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We investigate experimentally and theoretically the dynamics of a crack front during the micro-
instabilities taking place in heterogeneous materials between two successive equilibrium positions. We
focus specifically on the spatiotemporal evolution of the front, as it relaxes to a straight configuration, after
depinning from a single obstacle of controlled strength and size. We show that this depinning dynamics is
not controlled by inertia, but instead by the rate dependency of the dissipative mechanisms taking place
within the fracture process zone. This implies that the crack speed fluctuations around its average value vm
can be predicted from an overdamped equation of motion ðv − vmÞ=v0 ¼ ½G − GcðvmÞ%=GcðvmÞ involving
the characteristic material speed v0 ¼ GcðvmÞ=G0

cðvmÞ that emerges from the variation of fracture energy
with crack speed. Our findings pave the way to a quantitative description of the critical depinning dynamics
of cracks in disordered solids and open up new perspectives for the prediction of the effective failure
properties of heterogeneous materials.
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Woods, nacre, bones, or rationally designed artificial
materials, are all heterogeneous solids, with mechanical
properties far exceeding those of their constitutive compo-
nents. Understanding the role of microscale heterogeneities
on the macroscale fracture behavior of solids still remains a
query. This becomes especially relevant now, as rapid
developments in microfabrication techniques allow the
tailoring of microstructures at ever smaller scales, yielding
new types of composites, known as metamaterials, with
unprecedented mechanical properties [1–6]. Recently, sig-
nificant progress was made for weakly heterogeneous
brittle solids where models describing a crack front as a
deformed interface pinned by tough obstacles have been
successfully applied [7–11]. The homogenized fracture
properties can be computed exactly within the so-called
weak pinning limit [12], where the elastic energy release
rate G balances the fracture energy Gc at any time and any
position along the front. This approach holds for weak
variations of toughness along the propagation direction.
The crack evolution is then smooth and can be properly
approximated by a continuous succession of equilibrium
front configurations [13,14]. This approach was success-
fully used to design weakly heterogeneous systems with
improved and new macroscopic failure properties [15–18].
However, most natural and engineered materials have a

microstructure composed of discontinuous heterogeneities
which cannot be described within the weak pinning regime.

The strong pinning regime that predominates for large
toughness gradients challenges standard homogenization
approaches. Crack propagation is not quasistatic but
proceeds by intermittent and local microinstabilities.
Further, for a disordered distribution of obstacles, crack
growth takes place close to the so-called depinning critical
transition [19–21], so that the crack front dynamics is
dominated by avalanches spanning over a large range of
length and time scales [22–26]. The precise understanding
of the front evolution during these rapid events is a
prerequisite to predict and further, to control the fracture
energy of heterogeneous solids. Beyond fracture, the
behavior of driven disordered mechanical systems with
long-range interactions is still an open question whose
tremendous difficulty resides in the subtle interplay
between fast, localized, depinning events and larger macro-
scopic avalanches forming a complex energetic landscape
composed of many metastable states [27–29].
In this Letter, we address experimentally and theoretically

the basic problem of the interaction of a crack front with a
tough obstacle in the strong pinning regime. In our experi-
ment, a planar crack is driven at a constant speed over a
tough region of finite length along the propagation direction,
triggering a depinning instability between two well-defined
metastable states. The size and strength of the obstacles
are fully controlled and adjusted using our patterning
technique. The sample allows in situ visualization of
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the crack front dynamics which is resolved spatially and
temporally.
After normalizing all the length scales by the obstacle

width d, we show that the relaxation dynamics follows a
universal law which only depends on v0, the crack speed at
depinning for an obstacle of unit strength. v0 is also found
to vary linearly with the crack speed vm imposed prior
depinning by the loading rate. Next, we develop a theo-
retical model based on linear elastic fracture mechanics to
quantitatively capture the observed behavior. Here, inertial
effects can be neglected as the crack speed remains several
orders of magnitude lower than the wave speed. Instead, we
take into account the rate dependency of the fracture energy
to quantitatively capture the effect of crack speed on the
dissipative mechanisms taking place within the process
zone. Thus, unlike perfectly brittle solids, crack may
propagate at finite speed in dissipative materials as the
elastic energy release rate may be constantly balanced by a
rate-dependent fracture energy. Linearizing the equation of
motion around vm, we obtain an analytical solution for the
depinning of a crack from a single obstacle that is shown to
capture quantitatively all our experimental observations.
The implications of our results on the energy dissipated
during fast fracture events and the fracture behavior of
materials with randomly distributed obstacles are discussed
in the final part of our Letter.
We start by describing our experimental setup. A 5 mm

plate made of polymethylmethacrylate (PMMA, Young
modulus Ep ¼ 1.8 GPa) with a heterogeneous coating is
detached from a thick elastomer block using the beam
cantilever geometry shown in Fig. 1(a). A vertical upward
pointlike force is exerted at the extremity of the PMMA
plate by means of a string connected to a mechanical testing
machine allowing us to impose the deflection speed. The
elastomer is a cross-linked polydimethylsiloxane (PDMS
Sylgard184, Dow Corning) with a much lower Young

modulus Es ¼ 1.5 MPa than PMMA and a Poisson’s ratio
νs ≃ 0.5. It is prepared by mixing an oligomer together with
a silicon oil and degased for 2 h under mild vacuum. It is
then cured in an oven at 75 °C for at least 2 h. The resulting
cross-linked PDMS block of size W × L ¼ 50 × 80 mm2

with thickness hs ¼ 20 mm is then demoulded. The crack
is driven at an average speed vm in the range 5–100 μm=s
that is set by the deflection rate imposed by the testing
machine.
Taking inspiration from the experiments of Xia et al.

[10,15], we control the local fracture properties of the
interface by printing obstacles on a commercial trans-
parency, taking advantage of the high toughness Gc1 of the
printed regions on PDMS compared to the neat one noted
Gc0. Unlike Gc1, which does not show significant varia-
tions with the crack speed vm, Gc0 is found to increase
as vγm where γ ¼ 0.37 & 0.05 [30]. The microscopical
origin of the exponent is still highly debated [31,32]. As
a consequence, the contrast C ¼ ðGc1 −Gc0Þ=Gc0 can be
varied by exploring different crack speeds. As shown in
Fig. 1(b), rectangles of width 2d and length 6d are aligned
along the propagation direction where d is varied between
0.1 and 0.5 mm. A spacing of 6d between two successive
obstacles is chosen to allow a complete relaxation of the
front before it reaches the next obstacle. The transparency is
then bonded onto the PMMA plate by means of a double-
sided adhesive tape, the heterogeneous side faced up.
Finally, a thin liquid film of PDMS is laid on the substrate
before bringing the coated PMMA plate in contact allowing
an intimate bonding between materials after curing at 40 °C
for 48 h.
The transparency of the materials used in our setup is

exploited to visualize the front geometry and its evolution as
it interacts with the obstacle. Images of 3900 × 2600 pixels
are taken normal to the mean fracture plane by a CCD
camera through a semitransparent mirror oriented at 45°. An
LED panel is placed horizontally beneath the sample to
increase the contrast between the bonded and unbonded
regions of the interface. A homemade algorithm extracts
then the crack position cðz; tÞ for each image taken at time t
where the depinning onset defines t ¼ 0 [see Fig. 1(c)]. The
front deformation is defined as δfðz; tÞ ¼ cðz; tÞ − cð0; tÞ.
An acquisition rate of 10 Hz allows resolving in detail the
front evolution during the depinning regime.
In a typical experiment, the front propagates initially in a

homogeneous interface as a straight line. For the range of
velocity explored, no stick-slip instability occurs [33].When
crossing the obstacle, the profile gradually deforms until
reaching a stationary shape composed of a pinned region
of amplitude δf0ðC; dÞ and logarithmic tails δfsðzÞ ≃
2δf0ðC; dÞ lnðjzj=dÞ for jzj ≫ d. For weak obstacles,
δf0ðC; dÞ varies linearly with C but nonlinearities appear
when C is finite, yielding δf0ðC; dÞ ¼ dCNL=π, where
CNL ¼ Cð1 − C=2þ C2=6Þ [8,8,9,11,34,35]. When reach-
ing the end of the obstacle, the crack front is suddenly out of

d = 141 µm, C = 1.2, v m = 24 µm/s, v 0 = 76 µm/s

Experiment Theory

FIG. 1. (a) Schematics of the experimental setup showing an
interfacial crack front pinned by a heterogeneity. (b) Rectangular
obstacles of larger toughness. (c) cðz; tÞ and δfðz; tÞ ¼
cðz; tÞ − cð0; tÞ are the crack front profile and deformation,
respectively. δfs ¼ δfðz; t < 0Þ, δf0 ¼ δfðd; 0Þ and wðtÞ are
the pinned (stationary) crack front deformation, the characteristic
height, and half-width, respectively. (d) Sequence of crack front
deformation after depinning and theoretical prediction.
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equilibrium as the deformed profile is not stable in a
homogeneous interface. We observe a fast motion of
the pinned region and a slower motion of the remote
part resulting in a relaxation towards a straight configuration
[Fig. 1(d)]. This behavior is reminiscent of avalanches
which are sudden fracture events observed between meta-
stable configurations in fully disordered materials driven
close to the so-called depinning transition [23,25,27]. We
will see later that both phenomena are actually closely
related.
We first focus on the initial dynamics of the instability

measuring the depinning velocity vdep defined as vdep ¼
dcjzj<d=dtjt¼0þ − vm where cjzj<d is the front position
averaged over jzj < d. While most experimental and
numerical studies only report averaged quantities such as
avalanches duration and size, here we have access to the
entire dynamics. We found that vdep is not uniquely
determined by either vm or C as indicated by the non-
monotonic behavior shown in Figs. 2(a) and 2(b). However,
in Fig. 2(c), we show that vdep is linearly depending onCvm
as revealed by the good collapse of the data onto a line of
slope vdep=ðCvmÞ ¼ v0=vm ¼ 3.1, where v0 ¼ vdep=C is
the depinning velocity for an obstacle of unit strength.
Next, we address the relaxation dynamics at longer times

beyond the onset of instability. We first measure the
amplitude δfðd; tÞ of the front deformation, and its evo-
lution during depinning [see Fig. 1(c)]. As shown in the
inset of Fig. 3(a), we observe that δfðd; tÞ relaxes towards
zero at a rate strongly depending on vm andC. However, we
found a good collapse of the relaxation profiles by normal-
izing δfðd; tÞ and t by CNL × d and d=vm, respectively.
These rescalings are found to be also relevant for the
evolution of the half-width wðtÞ of the perturbation, where
wðtÞ is defined from the relation δf½wðtÞ; t% ¼ δfsðdÞ [see
Fig. 1(c)]. Here, wðtÞ quantifies the lateral spreading of the
perturbation through time. As shown in Fig. 3(b), we also
find a good collapse of the data normalizing wðtÞ by d.
Further, after a short transient, the width is found to grow
linearly with time, following wðtÞ ¼ 5.7vmt.

To explain quantitatively the observed dynamics, we
develop a model within the framework of linear elastic
fracture mechanics (LEFM) including a physically based
dissipation mechanism to account for the viscoelastic
dissipation in the process zone (PZ). Imposing that the
energy release rate is balanced by the dissipated work
within the PZ, the equation controlling crack evolution
reads

G½cðz; tÞ% ¼ Gc½cðz; tÞ; vðz; tÞ%: ð1Þ

Here, Gc not only depends on the crack configuration
cðz; tÞ resulting from the interaction of the front with the
obstacle, but also on the local speed vðz; tÞ ¼ ∂cðz; tÞ=∂t
owing to the rate dependency of the dissipation. A first-
order perturbation of Eq. (1) around the mean front position
vmt yields δG½δc%¼f½∂GcðvmÞ%=ð∂vÞgδv, where δcðz; tÞ ¼
cðz; tÞ − vmt and δvðz; tÞ ¼ vðz; tÞ − vm. The left-hand
side term corresponds to a nonlocal elastic restoring
force [36] while the right-hand side term represents a local
friction term increasing linearly with v. Terms such as
½ð∂GcÞ=ð∂cÞ% are not relevant since depinning occurs in a
homogeneous region of the interface. The fracture tough-
ness is taken in the form of Gc ¼ G0

cðv=vcÞγ , where G0
c, γ,

and vc are material parameters characterizing the dissipa-
tion mechanisms taking place in the process zone. Upon
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FIG. 2. Depinning velocity vdep defined as the jump in crack
speed as the front escapes from the obstacle varying (a) C and
(b) vm. (c) vdep increases linearly with Cvm.

Eq.6

FIG. 3. (a) Relaxation of the normalized deformation amplitude
with theoretical prediction (dashed line). Inset: data before
normalization. (b) Spreading of the deformation width wðtÞ
and theoretical prediction (dashed line).
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linearization ofGc around the macroscopic driving velocity
vm in a slow propagation regime vm ≪ vc, we obtain

1

G0
c

δGc

δv
≡ 1

v0
¼ γ

vm
: ð2Þ

Here we take γ ¼ 1=3 in agreement with the value
measured for the neat regions of the interface between
the PDMS substrate and the cantilever [30]. Using the
expression of δG derived for an interfacial crack between
an incompressible substrate and a much stiffer material
[37], we obtain the equation of motion

1

v0

∂δcðz; tÞ
∂t ¼ 1

π
PV

Z
þ∞

−∞
dz0

δcðz0; tÞ − δcðz; tÞ
ðz0 − zÞ2

: ð3Þ

At the linear order, Eq. (3) is formally equivalent to the
equation of motion of a contact line of Newtonian fluids
partially wetting a solid surface [38,39]. The steady-state
pinned profile with logarithmic tails given in Ref. [34] is
taken as the initial condition. The equation of propagation
can be solved exactly [30], yielding

π
C
δv
v0

¼ arctan
!
zþ d
v0t

"
− arctan

!
z − d
v0t

"
: ð4Þ

From Eq. (4), we obtain the depinning velocity vdep ¼
Cv0 ≈3Cvm, which is in good agreement with the exper-
imental data of Fig. 2(c) (solid line). Note that the existence
of a characteristic depinning speed v0 emerging from the
kinetic law GcðvmÞ was noticed by Kolvin et al. [40] in the
context of microbranching induced crack pinning.
The speed profile can then be readily integrated to

provide the general form of the front profile. Figure 4
shows a spatiotemporal map of δfðz; tÞ, where the entire
relaxation to a straight configuration can be observed. To
avoid cumbersome equations, we will just give analytical
expressions of δfðz; tÞ in some limits which are useful to
interpret our experimental data [30]. For z ¼ d, we obtain

πδfðd; tÞ
Cd

¼ tv0
d

#
arctan

!
2d
tv0

"
− 2 arctan

!
d
tv0

"$

þ ln
#
4þ ðtv0d Þ

2

1þ ðtv0d Þ
2

$
: ð5Þ

Equation (5) is in good agreement with the experimental
data of Fig. 3(b) (dashed line), using CNL to normalize
δfðd; tÞ. In the limit jzj ≫ d, we obtain δfðz; tÞ ¼
Cd=π ln ð1þ ½z=ðtv0Þ%2Þ, which generalizes the model of
Marsh and Cazabat [41] for the depinning of a contact line,
obtained in the long time and vanishing mean velocity
limits [30]. Thus, we obtain

wðtÞ ≃
ffiffiffi
3

p
v0t ¼ ð

ffiffiffi
3

p
=γÞvmt: ð6Þ

As shown in Fig. 4, the linear spreading of the perturbation
provides a good approximation even at relatively short
time.
To summarize, our study of the depinning of a brittle

crack from a single obstacle reveals a characteristic velocity
v0 that sets the relaxation time λ=v0 of the front perturba-
tions of wavelength λ. This characteristic speed that
emerges from the crack growth law GcðvmÞ allows us to
derive an overdamped equation of motion ðv − vmÞ=v0 ¼
½G −GcðvmÞ%=GcðvmÞ that was shown to capture quanti-
tatively the crack front evolution during depinning as
observed in our experiments. The offset between theory
and experiments at longer time t ≫ d=v0 may be attributed
to nonlinear geometrical effects [30]. Overall, a quasistatic
theory captures well the depinning dynamics provided v0 is
much smaller than the Rayleigh wave speed vR ≃ 75 m=s
for PDMS.
Following are the implications of these findings. First, it

sheds light on the nature of the dissipation accompanying
avalanches in failure of heterogeneous solids. During an
avalanche, the depinning region of the front reaches the
speed v0 that may be much larger than the average crack
speed vm. Owing to the increase of the fracture energy with
crack speed and the continuity of the elastic energy at the
onset of depinning, the dissipation rate during an avalanche
is close to the toughness of the impurities, leading to an
additional dissipation that reduces to ≃C2Gc0d2 per hetero-
geneity for the case of a periodic array of obstacles. For
disordered distributions, in the strong pinning regime
where the front motion consists of a succession of ava-
lanches, we then expect the energy dissipated by the unit
fractured surface to be significantly larger than the matrix
toughness, and closer to the obstacle fracture energy, even
for relatively low obstacle density. The proposed crack
evolution equation that is amenable to the exploration of
more complex toughness landscape embedding multiple
obstacles predicts the total energy dissipated, including the
contribution due to depinning instabilities, and so can serve
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FIG. 4. Analytical spatiotemporal map of the front deformation
δf during depinning. The contour line for δf ¼ δf0 obtained
using the exact solution (dashed line) and the asymptotics
solution for jzj ≫ d [Eq. (6), solid line] are shown.
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as a tool for the design of patterned interfaces with
improved mechanical performance.
Secondly our findings allow us to address a long-

standing question about the failure of disordered solids
and its relationship with critical phenomena. For randomly
distributed obstacles, cracks exhibit a jerky dynamics
characterized by universal scaling laws that were shown
to be reminiscent of the so-called depinning transition of an
elastic interface driven in a random medium [22,25,42].
However, the control parameter that sets the distance of the
system to the critical point was not identified yet, in
particular, under displacement controlled conditions where
the front velocity vm is imposed. From the description of
the crack dynamics during unstable events brought by this
study, this can now be achieved through the comparison of
the driving velocity vm with the characteristic speed v0 of
the avalanches, leading to the control parameter δ ¼ vm=v0.
As expected for dynamical phase transition, this parameter
controls the crack front behavior, like the correlation time
of the speed fluctuations that was recently shown to diverge
as 1=δ [28,29]. Interestingly, v0 may not be independent of
vm. For many material systems like the one considered in
this study, Gc increases as a power law of vm so that v0 ¼
vm=γ [see Eq. (2)]. As a result, the control parameter may
often take a fixed value δ ¼ γ, explaining why the crack
response is independent of its average speed over several
orders of magnitude [24,43]. Overall, the introduction of
the parameter δ ¼ vm=v0 that controls the critical behavior
of fracturing material opens a new perspective for the
quantitative description of fracture in terms of depinning
transition.
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