used
in these experiments.

Many questions remain open. First, we have mainly
focused on the depinning regime, and proposed an
interpretation for the scaling behavior of the velocity
distribution in terms of local crack growth mechanism.
What about the pinning regime? The observation of a
scaling behavior with an exponent ηp � 1.4 in Barés
et al. (2013)’s experiment, close to the LEFM predic-
tion ηp � 1.6 shown in Fig. 5a, is indication that the
velocity distribution in the pinning regime might be
robust through the transition frombrittle to quasi-brittle
crack growth.

To conclude, we illustrated in this first part how the
statistics of crack velocity fluctuations observed either
at the local or the global scale can be used as a probe to
investigate the nature of the microscopic crack growth
mechanisms. This idea opens interesting perspectives
for the monitoring of structures from a statistical treat-
ment of acoustic signals emitted during their progres-
sive fracture and damage. We now move to the study
of fracture surfaces statistics that also provide a rich
information on the elementary mechanisms involved
in crack growth.

3 Statistics of fluctuations in the trajectory of
cracks

Fracture surfaces can be considered as the Holy
Grail for models of crack propagation in disordered
materials, as they have been extensively used as a
benchmark to compare and discriminate competing
approaches (Bouchaud et al. 1993;Hansen and Schmit-
tbuhl 2003; Ponson et al. 2006; Nukala et al. 2010).
Here, we would like to illustrate how to take advan-
tage of the dialogue between theory and experiment
to identify basic crack growth mechanisms from the
statistics of fracture surfaces, and propose fracture sur-
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face geometry as a paradigm for understanding failure
phenomena in disordered materials.

3.1 Crack path in thin sheets

To isolate the basic mechanisms underlying crack path
selection in heterogeneous media, it is instructive to
consider first crack growth in 2D thin sheets. By thin
sheets, we mean structures with a small thickness com-
pared to their width and length, but also smaller than or
comparable to the characteristicmicrostructural feature
of the material.

Figures 6a and 7a show fracture profiles in a panel
of expanded polystyrene made of d � 2mm size beads
and in a paper sheet, respectively. After digitizing the
crack paths h(x), their geometry can be characterized
through their height-height correlation function

Δh(δx) = 〈[h(x + δx) − h(x)]2〉1/2x . (7)

where Δh is the height difference between two points
along the crack path h(x) separated by the distance δx
along the average crack line x .Δh is also averaged over
several samples of the same material broken under the

(a)

(b)

Fig. 6 a Fracture profile in a thin panel of expanded polystyrene
made of beads of size d � 2mm.bLogarithmic representation of
the height–height correlation function of the fracture profiles. At
scales larger than the bead size d, crack roughness is self-affine
with an exponent H = 0.48±0.05 (Bouchaud and Ponson 2017;
Ponson et al. 2017)

(a)

(b)

Fig. 7 a Fracture profile in a sheet of drawing paper. b Logarith-
mic representation of the height–height correlation of fracture
profiles in three different types of paper. The fracture rough-
ness shows a self-affine behavior characterized by an exponent
H = 0.67 ± 0.05 that varies weakly from one type of paper to
another (Bouchaud and Ponson 2017)

same loading conditions to obtain a smooth variation
with δx . Figures 6b and 7b show the crack correlation
functions thus obtained for the polystyrene panel and
three types of paper sheet they both follow a power law
Δh � δxH which is reminiscent of self-affine proper-
ties. However, the value of the characteristic exponent,
also referred to as the Hurst exponent, differs signifi-
cantly with H = 0.48±0.05 in polystyrene panels and
H = 0.67 ± 0.05 in paper sheets.

This finding indicates two dramatically different
fracture behaviors. Cracks in polystyrene panels with
H � 1/2 follow trajectories close to a directed random
walk: At any time during failure, the crack has the same
probability to propagate upward as downward, irre-
spective of the prior propagation direction. As it can be
seen in Fig. 6b where the axes have been normalized by
the bead size, the randomwalk behavior starts at a scale
δx � d up to a cutoff length δx � 100 d. Since the self-
affine crack geometry reflects the random microstruc-
ture of thematerial, the elementarymicrostructural fea-
ture sets the lower bound of the scale invariant regime.
The upper bound has a different origin: It emerges from
the finite size of the specimen, as shown by studying the
effect of the sample dimensions on the fracture surface
scaling properties (Ponson et al. 2007).
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For fractures in paper sheets that display exponents
H � 0.7 larger than 1/2, trajectories are persistent
random walks. Crack deflections towards the upper
h′(x) > 0 (resp. lower h′(x) < 0) direction will be
more likely followed by a positive (resp. negative) sub-
sequent deflection. The lower bound of the self-affine
regime is less clear for paper sheets than for polystyrene
panels, and we will explain this observation later. The
upper bound however, as for polystyrene panels, can be
shown to emerge from the finite size of the specimen.

To make sense to these observations, the geometry
of cracks in brittle materials with disordered fracture
properties is explored theoretically. The model pro-
posed here relies on the assumption that the crack fol-
lows the direction in which the shear component of the
loading cancels out (Gol’dstein and Salganik 1974).
Using this so-called principle of local symmetry actu-
ally amounts to assume that the process zone size �pz is
much smaller than the size of the microstructural fea-
tures at the origin of the crack deflection, so that LEFM
can be safely applied. We will see that this hypothe-
sis plays a central role in the interpretation of the two
roughening behaviors observed experimentally. From
the principle of local symmetry and the expression of
the local stress intensity factors in tension kI {h(x)} and
shear kI I {h(x)} for slightly perturbed crack trajectory,
one derives the following path equation

dh

dx
= − 1√

L1

∫ x

−∞
h′(x̃)√
x − x̃

dx̃ − h(x)

L2
+ η(x) (8)

that is valid in the limit of small crack deflections
h′(x) 	 1. Note that contrary to Katzav et al. (2007),
the material elastic heterogeneities are not taken into
account, resulting in a simplified version of the path
equation that they derived. The term η(x) is a quenched
noise that describes the effect of the toughness vari-
ations and anisotropy resulting from the disordered
material microstructure. Its value changes randomly
over −η0 ≤ η ≤ η0 each time the crack propa-
gates over a distance of the order of the characteris-
tic microstructural size. The lengths L1 � (T/KI)

2

and L2 � |AI|/KI involved in the path Eq. (8) relate
to the values of the coefficients KI, T and AI in the
Williams’ development of the stress field in the tip
vicinity of the unperturbed straight crack. In particular,
theT-stress, negative in the experiments described here,
plays a central role on the stability of the crack trajec-
tory (Cotterell and Rice 1980). The calculation of these

lengths for the actual fracture tests shown in Figs. 6a
and 7b gives L1 � L2 � 100 d for the polystyrene
panels and L1 � L2 � 2 cm for the paper sheets:
They are of the order of the specimen in-plane dimen-
sion and much larger than the characteristic size of the
microstructural features. Under these conditions, the
first two terms in the pathEq. (8) that scale as∼ 1/

√
L1

and∼1/L2 become negligible. The approximated path
equation dh/dx � η(x) thus obtained is characteristic
of a directed random walk. It predicts self-affine crack
profiles with an exponent H = 1/2.

This theoretical analysis of the crack paths in 2D
disordered brittle solids captures the observationsmade
in Fig. 6 for polystyrene panels, namely uncorrelated
crack deflections reflected by the random walk expo-
nent H � 0.5. This agreement lies in the peculiar
failure mechanism of expanded polystyrene: As the
crack meanders through its poorly consolidated gran-
ular structure, the actual dissipative failure mecha-
nisms taking place in the crack tip vicinity are confined
in a process zone of size �pz much smaller than the
size d of the polystyrene beads. Therefore, the crack
deflection mechanism in this material is fairly well
described under the assumption of brittle crack growth
as assumed in the model.

The behavior of cracks in paper sheets with H >

1/2 indicate another roughening mechanism. Here,
the characteristic scale of the microstructure, namely
fibers of length d � 0.1–1 mm (Ververis et al.
2004), compares with the characteristic scale of dam-
age processes. A closer look at the failure mechanisms
in paper indeed reveal that macroscopic cracks prop-
agate through the nucleation and growth of mm scale
microcracks that subsequently coalesce with it. This
discontinuous growth process results in jumps of the
crack tip from one position to another that can be evi-
denced using a fast camera or through the acoustic sig-
nal emitted during failure (Stojanova et al. 2014).

This characteristic failure mechanism reflects on the
crack roughness at the large scale. As shown by Ben-
Dayan et al. (2006), crack propagation by damage
nucleation and coalescence produces persistent self-
affine crack trajectories characterized by a Hurst expo-
nent larger than 1/2, equal to H � 0.65 in their specific
model. Roughly speaking, the positive correlations that
build along the crack path emerge from the attraction
exerted by the microcrack on the main crack through
the following mechanism: As the level of tensile stress
is maximum along the current crack propagation direc-
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Fig. 8 Height maps h(x) of
fracture surfaces of
aluminum, mortar and
ceramic. Their distributions
of height variations
computed at different scales
δr = |x| show a Gaussian
behavior at large scales
δr � ξ against fat tail
behavior at small scales
δr 	 ξ where ξ is a
material dependant length
scale measured in Fig. 9
(Vernède et al. 2015)

tion,microcracks are likely to nucleate in this direction.
Once damage nucleation takes place, microcrack and
crack attract each other, so the main crack is now more
likely to propagate in its current propagation direc-
tion. Such a roughening mechanism was also observed
through simulations of crack propagation by damage
growth and coalescence in ductile materials (Srivas-
tava et al. 2014). The roughness exponent H � 0.55
characterizing the fracture surfaces in their simulations
is lower than the one found by Ben-Dayan et al. (2006),
however significantly larger than 1/2 to indicate per-
sistency in the crack trajectory.

The link between failuremechanisms and roughness
properties in thin sheets is clear from the experiments
and themodels: Brittle crack growth in the limit of large
specimens leads to uncorrelated random fracture pro-
files (H � 1/2) while crack propagation through dam-
age nucleation results in positive correlations between
successive crack growth increments (H > 1/2). The
comparison between two length scales, namely the
characteristic size d of the elementary microstructural
features and the characteristic size �pz of the damage
processes, is proposed as a criterion to discriminate
both mechanisms. We now move to the study of the
fracture surfaces of fully three-dimensional materials
that do reveal the competing roughening mechanisms
evidenced in thin sheets, but involve a different selec-
tion process between them.

3.2 Roughness of two-dimensional fracture surfaces

We now consider fracture in specimens with a large
dimension along the crack front direction compared to
the characteristic microstructural size of the material.
In that situation, the crack leaves behind it a 2D fracture
map as the ones shown in Fig. 8. Three materials are
considered, namely an aluminum alloy, a mortar and a
ceramic, with a priori three different failure behaviors
to elicit roughness properties common to a large range
of materials. The topography h(z, x) of the fracture
surface of each of these materials is measured through
an adapted profilometric technique as detailed by Pou-
chou et al. (2002), Morel et al. (2008) and Ponson et al.
(2006a), respectively.

The standard approach to characterize the geom-
etry of fracture surfaces is to compute their height-
height correlation function, as defined in Eq. (7), either
along the propagation direction x or the perpendicu-
lar one z. A more complete characterization consists
in computing their 2D correlation function Δh(δx) =
〈[h(x + δx) − h(x)]2〉1/2x that allows for the descrip-
tion of their anistropic scaling properties (Ponson et al.
2006b). Previous works have shown that fracture sur-
faces are self-affine, namely that their correlation func-
tion follows a power law Δh ∼ δzζ with an expo-
nent ζ � 0.75 that was conjectured to be univer-
sal (Bouchaud et al. 1990; Måløy et al. 1992a). How-

123

Author's personal copy



22 L. Ponson

Fig. 9 Fracture surfaces
shown in Fig. 8 processed
through Eq. (9) with
ε = 3, 50 and 8μm for the
aluminum, mortar and
ceramic fracture surface,
respectively. It highlights
the steepest cliffs that are
shown in white. The
characteristic size ξ of the
patterns visible on these
maps is obtained from the
variations of their
correlation function
C(δr) ∼ − log(δr/ξ) and
gives ξ = 170, 430 and
170 µm for the aluminum,
mortar and ceramic fracture
surface, respectively
(Vernède et al. 2015)

ever, more recently, another roughness behavior was
reported on brittle rocks with a lower roughness expo-
nent ζ � 0.45 (Boffa et al. 1998; Ponson et al. 2006a).
Following the work of Santucci et al. (2007), we would
like here to take a step back from the scaling proper-
ties of fracture surfaces and investigate the underlying
statistics of height fluctuations to reveal the range of
length scales over which roughness shows meaningful
correlations.

Figure 8 shows the distribution Pδr of height vari-
ations δh = h(x+ δx)− h(x) where the sampling is
done on all admissible x and δx such as δr = |δx|. In
other words, we focus on the height variations at dif-
ferent scales δr and treat fracture surfaces as isotropic
maps. An interesting property of the family of distribu-
tions Pδr is that they follow aGaussian behavior at large
length scales δr � ξ while they exhibit fat tail statis-
tics at small length scales δr 	 ξ as evidenced from the
comparison with parabolas characteristic of Gaussian
distributions in the semi-logarithmic representation of
Fig. 8. Tomeasure the crossover length scale ξ between
fat tail andGaussian statistics, we introduce the follow-
ing operator

ω(x) = 1

2
log

(
〈δh(x, δx)2〉|δx|=ε

)
− Ωε. (9)

It transforms the original height map h(x) into a map
ω(x) of the local roughness level that is defined from an

average of the height variations over a circle of radius
ε centered in x.2 The fields ω computed for the three
fracture surfaces considered are shown in Fig. 9. The
patterns that emerge on the fracture surface through
this transformation correspond to steep cliffs and reveal
complex correlations of the height variations. Their
characteristic size is reminiscent of the length scale ξ

evidenced from the variations of Pδr with δr . Indeed,
first write the height variation computed at a scale δr as
the sum of several height variations computed at a finer
scale ε 	 δr ,3 and then use the central limit theorem:
If the fluctuations at the scale ε are uncorrelated, then
Pδr�ε is a Gaussian. Conversely, if the distribution Pδr

is non-Gaussian, this indicates spatial correlations of
height variations at a scale δr or smaller. As a result,
the crossover length identified from the transition from
fat tail to Gaussian statistics does correspond to the cor-
relation length of the ω-maps, and we note this length
scale ξ in the following.

2 The constant Ωε involved in Eq. (9) is chosen such that the
average of ω(x) over all x is zero.
3 The actual decomposition of the height variation computed as
a scale δr into the sum of height variations computed at a finer
scale ε = δr/n where n is an integer writes as δh(x, δx) =
h(x + δx) − h(x) = ∑n

k=1 h(x + k
n δx) − h

(
x + k−1

n δx
) =

∑n
k=1 δh

(
x + k−1

n δx, δx
n

)
.
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Fig. 10 Correlation function of the three fracture surfaces considered. The power law fits are performed below and above the length ξ

determined in Fig. 9 and give ζ = 0.74 ± 0.04 at small scale and ζ = 0.42 ± 0.07 at large scale (Vernède et al. 2015)

The correlations of ω are studied quantitatively
through the functionC(δr) = 〈ω(x)ω(x+δx)〉x,|δx|=δr

shown in Fig. 9 as a function of the distance δr for
different values of ε; C(δr) is in fact independent of
ε whenever ε 	 δr . For the three materials consid-
ered, we observe two regimes: At small δr , ω shows
strong spatial correlations which decay logarithmically
as C(δr) ∼ − log(δr/ξ) and extrapolate to zero for
δr = ξ . For larger distances, these correlations are
zero within statistical noise. ξ corresponds to the char-
acteristic size of the patterns of the ω-fields shown in
Fig. 9.

The coexistence of two separate ranges of length
scales with distinct statistical properties on the fracture
surface of these materials is clear: For δr 	 ξ , the
height fluctuations are strongly correlated and exhibit
non-Gaussian statistics while for δr � ξ , the rough-
ness follows a Gaussian behavior with no spatial corre-
lation of the ω-field. We would like now to come back
on the self-affine properties of the fracture surfaces and
determine the value of the roughness exponent in these
both regimes.

Figure 10 shows the correlation function Δh(δr) of
the three fracture surfaces following the definition of
Eq. (7) after averaging over all the possible directions
such that δr = |δx|. The two ranges of length scales
determined previously are indicated by two different
colors. They do show two different scaling behaviors:
At small scales δr < ξ , the correlation function follows
Δh ∼ δr ζ with a roughness exponent ζ � 0.75±0.05,
irrespective of the material considered. At larger scales
δr > ξ , the roughness is characterized by a lower expo-
nent ζ = 0.45±0.05 here also robust and independent
on thematerial. As a result, the presence of two regimes
evidenced in the statistics of height fluctuations is also
clear from the self-affine properties of the height frac-
ture maps that show a persistent behavior ζ > 1/2 at
small scales δr < ξ and an anti-persistent one ζ < 1/2

at large scale δr > ξ . The following section addresses
the physical origin of these two regimes.

3.3 Roughness statistics as a paradigm for crack
growth phenomena?

The analysis of Sect. 3.1 of the fracture profiles in
2D thin specimens gives indication on the mechanisms
underlying the roughness properties observed for 3D
solids. In 2D solids, persistency (H > 1/2) of frac-
ture profiles is reminiscent of crack growth governed
by damage coalescence processes while pure random
walk behavior H = 1/2 results from brittle fracture.
Theoretical analyses of crack propagation in brittle
media reveals that the major difference of 3D situa-
tions compared to 2D lies in the effective elasticity of
the crack line that opposes to out-of-plane crack excur-
sions (Larralde and Ball 1995; Ramanathan et al. 1997;
Movchan et al. 1998). This effect was argued to explain
the anti-persistent roughness (ζ � 0.45) reported in
porous brittle rocks (Ponson et al. 2006a; Bonamy
et al. 2006a) and the logarithmic (ζ = 0) height cor-
relations reported for phase-separated glasses (Dalmas
et al. 2008). Therefore, the anti-persistent roughness
regime ζ � 0.45 observed at large scale δr > ξ on
the three materials considered here is interpreted as the
result of brittle crack growth. At these length scales, the
material can indeed be identified as a coarse-grained
equivalent linear elastic medium and LEFM can safely
be applied.

A quantitative understanding of the small scale δr <

ξ roughness regime is still missing. However, Vernède
et al. (2015) characterized the geometry of the patterns
present on the ω-maps of Fig. 9 and showed that they
display remarkably robust features, like e.g. a fractal
geometry with dimension D = 1.70 ± 0.05 irrespec-
tive of the material considered, suggesting a common
underlying mechanism. Inspired by Ravi-Chandar and
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pz

Crack

Fracture
process zone

Fig. 11 Dissipative mechanisms during material failure are
localized in the crack tip vicinity in a process zone of charac-
teristic size �pz. The fracture surfaces of aluminum, mortar and
ceramic reflects this phenomenon as they display two distinct sta-
tistical behaviors at small δr < ξ and large δr > ξ length scales,
reminiscent of damage coalescence and brittle crack growth,
respectively

Yang (1997) and Guerra et al. (2012) who character-
ized the geometry of the marks left by microcracks on
PMMA fracture surfaces, Vernède et al. (2015) con-
jectured that the steep cliffs evidenced in the ω-maps
of aluminum, mortar and ceramic are the footprints
of damage coalescence. The particularity of PMMA
compared to these three materials is that microcrack-
ing processes take place at a much larger scale than the
microstructural features, leaving on fracture surfaces
conic marks characteristic of the interaction between
two microcracks in a homogeneous material. On the
contrary, the interplay between material disorder and
damage coalescence may result in the complex entan-
gled lines evidenced in the ω-fields of Fig. 9 for alu-
minum, mortar and ceramic.

What are the physical implications of the fracture
surface properties identified in this study? At first,
the universal statistical structure of crack roughness
evidenced in this work recovers the traditional text-
book picture of Fig. 11 of crack propagation phenom-
ena: Dissipative failure mechanisms are confined in the
crack tip vicinity in the so-called process zone while
LEFM applies at larger distances r � �pz from the
crack tip where the material recovers a linear elas-
tic behavior and the stress field the theoretical pre-
dicted 1/

√
r singularity (Irwin 1958). However, it goes

beyond this classical description as the statistics of
the fracture surfaces evidenced at small scales does
display universal features independent of the material
investigated. This is an important observation that sug-

gests that, at small scales too, a common description of
the crack growth process through damage coalescence
does exist, and that this description does survive to the
material specific dissipative mechanisms taking place
within the process zone.

Do these observations find applications in fractog-
raphy for the post-mortem characterization of material
failure? From our observations, it is natural to interpret
the length scale ξ emerging from the fracture surface
statistics as a measure of the fracture process zone size
�pz. The observation made by Srivastava et al. (2014)
of a linear relation between the length scale ξ and the
fracture toughness Gc in simulations of ductile crack
growth in heterogeneous solids does support this idea.
Indeed, cohesive zone approach to fracture problems
does predict a linear variation Gc ∼ �pz of the tough-
ness with the process zone size (Barenblatt 1962). Fur-
ther investigations of the effect of damage on fracture
roughness are required. However, these observations
are encouraging, and we are closer than ever to confirm
the conjecture proposed 30 years ago by Mandelbrot
et al. (1984) regarding a link between toughness and
roughness.4 If it was confirmed, the statistical analy-
sis of fracture surfaces could be an efficient way to
measure material toughness at different scales and dif-
ferent locations in an already brokenmaterial. And also
to estimate post-mortem the load applied to a material
or a structure and help to determine the root cause of
its failure.

4 Conclusions and perspectives

The statistical analysis of crack propagation in hetero-
geneous materials shows that the competition between
material disorder and elasticity results in scale invari-
ant fluctuations. This contrast with fracture patterns
observed in homogeneous systems that often display
a characteristic length scale like e.g. in columnar
joints (Goehring et al. 2009) or in thin films (Marth-
elot et al. 2014). Therefore, the interpretation of the
exponents characterizing crack growth fluctuations is
key to make sense of these observations. In this article,
we propose a connection between these scaling behav-
iors and two elementary mechanisms underlying mate-

4 Note however that the idea of Mandelbrot et al. (1984) was to
establish a correlation of the material toughness with the rough-
ness exponent, and not with a crossover length scale between two
self-affine regimes as suggested by these recent studies.
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rial failure, namely brittle growth dominated by crack
pinning and quasi-brittle growth dominated by damage
coalescence. A lesson to be learnt from the statistics of
fracture surfaces is that both mechanisms are generally
present, but at different length scales.

Another instructive finding is that the statistical
properties of fluctuations emerging in the brittle regime
are not more universal than the one observed in the
damage regime. Since LEFM captures the main fea-
tures of brittle failure for a large range of materials,
this suggests that another complementary theoretical
framework that is still to be developed can describe
crack growth driven by damage coalescence.

What are the promising research directions along
this line? Failure results from the coalescence of an
assembly of microcracks growing in interaction. The
related problem of damage spreading and localization
prior to the emergence of a macroscopic crack has
been studied within the frame of damage mechanics.
Future theoretical developments should undoubtedly
build on the basic concepts developed along these lines
that can capture multiple cracks interaction (Kachanov
2003) and localization phenomena (Pijaudier-Cabot
and Bazant 1987). But first, theoretical tools of dam-
agemechanicsmust be adapted toheterogeneousmedia
and include physically motivated criterion for damage
nucleation that has been less developed. Then, these
tools must be adapted to the specific loading conditions
present at the vicinity of crack tip within the process
zone.

The other challenge is experimental. Statistics in
the dynamics of cracks and their trajectory have been
a preferred direction of investigation due to the easy
access to the information stored in the fracture surfaces
and in the acoustic emission recorded during fracture.
These indirect observations have been interpreted from
statistical models of fracture following the approach
described in this article. However, an easier way from
the perspective of model validation and development,
but more challenging from an experimental point of
view, is to perform direct observations of failure mech-
anisms within the process zone. This requires adapted
experimental techniques so that these in situ investi-
gations can be performed at the proper length scale,
e.g. the nanoscale in glass (Bonamy et al. 2006b) and
the micron-scale in polymers (Réthoré and Estevez
2013). These observations limited to the free surface
of the fracturing materials can be combined with dig-
ital image correlation techniques to measure the rel-

evant mechanical fields (Hild et al. 2015; Han et al.
2010). Along the same line, the recent use of tomo-
graphic images (Limodin et al. 2009; Maire and With-
ers 2014) for fracture problems already showpromising
results. An alternative approach is to scale up the dissi-
pative failure processes by using model materials suit-
ably designed formimicking failure processes involved
in traditionalmaterials, but at amore appropriate length
scale for in-situ observations. Additive manufacturing
techniques might be an easy road for the fabrication of
such material systems (Dimas et al. 2013).

In the quest for increasingly smaller length and time
scales of observation of failure processes, computa-
tional fracture mechanics has a central role to play.
The development of numerical tools like molecular
dynamics (Bitzek et al. 2015), discrete element mod-
els (Kun et al. 2014), and continuum mechanics-based
simulations for brittle (Bourdin et al. 2000) and duc-
tile failure (Needleman et al. 2012) allows for a real-
istic description of microscale failure processes. They
have recently been helpful for interpreting the statis-
tical properties of fluctuations in material failure and
they are powerful means of investigation of the effect
of microscale material features and processes on the
failure behavior of solids.

Understanding the interplay between damage and
disorder during crack growth is now the next step in the
development of predictive models that bridge material
microstructure to their failure behavior, and ultimately,
that assist the design of materials with improved failure
properties—a major challenge indeed.
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