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In an effort to investigate the link between failure mechanisms and the geometry of fractures of compacted
grains materials, a detailed statistical analysis of the surfaces of fractured Fontainebleau sandstones has been
achieved. The roughness of samples of different widths W is shown to be self-affine with an exponent �

=0.46±0.05 over a range of length scales ranging from the grain size d up to an upper cutoff length �

�0.15W. This low � value is in agreement with measurements on other sandstones and on sintered materials.
The probability distributions ��z��h� of the variations of height over different distances �z�d can be collapsed
onto a single Gaussian distribution with a suitable normalization and do not display multiscaling features. The
roughness amplitude, as characterized by the height-height correlation over fixed distances �z, does not depend
on the sample width, implying that no anomalous scaling of the type reported for other materials is present. It
is suggested, in agreement with recent theoretical work, to explain these results by the occurrence of brittle
fracture �instead of damage failure in materials displaying a higher value of ��0.8�.
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I. INTRODUCTION

The characterization of the geometry of fracture surfaces
is of considerable interest for a broad range of practical ap-
plications ranging from the hydrology of fractured reservoirs
�1,2� to the derivation of friction laws �3�. Their statistical
analysis is also relevant to the understanding of the physics
of fracture: The roughness may indeed be expected to reveal
failure mechanisms occurring at the microstructure scale �4�.
It is now well-established that fracture surfaces satisfy a scal-
ing invariance known as self-affinity �5–10�. A self-affine
profile is one that is statistically invariant under the scaling
relation: z→�z and h�z�→��h�z� where the z axis is in the
mean fracture plane and normal to the direction of crack
propagation, h�z� is the surface height profile, and � is the
self-affine exponent. The scaling invariance implies that the
probability ��z��h� to observe a variation of height �h over a
horizontal distance �z follows the scaling law:

�����z����h� = ��z��h� . �1�

The prefactor �� results from the normalization of ��z��h�.
As a direct consequence, the height-height correlation func-
tion �h��z� satisfies

�h��z� = ��h�z + �z� − h�z��2�z
1/2 	 �z�. �2�

In many materials including rocks like granite and basalt
�7–9�, the roughness exponent � was found to be close to 0.8,

suggesting at first that it was a universal value �5,6�. How-
ever, different exponents were reported for Berea sandstone
��0.4–0.5 �11� and then on synthetic sandstone made of
sintered glass beads �12�. In this latter case, the exponent � is
equal to 0.40±0.04 independent of the porosity in the range
investigated �3% 
�
26% �. This difference raises impor-
tant fundamental questions regarding the physics of fracture,
namely whether � is determined by the structure of the ma-
terial or by the failure mechanism.

In support of the second possibility, a recent work �13�
suggests that the value of � depends on the existence of a
process zone where damage processes take place. On the one
hand, at length scales smaller than the size of the process
zone, fracture surfaces would develop from the growth and
coalescence of microdefaults �cracks or voids�: This damage
failure �also called quasibrittle failure� would lead to an ex-
ponent ��0.8. On the other hand, at length scales larger than
the process zone, the fracture surfaces would result from the
continuous propagation of a crack. For this brittle failure, the
exponent would be ��0.4, reflecting, at the continuum scale,
the toughness distribution at the microstructure scale. Two-
dimensional numerical simulations realized under these two
types of assumptions confirm these results by predicting
lower � values for brittle fractures �14� than when damage is
introduced �15�.

While most studies dedicated to the roughness of cracks
dealt with surfaces with ��0.8 �5–10,16–19�, the present
work investigates these problems through an extensive
analysis of the statistical properties of the roughness of frac-
tured Fontainebleau sandstone for which ��0.4–0.5.

In addition to the self-affine exponent �, another impor-
tant statistical characteristic is the � distribution of the sur-
face height variations: On granite surfaces ��=0.8�, it was
found to be Gaussian �19� and a single self-affine exponent
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was needed to describe the correlation of the surface heights
along the crack front direction.

Another important point is the dependence of the rough-
ness statistics on the size of the samples and on the distance
to the initiation zone. In the transient propagation region of
fractures initiated from a straight notch, the amplitude of the
roughness has been reported to depend at all length scales on
the distance to the initiation �16–18�. This variation may be
described by a so-called anomalous scaling law involving a
new exponent �global�� referred as the global roughness ex-
ponent. A consequence of anomalous scaling is expected in
regions far from the initiation and where the roughness is
fully developed �17,21�: The roughness amplitude in a win-
dow of size �z normal to the crack propagation would then
scale with the width W of the fracture surface as

�h��z� 	 �z�W�global−�. �3�

In the present study, a statistical analysis of the same type is
performed on fractured Fontainebleau sandstone samples of
various widths W �perpendicular to the direction of crack
propagation�. For each surface, the roughness exponent � and
the range of length scales over which a self-affine description
is valid are inferred from the variations of the correlation
function �h with �z. Their dependence on the width W of the
samples and on the location on the fracture surface is inves-
tigated in order to look for the anomalous scaling features
observed on other materials. The probability distribution of
the variations of height over given distances �z are also in-
vestigated in order to evaluate the magnitude of multiscaling
effects and their dependence on �z.

The differences between these results and the characteris-
tics reported previously for other materials will be discussed
and we shall seek to relate them to the failure mechanisms
taking place at scales larger than the grain size in Fontaineb-
leau sandstone.

II. SAMPLE CHARACTERIZATION AND
EXPERIMENTAL SETUP

The x-ray analysis of the Fontainebleau sandstone
samples used in the present work indicated that they
contain 99% quartz. The size of the grains range from
100 to 500 �m with a mean value d�270 �m. Sixteen
scanning electron microscope micrographs covering a total
area of 2020 mm2 were used to measure the porosity. The
pictures are thresholded at a gray level adjusted so as to

discriminate between grains and voids. The porosity, defined
as the ratio between the void and total areas, is found to be
10±1%.

Slices of widths ranging from W=7.8 to 51.5 mm were
sawed off from Fontainebleau paving stones. Toroidal
samples were obtained by using hole saws to core out the
slices �see Fig. 1�. This was achieved by first piercing a
circular hole with a 25 mm diameter saw and then a second
hole of diameter 60 mm using the same spinning axis. Four
slices of widths W=7.8, 14.1, 26, and 51.5 mm were ma-
chined and placed in a hydraulic press to perform modified
Brazilian fracture tests �22�. The latter is achieved by apply-
ing a uniaxial stress at two opposite points on the outside of
the torus. The load is increased until two symmetrical cracks
propagate from the central hole toward the outside where the
compressive forces are applied.

After the failure, one of the fractured blocks is secured to
a computer controlled horizontal displacement table. The
samples are moved stepwise using steps of lengths �z �See
Table I for a detailed list of the actual values�. At each new
position, a sensing needle is displaced vertically by a com-
puter controlled microstep motor with a resolution of
�1 �m. The contact is detected by a vertical deviation of the
needle. The repeatability of the measurement, verified by
scanning several times the same profile, is 1 �m. After the

W

2Re2Ri

FIG. 1. Schematic view of the toroidal sample �outside radius
60 mm, inside radius 25 mm� and of forces applied during the
modified Brazilian test.

TABLE I. Characteristic parameters of fracture surface geometry. W �mm�: specimen width. �z, �x
��m�: measurement steps along the z and x axis. nz and nx: number of recorded points along the z and x
directions. � and �ft: self-affine exponents of profiles oriented in the z direction measured, respectively, using
the correlation function and the Fourier power spectrum.

W �z �x nz nx � �ft

51.5 50 1000 1007 30 0.51 0.50

26 100 100 248 252 0.48 0.46

14.1 50 250 263 136 0.46 0.43

7.8 25 250 273 133 0.43 0.45

PONSON et al. PHYSICAL REVIEW E 76, 036108 �2007�

036108-2



detection of the contact, the sensor is raised by 200 �m be-
fore the sample is moved laterally again. The sequence is
repeated nz times. Then, the sample is displaced in the per-
pendicular direction along the x axis by a step of length �x
and the scanning is repeated again. Finally, one obtains sur-
face maps including nznx points. Figure 2 shows one of
these maps that displays troughs and bumps with, for the
largest, a typical amplitude of the order of 1 mm. In the
following, we discuss a detailed statistical analysis of the
spatial correlations of the roughness.

III. EXPERIMENTAL RESULTS

A. Characterization of the surface roughness

We first analyze profiles parallel to the z axis, i.e., normal
to the direction of crack propagation, and located far enough
from the initiation so that the roughness properties are statis-
tically stationary. The scaling properties of these profiles are
characterized by their one-dimensional height-height correla-
tion function �h��z� defined by Eq. �2�.

Figure 3 represents in a log-log scale the variations of �h

as a function of the distance �z for one of the samples. Two
distinct behaviors are observed: For �z
�, �h varies as a
power law of �z �straight line in a log-log representation�
while, for �z��, �h remains roughly constant �“plateau do-
main”�. The crossover length scale � is, here, defined as the
abscissa of the intersection between the power law fit �solid
line in Fig. 3� and the plateau variation �dotted horizontal
line�. The local slope of the correlation function �see inset of
Fig. 3� is constant except for �z values smaller than
�100 �m: This corresponds roughly to the grain size d
which represents therefore a lower boundary of the self-
affine domain. These results indicate that, at intermediate
length scales, the profiles are self-affine and characterized
here by a roughness exponent �=0.43.

The robustness of this self-affine description was verified
by using other statistical methods such as the Fourier analy-
sis of the profiles �23�. The exponents obtained in this way
are given in Table I and are globally independent of the
method: Regarding the dependence on W, a global increasing
trend is observed but the total variation is very weak, less
than 0.1, which is of the same order as the interval of confi-
dence on the value of one exponent estimated for a given
width. The self-affine exponent obtained after averaging over
all data is �=0.46±0.05. Applying the same analysis to pro-
files parallel to the x direction, i.e., the direction of crack
propagation, leads to a self-affine exponent equal to
0.49±0.05. These observations are consistent with measure-
ments performed on other natural and artificial sandstones
�11–13�.

For �z larger than �, the variations of �h level off indi-
cating that the surface is flat at large scales. In order to test
the robustness of the value of � with respect to possible bias
introduced by the statistical analysis, the computation was
repeated on data sets including only one out of two data
points. The value of the cutoff length remained the same.
Finally, the same procedure was applied in different regions
of the surface. Each of the surfaces was divided into three
regions of equal width W /3. Two of these subsurfaces are
thus on the sides of the sample while the third one covers the
central region. In Fig. 3, correlation functions �h computed
on the central �� and on one of the lateral �·� subregions are
overlaid. All curves fall on top of each other, showing that
the crossover length � is independent of the region of the
fracture surface. Therefore � is a relevant length scale of the
problem which reflects neither an influence of the sides of
the sample nor of the sampling period of the surface maps.
Before studying the scaling behavior of � with the sample
width, we analyze now the distribution ��z of the variations
of height.

B. Statistical distribution of the fluctuations of height

For each sample, a scan including at least 30 000 mea-
surement points has been performed. Such a large data set
allows one to compute with good accuracy the probability
distributions ��z��h� for values of �z ranging from the typi-
cal grain size up to several times the grain diameter. Figure 4
displays such probability distributions corresponding to sev-
eral �z values ranging from 300 �m to 1.3 mm, i.e., larger
than the mean grain diameter d.
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FIG. 2. Topographic image �248252 pixels corresponding to a
field of 24.825.2 mm� of a fractured sandstone surface with a
crack propagation along the x axis. Sample width: W=26 mm
�along the z axis�.
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FIG. 3. Log-log representation of the height-height correlation
function �h as a function of �z computed along the crack front
direction �z axis� for a sample of width W=7.8 mm. Straight line:
Linear regression of the data for �z
� with slope �=0.43. Inset:
Local slope of the correlation function.
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For self-affine profiles, one expects ��z to satisfy Eq. �1�,
valid for any scaling parameter �. Using the particular value
�=1/�z, this equation becomes

��z��h� = � 1

�z
	�

�� �h

�z�	 . �4�

Therefore using the normalized variable u=�h /�z�, all the
distributions �z���z should collapse onto the same master
curve ��u�, at least for �z values pertaining to the self-affine
regime. Such a collapse is indeed observed in Fig. 4: The
same data as in the inset have been plotted in these normal-
ized coordinates using the roughness exponent �=0.43 mea-
sured from the scaling of the correlation function �see Fig.
3�.

One of the key consequences of this precise collapse is
that all moments ��h�z+�z�−h�z��p�z

1/p of order p�1 of the
��z distributions must scale as �z�. This is clear evidence of
the lack of multiscaling of the surface investigated. In other
words, the single exponent � is enough to describe the full
statistics of the variations of height on the fracture surface
along the z axis, at least in the range of length scales d

�z
�.

Let us now focus on the master curve ��u� which has the
characteristic bell-like shape of Gaussian distributions. This
is more precisely demonstrated in the semilogarithmic plot
of Fig. 5 in which a Gaussian curve �continuous line� with a
second moment equal to one is observed to coincide with the
experimental data sets corresponding to �z�300 �m, i.e.,
�z�d. The statistical properties of the surface are therefore
fully described by this Gaussian distribution and by the
single roughness exponent �=0.43.

We have also represented the ��z-distributions corre-
sponding to length scales smaller than the mean grain diam-
eter d=270 �m, namely �z=75 and 150 �m. They clearly
do not collapse with the other curves although their second
moment was shown to scale roughly as �z� in this range of
scales �see Fig. 3�. It means that, in the domain of small
distances ��z
d�, the ��z distributions are not Gaussian and

their moments cannot be rescaled with a single exponent. In
this range of �z values, it might be possible to rescale all the
moments ��h�z+�z�−h�z��p�1/p by using several exponents �p

�not shown here�: The relevance of such a multiscaling de-
scription at length scales for which the geometry of a single
grain has a predominant effect is, however, questionable.

These results bring new insight to a recently debated
question concerning crack lines resulting from the rupture of
paper sheets that were found to exhibit multiscaling �24�, at
least at small scales, i.e., at length scales comparable with the
length of the fibers of the paper. Other observations, per-
formed on the same material, but over a wider range of
length scales, reported that, at larger scales, there was a
crossover from this multiscaling behavior towards a self-
affine one �19,20�. These results may have similarities with
our experiments, even though they correspond to the 3D rup-
ture of a very different material: In our case, the crossover
length corresponds to the mean grain diameter d of the sand-
stone specimen.

C. Dependence of the statistical properties
on the sample width

In addition to the lower limit of the order of the grain
diameter d discussed above, the self-affine domain also has
an upper limit � �see Fig. 3� which generally depends on the
sample size. For granite, the experimental upper limit � is of
the order of one-fourth of the specimen size �25,26�. For
mortar, the geometry can be considered as self-affine only up
to length scales of the order of 15% of the specimen width W
�18�. A systematic study of wood samples with various val-
ues of W leads to �=0.1W �17�.

Figure 6 displays the variations of the correlation function
�h��z� as a function of �z for samples of different widths W.
All data sets display a self-affine domain followed by a pla-
teau region corresponding to a value of �h��z��� increas-
ing with W; the upper limit � of the self-affine domain also
clearly increases with the system size. The variation of �
with W is plotted in Fig. 7 and is well-fitted by a straight line
of slope 0.15 going through the origin.
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A value of the upper limit of the self-affine domain for
profiles parallel to the x direction of crack propagation is also
plotted in Fig. 7 ���. This length is, in this case, the average
of values of � determined for four samples of different
widths and the error bar reflects the variability of the values.
In order to plot this result in Fig. 7, these profiles have been
assumed to correspond to a value of W equal to 35 mm �i.e.,
the length of the samples along the x direction�. The corre-
sponding data point is consistent with the linear fit corre-
sponding in Fig. 7 to profiles parallel to the z axis. The
scaling relation between � and the system width W estab-
lished above seems apparently also applicable in the x direc-
tion.

Let us now compare the surface roughness in the self-
affine domain at length scales between d and � with the
anomalous scaling characteristics recently reported �16–18�.
Anomalous growth implies that, after a transient regime, the
roughness amplitude �h��z=const
�� scales as W�global−�

with the system width W �see Eq. �3��. All the profiles ana-
lyzed correspond to the stationary propagation domain in
order to make the comparisons meaningful. The extent of the

transient domain near the crack initiation has been found in
various materials to be of the order of a few millimeters
�12,18�. Here, a value close to �2 mm was measured and all
profiles considered in the present work are outside this
region.

The height-height correlation function is plotted in Fig. 8
as a function of the specimen width W for two different
window sizes �z. In contrast with the predictions of Eq. �3�
for anomalous scaling, the roughness amplitude �h��z
��
in the self-affine domain is independent of W over a range of
variations of almost 1 to 10 �the same conclusions may al-
ready be inferred from Fig. 6 but the sensitivity is better here
due to the linear scale�. These characteristics differ therefore
completely from those expected for anomalous scaling.

IV. DISCUSSION AND CONCLUSIONS

Let us now discuss the origin of the statistical properties
observed for the present Fontainebleau sandstone surfaces. In
a recent study, Bonamy et al. �13� analyzed the fracture sur-
faces morphology in glassy materials, i.e., homogeneous
silica glass and sintered glass. They suggest that, on the one
hand, higher exponents ��0.8 reflect damage failure pro-
cesses occurring in a zone surrounding the crack tip and are
observable at length scales smaller than the size of the pro-
cess zone; on the other hand, low roughness exponents �
�0.4 would result from brittle fracture and be observable
either in experiments where no process zone develops or at
length scales larger than the size of the process zone. In this
perspective, and as is discussed in more detail below, the low
value ��0.45 reported here for Fontainebleau sandstone
samples is the signature of brittle fracture. Moreover, since it
is observed at length scales down to the grain size, no pro-
cess zone is expected to be present during the failure.

The lack of anomalous scaling in the present fracture sur-
faces compared to materials such as concrete, wood, or gran-
ite displaying damage failure is another indication that no
damage process occurs in our experiments. In these latter
studies, confinement effects limit the development of the
process zone: Its extension and internal structure are then set
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by the system size W when a stationary propagation regime
is reached. As a result, from Eq. �3� �16�, the roughness
amplitude �h��z=const� varies with W as �h��z=const�
	W�global−� as is indeed observed experimentally �21�. In con-
trast, in the absence of a process zone, �h��z=const� is only
set by the microstructural and mechanical properties of the
material and does not depend on the system size �see, for
instance, the model of Refs. �13,27�� as observed experimen-
tally here.

The same type of approach accounts for the domains of
observation of the different self-affine geometries. For dam-
age fractures, the upper boundary � of the self-affine domain
is set by the size of the process zone �10,13� or by the sample
size W if it is smaller than the process zone. In the present
case of a brittle fracture, the lower boundary of the self-
affine domain is the grain size and the upper cutoff length �
increases linearly with the sample size W: In this case, no
other characteristic length than W seems to determine � so
that it might increase indefinitely with W. These results sug-
gest that the two different self-affine geometries might coex-
ist on a same fracture surface with ��0.8 for lengths scales
up to the size of the process zone and with a value ��0.4 at
larger length scales.

To conclude, the present experimental results and their
comparison to previous works indicate that the value of the
self-affine exponent � is a clear signature of the failure mode:
damage fracture involving a process zone if ��0.8 or brittle
fracture if ��0.4. Another characteristic signature of dam-
age fracture is anomalous scaling marked by a variation of
the roughness amplitude with the sample size �if the latter is
smaller than the process zone�. The range of length scales

over which the fracture geometry is self-affine with a given
exponent � may represent important additional information.
For ��0.8, this range should extend from the size of the
grains to that of the process zone �which may be limited by
the sample size�; for ��0.4, it may extend from the size of
the grains �if there is no process zone� or that of the process
zone up to a length scaling as the size of the specimen.

An important test of this picture will then be to force the
development of a process zone in materials of the type used
here by modifying the loading or the geometry of the experi-
ments. For instance, one may use an initial chevron notch
geometry as in Refs. �28,29�, where damage processes occur
�so that �=0.8� although the material is similar to the Fon-
tainbleau sandstone used here. If a transition from brittle to
damage fracture is induced in this way, this should result in a
variation of the self-affine exponent � or in the coexistence
of two self-affine domains with ��0.8 below the size of the
process zone and ��0.4 above it.
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