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Crack propagation in disordered materials:
how to decipher fracture surfaces

L. Ponson1,2

Abstract

For a half-century, engineers know how to describe and predict the propagation
of a crack in a model elastic homogeneous medium. The case of real materials
is much more complex. Indeed, we do not know how to relate their lifetime
or their resistance to their microstructure. To achieve such a prediction, under-
standing the role of the microstructural disorder on the behavior of a crack is
determinant. Fracture surfaces represent a promising field of investigation to ad-
dress this question. From the study of various disordered materials, we propose
a statistical description of their roughness and determine to which extent their
properties are dependent of the material. We show that fracture surfaces display
an anisotropic scale invariant geometry characterized by two universal expo-
nents. Glass ceramics is then studied because its microstructure can be tuned in
a controlled manner. Their fracture surfaces display the same general anisotropic
properties but with surprisingly low exponents independent of the detail of the
ceramics microstructure. This suggests the existence of a second universality
class in failure problems. Using finally theoretical tools from out-of-equilibrium
statistical physics and fracture mechanics, we relate the statistical properties of
fracture surfaces with the mechanisms occurring at the microscopic scale during
the failure of a material. In particular, we show that the first class of fracture
surfaces results from a failure involving damage processes while the second one
results from a perfectly brittle failure.

1. Fracture Group, Service de Physique et Chimie des Surfaces et Interfaces, DSM/DRECAM/SPCSI,
Bâtiment 462, CEA Saclay, 91191 Gif-sur-Yvette, France.
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2 Crack propagation in disordered materials: how to decipher fracture surfaces

Résumé

Propagation de fissures dans les matériaux désordonnés :
comment déchiffrer les surfaces de rupture

Depuis près d’un demi-siècle, les ingénieurs savent décrire et prévoir la pro-
pagation d’une fissure dans un milieu élastique homogène modèle. Le cas des
matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur
durée de vie ou leur résistance à leur microstructure. Passage obligé avant de
telles prédictions, il est nécessaire de comprendre comment le désordre structu-
ral du matériau influe sur le comportement d’une fissure. Dans cette optique, les
surfaces de rupture représentent un champ d’investigation très prometteur. À tra-
vers une étude portant sur divers matériaux hétérogènes, nous caractérisons les
propriétés statistiques de leur rugosité et déterminons dans quelle mesure elles
sont indépendantes du matériau. Nous montrons notamment que les surfaces
de rupture présentent des propriétés d’invariance d’échelle anisotropes, caracté-
risées par deux exposants universels. Étudiant ensuite une céramique de verre,
matériau hétérogène modèle dont on peut contrôler la microstructure, on montre
qu’il existe une seconde classe de surfaces de rupture caractérisée par la même
structure anisotrope mais présentant des exposants plus faibles. Utilisant enfin
des outils théoriques issus de la physique statistique hors équilibre combinés
avec la mécanique de la rupture, nous établissons le lien entre ces propriétés et les
mécanismes généraux de rupture à l’échelle microscopique. Cette étude nous per-
met notamment d’associer les deux classes de surfaces de rupture à un processus
de fissuration mettant en jeux de l’endommagement pour l’un et à une rupture
parfaitement fragile pour l’autre.
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Introduction

Understanding how materials break is both of fundamental and of practical inter-
est. Most people are confronted to this problem in daily life e.g. when they drop
inadvertently their cup of coffee. From the engineering standpoint, the question
is much more crucial than in our daily problems: how to create materials with
longer life-time and improved resistance to shock and stress fluctuations.

Since the pioneering work of Griffith, a coherent theoretical framework, the
Linear Elastic Fracture Mechanics (LEFM) has been developed. It states that — in
an elastic material — a crack is initiated when the mechanical energy released by
the crack advance is sufficient to balance the energy needed to create new surfaces.
This approach has been proved to be extremely powerful as long as one considers
ideal homogeneous media, but is more questionable for real disordered materials.
Indeed, as soon as one considers real materials, its microstructural disorder plays
a crucial role and many questions remain, in a great extent, without answers:
What sets the strength of a material? Which factors determine its life-time? How
can one relate these quantities to the material microstructure?

Why is the role of the disorder so crucial to understand the failure of materi-
als? At first, when we pull on a solid, its resistance to failure is not ruled by an
average response of the material, but by the behavior of little parts of it, that act as
“weak links” and are responsible for the failure of the whole structure [1]. On the
other hand, when we consider a crack propagating in a solid, some rare specific
processes occurring at the crack tip can have a giant effect on the average macro-
scopic behavior. In particular, the presence of a crack enhances catastrophically
the effects of the disorder.

The main objective of this work is precisely to identify and quantify the effects
of the microstructural disorder on the failure of a material. More precisely, we
will study — both theoretically and experimentally — its implication on the path
chosen by the crack to propagate, which sets the morphology of the post mortem
fracture surfaces.

Therefore, we have focused on the roughness displayed by the fracture sur-
faces, the morphology of which is expected to encode the various failure processes.
But what is precisely the information we can get from their geometry? Is it pos-
sible to analyze the failure processes by studying post mortem the roughness of
cracks?

Ann. Phys. Fr. 32 • No 1 • 2007



4 Crack propagation in disordered materials: how to decipher fracture surfaces

This manuscript is divided into four chapters. In Chapter 1, I give the context
and motivations of this study. After a brief introduction to the continuum ap-
proach of failure problems, I review recent developments investigating the failure
of disordered materials.

In Chapter 2, the morphology of fracture surfaces that were intensively studied
during last the two decades is revisited. Five very different disordered materials
are investigated. Using new methods of analysis, we will provide new insights on
the scaling properties of cracks. We will show that a full description of the fracture
surfaces requires a 2D description involving two universal scaling exponents,
independent of the material.

Chapter 3 is devoted to the experimental investigation of fractured sandstone
surfaces that were reported to display puzzling scaling properties [2]. We study
an artificial sandstone, a glass ceramics made of sintered beads, quite comparable
with natural sandstone but with a microstructure that can be tuned experimen-
tally. The investigation over a broad range of porosities, grain sizes and crack
growth velocities leads us to conjecture the existence of a second universality
class for failure problems.

Chapter 4, mainly devoted to a theoretical investigation of the geometry of
fracture surfaces, makes the link between fracture morphology and failure mech-
anisms in disordered materials. By integrating the effects of the material disorder
to the theoretical framework of the Linear Elastic Fracture Mechanics, one gets
predictions on the statistical properties of fracture surfaces of ideal linear brittle
materials in quantitative agreement with the experimental observations of Chap-
ter 3. The origin of the scaling properties of fracture surfaces studied in Chapter 2
is then discussed.

Ann. Phys. Fr. 32 • No 1 • 2007



1
Context and motivation

Despite the great interest of scientists for solid-state physics during the two last
centuries, the first step to understand how materials break was taken in 1913 [3].
And this first step was to identify the intrinsic difficulty of failure problems, the
fact that its study involves a singularity. Indeed, a crack is only sensitive to a
zone of small extension near its tip so that the macroscopic behavior of the mate-
rial is governed by local mechanisms. Developed all over the twentieth century,
Linear Elastic Fracture Mechanics (LEFM) brings a solid theoretical framework to
describe how cracks propagate in homogeneous ideal media. But this continuum
approach neglects the effects of the material structure — defects, microstruc-
tural disorder — that can have catastrophic consequences on crack propagation.
Therefore, the LEFM leaves many fundamental questions open: how to predict
the strength of a real material? Its life-time? In the vicinity of the crack tip, i.e. at
the scale of the material microstructure, it is difficult to neglect the disorder of a
material. And the crack, sensible to a small zone near its crack tip, enhances the
effects of this disorder so that the crack propagation is not ruled by the average
behavior of a material but by its more vulnerable spots. The influence of the
microstructural disorder of a material on the propagation of a crack is the central
point of this study. After a brief introduction to the continuum approach, we will
review recent developments investigating failure of disordered materials, and
will present the challenging questions about crack propagation that are raised by
the presence of disorder.

1. At the continuum scale: the linear elastic
fracture mechanics

Failure of flawless solids. Let us first consider a very simple solid and esti-
mate its strength. In first approximation, it appears natural to model the solid
as a network of springs of length a (interatomic length) and stiffness E (Young’s
modulus of the material). As represented in Figure 1.1, when submitted to an
external stress σ, the atomic bonds stretch over the length δa = aσ/E. Suppose
now that a bond is broken if two neighboring atoms move apart by 20% of their
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6 Crack propagation in disordered materials: how to decipher fracture surfaces

Figure 1.1. An ideal flawless solid is submitted to an external stress σ. Its atomic
bonds — described by springs of stiffness E and length a — can undergo a deformation
δac = aσc/E � a/5 before rupture. This leads to a “theoretical” strength E/5 for a perfect
material.

original spacing1, i.e. for a deformation δac = a/5. Thus, the failure of the material
is obtained for the critical stress σc = E/5. This estimation is compared to practical
strengths of materials in Table 1.1. This oversimplified model predicts a strength
σc which is two orders of magnitude larger than the experimental measurements.
In other words, the strength of materials is far from being directly given by bond-
ing energies. An ingredient is clearly lacking in our simplistic model: the presence
of flaws in materials.

Table 1.1. Comparison between theoretical and practical strengths of materials. The
measured strengths are about two orders of magnitude smaller than the predictions for a
flawless solid described in Figure 1.1.

Material Young’s modulus E Theoretical strength E/5 Practical strength
Steel 200 GPa 40 GPa 500 Mpa
Glass 70 GPa 14 GPa 300 Mpa
Al2O3 400 GPa 80 GPa 100 MPa

Introduction of cracks. Let us change slightly our previous model by intro-
ducing a flaw in our ideal elastic solid. Inglis, in his work published in 1913 [3],
analyzed the effects of a defect on the stress field in the material. Considering an
elliptical cavity of semi-axes b and c, in the solid submitted to an external stress σ
as represented in Figure 1.2, Inglis showed that the effective stress acting at point
P where the local radius of curvature ρp = b2/c is minimal, is

σp = σ

(
1 + 2

√
c
ρp

)
. (1.1)

1. Sophisticated quantum-mechanical calculations can confirm that this rough estimate is rather
good [4].
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1 Context and motivation 7

Figure 1.2. Plate containing an elliptical cavity, semi-
axes b and c, subjected to uniform applied tension σ.

Considering the case b� c corresponding to a sharp defect, the normalized stress
σp/σ undergone by the material at the tip P becomes � 2

√
c/ρp. This ratio can be

much larger than unity for slender cavities. The resulting stress concentration in the
vicinity of defects may explain the discrepancy between practical and theoretical
strengths of materials (see Tab. 1.1). Indeed, considering micrometer-sized flaws,
i.e. ρp � 1 Å and c � 1 μm, one gets

√
c/ρp � 100. Let us note that it is the shape of

the defect rather than its size that sets the factor of stress concentration. Moreover,
one microscopic flaw in an homogeneous material is enough to modify crucially
the macroscopic behavior of a solid. In part, this explains why the extreme of
the characteristic parameters of the material are often more useful than averaged
quantities to predict the resistance to rupture of materials.

The next step to understand how materials break was achieved by Griffith in
1920 [5]. He considered the limit case c/ρp → ∞ equivalent to a slit crack in our
ideal elastic homogeneous solid. In that case, the stress is diverging at its tip as
expected from equation (1.1). Let us investigate in detail the stress field in this
geometry.

The rupture modes. To assess the stress field in the vicinity of the slit crack
tip, it is useful to distinguish the three basic modes of crack surface displacement.
Mode I, II and III are displayed in Figure 1.3 and correspond respectively to the
tensile, shear and tear mode. The relevance of this description lies in the fact
that the stress field near the tip of a slit crack in an elastic solid can be written as
the sum of the contributions of each mode, irrespective of the load/displacement
applied to the solid.

Figure 1.3. The three modes
of fracture: I, tensile mode;
II, shearing mode; III, tearing
mode.

Ann. Phys. Fr. 32 • No 1 • 2007



8 Crack propagation in disordered materials: how to decipher fracture surfaces

Figure 1.4. Stress field in the vicinity
of the crack tip P.

Stress field at the crack tip. Let us focus first on a pure mode I loading2. In
1958, Irwin [6] showed that, in the very vicinity of the crack, the stress field in the
rectangular coordinate system of Figure 1.4 can be written as

σxx =
KI√
2πr

cos(θ/2)(1− sin(θ/2) sin(3θ/2))

σyy =
KI√
2πr

cos(θ/2)(1+ sin(θ/2) sin(3θ/2))

σxy =
KI√
2πr

sin(θ/2) cos(θ/2) cos(3θ/2). (1.2)

Here, KI is the so-called stress intensity factor. This quantity depends both on the
geometry of the system and on the external loading.

Let us note that non-diverging terms contribute also to the stress field near the
crack tip. They can be developed as a rk/2 expansion with k ≥ −1

σi j =
KI√
2πr

gij(θ) + TIkij(θ) + AIlij√r + ... (1.3)

Here gij are the functions given in equation (1.2). kij and li j are also universal
functions of θ (i and j denotes both either x or y).

Mode II and mode III loadings lead to the same form of stress field as given
in equation (1.3) but with stress intensity factors Kp as well as the functions gp, kp

and lp depending on the mode p = {II, III}. As mentioned previously, the stress
field for mixed modes is given by the sum of the three contributions.

2. In the following, we will study experimental systems under dominant mode I loading. This choice
is motivated because (i) mode I generates fracture surfaces avoiding any possible destructive friction
between the two corresponding crack surfaces; (ii) there is always a tendency for cracks to seek an
orientation that minimizes the mode II loading, leading to a dominant tensile mode.
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1 Context and motivation 9

Stress intensity factor and energy release rate. The value of the stress in-
tensity factors KI, KII and KIII fully determines the diverging part of the stress field
in the vicinity of a slit crack. The stress intensity factor KI in the tensile mode will
be shown to determine the stability of a crack while the value of KII will deter-
mine the path followed by the crack for two-dimensional systems as in Figure 1.4.
Therefore, many methods have been developed to assess the quantities KI, KII and
KIII , expressed in Pa m1/2. For a sample under a uniform applied tensile stress σ,
the stress intensity factor in mode I takes the form

KI = ψσc1/2. (1.4)

Here, c is the crack length and ψ is a dimensionless quantity depending on the
geometrical parameters of the system. For example, for an infinite sample with
a slit notch (Fig. 1.2 with b → 0), one has ψ =

√
π. More generally, for more

complex loading conditions/geometries, the value of the stress intensity factors
can be found in hand books (see for example Ref. [7]) or determined through finite
element calculations. We used mainly this last method in our work.

First, let us derive a criterion for crack propagation. The amount of elastic
energy δEel released by a solid in pure mode I loading when a slit crack propagates
on an infinitesimal length δc is3 δEel = δcK2

I /E (see Ref. [8] for the demonstration)
where E is the Young’s modulus of the material. This energy release rate4 is

GI =
δEel

δc
=

K2
I

E
· (1.5)

For the crack to propagate, the energy released by the system must at least balance
the energy required to create two new surfaces. Therefore, the so-called Griffith’s
criterion4 for crack propagation is5

GI ≥ GIc. (1.6)

One can define also the toughness of the material KIc =
√

GIcE. Using equa-
tion (1.5), one gets another criterion of crack propagation equivalent to equa-
tion (1.6)

KI ≥ KIc. (1.7)

The toughness — as well as the fracture energy — is an intrinsic quantity of a
material. It can be measured experimentally and is therefore available for various
materials. However, a theory that would relate the microstructural properties of
a material to its toughness is still missing. In particular, we don’t know how to
estimate the toughness of a multi-compound material from the toughness of its
elements.

3. In plane stress conditions (σzz = 0).
4. For a pure mode I loading.
5. Note that the fracture energy GIc is different from the surface tension because the rupture involves
dissipative and irreversible processes: once broken, the material cannot be healed by simply bringing
back the two pieces into contact.
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10 Crack propagation in disordered materials: how to decipher fracture surfaces

For the ideal elastic homogeneous medium studied here, the behavior of a slit
crack is entirely determined by its stress field in the tip vicinity: its stability is set
by KI and its possible deflection is set by KII . Indeed, a crack chooses the path for
which the local stress field is of mode I type (“criterion of local symmetry”) [9–11].
In other words, the mode II stress intensity factor vanishes at the tip

KII = 0. (1.8)

The “criterion of local symmetry” was proposed to predict the crack path for
two-dimensional problems6. For three-dimensional systems, the role of KIII on
the crack path is still an open question (see for example Refs. [12, 13]).

The case of ductile failure. In this paragraph, we deal with a first obstacle
towards the description of crack propagation in real materials. While until now, a
slit crack in an ideal homogeneous elastic medium, referred to as perfectly brittle
crack propagation, has been addressed, we tackle now the problem of ductile
failure. This is a common thing to say that some materials are brittle while
others are ductile. In fact, this distinction is directly related to the manner a crack
propagates in the material. Let us consider a solid with a sharp preexisting crack.
For some materials, the crack propagates by breaking interatomic bonds one after
the other, while for the others, the material deforms irreversibly before the crack
starts to propagate.

But this distinction must be taken cautiously. For example, we keep quali-
fying the glass as brittle while it has been shown that, at the nanometer scale,
a crack propagates through nucleation, growth and coalescence of damage cavi-
ties [14, 15]: is the notion of brittle and ductile a matter of observation scale or a
question of material?

The assumption of ideal brittle rupture — or infinitely sharp crack — is vio-
lated as soon as we consider real materials. At first, the divergence of the stress
field at the crack tip is physically unacceptable. Therefore, mechanisms relaxing
this stress are expected in a more or less extended process zone near the tip.
Second, fracture is an irreversible process; thus, the fracture energy is always
greater than the energy required to create the new surfaces. This suggests the
existence of dissipative processes, even for cleavage of crystals (see for example
the Refs. [16–18] that debates whether the classical picture of ideal brittle fracture
for crystal cleavage is correct). Finally, let us note that the size of this so-called
process zone varies from one material to the other. The dissipative processes,
damage, are material specific.

Under some assumptions, it is however possible to reconcile crack propagation
involving these non-linear processes with the framework of Linear Elastic Fracture
Mechanics. This is called the small scale zone assumption. It assumes that these

6. Invariant along z as in Figure 1.4.
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1 Context and motivation 11

Figure 1.5. Variation of the tensile stress
σ at the crack tip of a single crack. The dis-
tance to the crack tip for which the stress
field without damage (σ = KI/

√
2πr) is

equal to the intrinsic strength σ∗ of the
material gives a good estimate of the pro-
cess zone size �PZ (see Eq. (1.9)).

dissipative processes are localized in a zone of finite extent in the vicinity of the
crack tip7.

In that case, it is possible to assess the extent of this zone. We give here a very
simple argument illustrated in Figure 1.5 and leading to an estimate of this zone.
A more sophisticated and realistic model is given in reference [19]. The size �PZ
of this so-called process zone is assimilated to the maximum distance from the
crack tip where the tensile stress imposed by the presence of the crack is sufficient
to induce irreversible damage. At this distance, the stress level is expected to be
KIc/
√

2π�PZ (see Eq. (1.2)). This stress is sufficient to induce irreversible deforma-
tion in the material. Therefore, it is equal to the intrinsic tensile strength σ∗ of the
material. Hence8

�PZ � π8
(KIc

σ∗
)2
. (1.9)

Using this approach, a crack involving localized damage processes can be treated
as a slit crack propagating in an equivalent linear elastic medium. The beauty of
this theory lies in the very simple resulting criterion of crack propagation: if the
stress intensity factor KI — that depends only on the imposed boundary condi-
tions and the geometry — is larger than the toughness KIc, the crack propagates.
Unfortunately, this is also the weakness of this macroscopic approach. Indeed,
the quantity KIc that, admittedly, can be experimentally measured, hides all the
irreversible mechanisms of rupture at the microstructure scale. A complementary
approach, that would give the physical meaning of the toughness of a material,
seems necessary.

To summarize, the Linear Elastic Fracture Mechanics provides predictions
on the motion of a crack based on an energy balance: the energy provided to
the material when it is loaded — stored as elastic energy in the solid — must
balance the energetic cost for making a crack propagate — energy required to
create two new surfaces. This framework can be used even for ductile fracture

7. In other words, we suppose that it is still possible to find a length scale above which the effects of
the dissipative processes localized at the tip have vanished. We will see in the following that such an
assumption is impossible for the effects of the material disorder.
8. The coefficient in equation (1.9) is larger than the one expected from the simple derivation shown
here. To get the correct prefactor, one needs to use the more sophisticated model of the Barenblatt
crack [19].
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12 Crack propagation in disordered materials: how to decipher fracture surfaces

if the process zone is small enough. Unfortunately, this macroscopic approach is
restricted to ideal homogeneous media. As soon as one considers real materials,
its microstructural disorder plays a crucial role. This is the central point of the
following section.

2. Failure of disordered materials: the physical
approach

Position of the problem. Linear Elastic Fracture Mechanics provides a frame-
work to predict the motion and trajectory of a crack in an ideal homogeneous
elastic medium. In real materials, one would expect that this framework remains
valid but at a scale larger than both the process zone size and the microstructure
scale. This is not the case, unfortunately for engineers and thankfully for physi-
cists. Microscopic mechanisms, even very localized in a small zone in the vicinity
of the crack tip, can have macroscopic consequences on the motion of the crack
and its trajectory. This effect is characteristic of failure problems: because of the
stress concentration, the crack enhances catastrophically the effects of mechanisms
localized at its tip. In other words, rare specific processes can have a giant effect
on the averaged macroscopic behavior. This is true in the case of an ideal elastic
homogeneous material where the crack motion is determined by the quantities
KI and KII that are rigorously defined at the tip by KI = limr→0

√
2πrσyy(r, θ = 0)

and KII = limr→0
√

2πrσxy(r, θ = 0) (see Eqs. (1.2) and (1.3)). And this is also true
for more realistic cases. Therefore, theoretical approaches — such as homoge-
nization technique — that would amount to neglect small-scale effects to predict
macroscopic behavior must be considered carefully.

The central point of this work is the transition from microscopic processes to
macroscopic behavior in failure problems for real material: what are the effects
of the microstructural disorder of the material on the macroscopic behavior of
the crack? The classical approach defines an “effective” equivalent homogeneous
medium using “effective” quantities. The macroscopic behavior of the material
at length scales larger than the disorder would then coincide with that of this
so-defined “equivalent” homogeneous medium. For example, it is natural to
define the effective Young’s modulus Eeff either (i) experimentally by measuring
its response to a perturbation with a wavelength larger than the typical length scale
ξd of the disorder/microstructure (see Annexe A for delails) or (ii) theoretically
by using homogenization techniques that gives the relation between the effective
Young’s modulus Eeff and the ones of each component of the disordered material
(see for example Ref. [20]). With regard to its elastic response, the macroscopic
(at scales larger than ξd) behavior of the disordered material is strictly identical
to that of the so-defined effective homogeneous medium with Young’s modulus
Eeff.

For failure problems, this approach is not valid. For example, let us consider a
material characterized by a one-dimensional disorder as represented in Figure 1.6.
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1 Context and motivation 13

Figure 1.6. Ideal two-compounds material charac-
terized by a one-dimensional disorder. If the tough-
ness Ka

I of the compound a is lower than Kb
I , that of

the compound b, then the macroscopic toughness of
the material is Kb

I , irrespective of the properties of
the compound a.

It is made of two compounds a and b characterized by their toughness Ka
I and Kb

I ,
respectively (Ka

I < Kb
I ). To make the crack propagate through the whole material,

one must apply a stress intensity factor Kapplied
I at least equal to Kb

I . Indeed, if

Ka
I < Kapplied

I < Kb
I , the crack is “pinned” in the grey regions. Therefore, the

macroscopic stress intensity factor of this model heterogeneous material is equal
to Kb

I , irrespective of the properties of the phase a. We can now consider a material
made of N different sections of toughness Ki

I. The macroscopic toughness is then
given by the maximum value of the Ki

I so that a relatively small part of the
disordered material rules its whole behavior.

The morphology of fracture surfaces which is reminiscent of the path followed
by a crack is also a good experimental example of the failure of the classical
techniques. For an ideal homogeneous medium under a pure mode I loading,
these surfaces are flat. For a real material9 under the same loading, it is self-
affine, i.e. rough at all length scales, even much larger than the typical length
scale ξd of the disorder. It is clear that in this example, to reconcile the behavior
of the ideal homogeneous system — the predictions of the LEFM — with that
of the disordered material is not an easy task: there is no length scales at which
the behavior of the two media — here the morphology of the fracture surface —
will coincide. In other words, the transition from homogeneous to disordered
material is not “smooth” in view of the macroscopic behavior of the crack. Even
very slightly disordered material will behave differently than any homogeneous
one. The example of self-affine fracture surfaces leads to the conclusion that
LEFM, as it has been developed for homogeneous media, will never reproduce
all the characteristics of crack propagation in real materials. In order to prospect
the relevant alternative theory, let us review the mean features of the effect of the
disorder on crack propagation.

Clues for a critical phenomenon. Coming back to the example of the ge-
ometry of fracture surfaces, one realizes that the crack enhances the microscopic
disorder so that we cannot define a length scale at which its effects become neg-
ligible. This lack of characteristic length scales may be reminiscent of a critical

9. Therefore characterized by a microstructural disorder.
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14 Crack propagation in disordered materials: how to decipher fracture surfaces

phenomenon, and the exponents involved in the scaling laws measured for frac-
ture problems may be universal. We give here some clues that support this idea:

(a) as previously emphasized, failure of disordered materials results in frac-
ture surface geometry without characteristic length scales. Moreover, the
scaling properties of the roughness of crack surfaces are characterized by
universal quantities — the scaling exponents — that do not depend on the
nature of the materials — the details of the disorder properties. Power-law
behavior and universal aspect of crack surfaces suggest the existence of an
underlying phase transition for failure problems in disordered media. The
main properties of fracture surfaces are reviewed in detail in the following
paragraph;

(b) the study of the local velocities of a crack front suggests a burst-like dynamic
involving avalanches of all sizes. Studying the dynamical properties of the
crack, it appears impossible to define both a characteristic local velocity
and avalanche size. Figure 1.7a displays the distribution of local velocity
of a crack front propagating in a disordered weak plane between two sand-
blasted plates of Plexiglas sintered together as measured by Måløy, Santucci
et al. [21]. Figure 1.7b shows the avalanche size distribution involved in the
burst-like dynamics of the front motion for the same experiment. In addi-
tion to the power-law behaviors, one observes that the value of the scaling
exponents — the slope of the straight lines in this logarithmic scale — are
very robust: they do not depend on the mean crack growth velocity of the

Figure 1.7. (Color online) (a) Distribution of the local velocities measured on a crack
front in motion in a disordered weak plane between two plates of Plexiglas sintered
together (Courtesy of Måløy, Santucci and co-workers [21]). (b) Avalanche size distribution
involved in the burst-like dynamics of the front motion (Courtesy of Måløy, Santucci and
co-workers [21]). Note that the value of the scaling exponents — the slope of the power-law
fit in this logarithmic scale — do not depend on the mean velocity 〈v〉 of the front. This
“universal” burst like dynamics suggests that the crack front motion could be described as
a dynamic phase transition.
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crack front 〈v〉 and the sample preparation — the details of the disorder of
the weak plane — in the range investigated. This “universal” burst like
dynamics of the crack front seems reminiscent of critical phenomena;

(c) in addition to its local velocity and its geometry, the macroscopic motion
of a crack involves also remarkable properties, however still unexplained.
Figure 1.8 displays the mean velocity of a crack propagating in an aluminum
alloy in the fatigue regime — also referred as subcritical regime because
KI < KIc. The velocity of the crack evolves as a power-law of the applied
stress intensity factor and 〈v〉 � (ΔKI)n. Contrary to the other experimental
examples, the exponent n seems to be material dependent. As suggested in
reference [22], the remarkable features of the law relating the crack growth
velocity — order parameter in the theoretical framework of dynamic phase
transitions — and the applied stress intensity factor — control parameter in
this same framework — could be explained in the frame of a description of
crack propagation in disordered material as a dynamic phase transition.

Figure 1.8. Mean crack
growth velocity 〈v〉 of a crack
front propagating in a steel un-
der cyclic loading — fatigue
regime — as a function of the
stress intensity factor ΔK =
Kmax − Kmin [23].
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16 Crack propagation in disordered materials: how to decipher fracture surfaces

The features of crack propagation in disordered materials suggest that it could be
described as a critical phenomenon. The fundamental issue in this work is:

(i) Can we provide convincing arguments that crack propagation in disordered
materials is a critical phenomenon?

(ii) To which extend can we characterize it?

Many theoretical efforts have been devoted to this issue. In the last paragraph
of this section, we will briefly review the four main competing theories that
were proposed to explain the universal features observed during the failure of
disordered materials. But first, we will present one of the major results obtained
these past twenty years concerning the scaling properties of the roughness of
fracture surfaces.

Scaling properties of fracture surfaces: the Holy Grail. Because fracture
surfaces have been largely experimentally investigated since the 80’s and because
their morphology is the immediate signature of the failure mechanisms, this
morphology has often been chosen as a first test for the various theories of crack
propagation in disordered materials. In other words, a relevant model of failure
of disordered materials is expected to reproduce in the first place the rather
remarkable properties of scaling invariance of the roughness exhibited by fracture
surface. Prediction of the competing models can then be compared with respect
to each other. This experimental test, although indirect, is easier to do than on
other aspects of failure in disordered materials such as the dynamical properties
of cracks.

Here, we will give the main experimental results reported on the geometry
of fracture surfaces. In particular, we will focus on their universal properties,
i.e. independent of the material. Scientists have for a long time studied the
morphology of fracture surfaces to improve their knowledge of the complex
processes occurring at the microstructure scale during the failure of heterogeneous
materials [24]. For example, engineers have widely used fracture surface analysis
to determine the reasons of failure of a solid. More recently, the roughness of
fracture surfaces became the center of interest of physicists studying the physical
aspects of material failure. Indeed, in the pioneer work published in reference [25]
in 1984, Mandelbrot et al. showed that fracture surfaces of various kinds of
metallic alloys exhibited very remarkable properties of scale invariance. Studying
a wide range of aluminum alloys of different toughness, Bouchaud et al. [26]
measured however the same value for the scaling exponent that characterized the
roughness of their crack surface. They conjectured that this value was “universal”.
Måløy et al. [27] performed the same analysis on fracture surfaces of six materials
(porcelain, steel, graphite, ...). All these experimental results led to the conclusion
that the roughness of fracture surfaces is self-affine and characterized by a so-
called roughness exponent ζ � 0.8 independent of the material. One of the key
consequence of this scaling invariance is

Δh(Δr) ∼ Δrζ (1.10)
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1 Context and motivation 17

whereΔh is the 1D height–height correlation function computed on height profiles
extracted on the fracture surface and defined as Δh(Δr) = 〈(h(r + Δr) − h(r))2〉1/2r .
Figure 1.9 displays the way we compute this function on a rough profile taken
from a fracture surface of silica glass. Let us note that many other disordered
materials were then investigated (granite [28], wood [29], mortar [30], ...). All
these experiments confirmed the value of the “universal” roughness exponent
ζ = 0.8.

Figure 1.9. (Color online) Computation of the 1D height–height correlation function
Δh(Δr) on the example of a fracture surface of silica glass. The profile of interest (right) is
measured along a given direction of the fracture surface (left). In addition to the use of a
3D representation, the colors on the left figure correspond to the height of each point of the
fracture surface. This allows for a good visualization of the surface roughness.

Some studies reported exceptions to the universality of the roughness expo-
nent. Metallic surfaces investigated at the nanometer scale were found to display
self-affine scaling properties, but with a roughness exponent significantly smaller
than 0.8, closer to 0.4−0.5 [22,31,32]. On the same surfaces, the “universal” rough-
ness exponent ζ � 0.8 was also observed, but at larger scales. Similar observations
were reported for a soda-lime silica glass [22]. Measurements corresponding to
various crack growth velocities were performed both for a soda-lime silica glass
and Al-based metallic alloys [22, 32]. They observed that the crossover length
between the two self-affine domains (ζ � 0.45 at small scales and ζ � 0.8 at large
scales) was decreasing when the crack growth velocity was increasing. In other
words, for very small velocities, the small scale domain is expected to become
broader. The universality of this small scale regime was later questioned since
no small scale ζ � 0.4−0.5 roughness exponent was observed for nanoresolved
fracture surfaces of silica glass broken under stress corrosion with crack growth
velocities as small as a picometer per second [33, 34]. The effects of the crack
growth velocity on the morphology of fracture surfaces are widely studied here.
No effects are observed (see Chap. 2) for crack growth velocities varying on more
than 12 decades (from some picometers to some meters per second).
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18 Crack propagation in disordered materials: how to decipher fracture surfaces

On the other hand, recent experiments reported similar values ζ � 0.4−0.5 at
large length scales in sandstone [2, 35]. This “apparent” exception to the widely
reported roughness exponent ζ � 0.8 will be studied in Chapter 3. This experi-
mental result will be proved to be the starting point towards the understanding
of the fracture surface morphology.

In the next paragraph, the main models of failure of disordered materials
are reviewed. Unfortunately, we will see in Chapter 2 that they are unable to
reproduce the properties of experimental fracture surfaces.

The competing models. We describe now the four main models of failure of
disordered materials. For each of them, we give their predictions for the fracture
surface geometry.

(i) Bouchaud et al. [36] proposed to model the crack front as an elastic line mov-
ing through randomly distributed microstructural obstacles — the dynam-
ics of which is described through a phenomenological Langevin equation,
keeping only the terms allowed by the symmetry of the system. The fracture
surface is then the trace left by the moving front. The geometry of an elastic
line moving in a 3D random medium has been studied in references [37,38].
The scaling exponents characterizing the line — and therefore the rough-
ness of fracture surfaces — depend on the coefficients involved in its motion
equation. But on general grounds, for such a moving line just above its de-
pinning transition, one expects two scaling regimes: at small (resp. large)
scales, the roughness exponent corresponds to an effective quenched (resp.
thermal) noise [39]. The crossover length scale between the small-scale and
the large-scale regime is expected to increase with the line velocity. The
influence of the crack growth velocity on the scaling properties of fracture
surfaces is a crucial test for the relevance of such an approach.

(ii) Larralde and Ball [40] and then Ramanathan and Fisher [41] used Linear
Elastic Fracture Mechanics to derive a linear non-local Langevin equation
within the hypothesis of slowly growing crack (elastostatic approximation).
Their models both led to crack surfaces with a roughness increasing loga-
rithmically with the scale, in contradiction with the experimental measure-
ments.

(iii) Another class of models for fracture is the network models [42, 43] made
of elastic beams, bonds, or electrical fuses with random failure thresholds.
For all network approaches, bonds are supposed to model the material at
a mesoscopic scale and the aim is to investigate the interrelation between
disorder and properties of the network such as fracture stress and damage
spreading. The surprising result is that properties of the network are related
to the system size by scaling laws involving non-trivial exponents indepen-
dent of the precise distribution and of the microscopic aspects of the model.
It was therefore suggested to model slow crack propagation in quasi-brittle
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materials10. One of the most studied models is the random fuse model since
it leads to self-affine fracture surfaces. But a precise value of the roughness
exponent is still an issue [44,45]. Recently, large scale numerical simulations
were carried out and a discrepancy in the self-affine exponent was found:
Batrouni et al. reported ζ � 0.62 [44] while Räisänen et al. [45] observed
ζ � 0.40. The results can be used as a very interesting guideline, but in
order to compare with experiments, it is inevitable to consider the vectorial
nature of elasticity.

(iv) Hansen and Schmittbuhl [46] suggested that the universal scaling properties
of fracture surfaces are due to the fracture propagation being a damage coa-
lescence process described by a stress-weighted percolation phenomenon in
a self-generated quadratic damage gradient. They obtained a roughness ex-
ponent ζ = 0.80 in apparent agreement with the experimental observations.
Moreover, in this static model, crack surfaces are expected to be isotropic.
This point will be investigated in detail in Chapter 2. The experimental
observations reported in Chapter 2 question the relevance of such a model
to describe the scaling properties of experimental fracture surfaces.

To summarize, every model leads to prediction on the scaling properties of fracture
surfaces. In the following chapter, we study the morphology of experimental
fracture surfaces of five different materials. This study will allow determining the
relevant theoretical descriptions.

10. Broken bonds can be present in a rather extended zone ahead of the main crack. To model brittle
fracture, one should prevent that the bonds not immediately ahead of the main crack break.
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2
Morphology of fracture surfaces revisited

During the two last decades, physicists have focused on the properties of crack
surfaces. Their roughness aroused such an attention because it is expected to
reflect the failure mechanisms of materials. After the work of Bouchaud et al. [26],
it was conjectured that fracture surfaces of disordered materials are self-affine and
characterized by a universal roughness exponent ζ � 0.8. Extensive experimental
investigations on many materials were then performed to test this conjecture (for
example, see the review [47]). On the other hand, various statistical methods were
developed in order to test the self-affine behavior of crack roughness and measure
the roughness exponent with a higher and higher precision [48, 49]. Roughly, all
these studies validated the first conjecture: fracture surfaces are self-affine with a
scaling exponent ζ = 0.8 ± 0.05 independent of the material.

In this chapter, we revisit the analysis of rough fracture surfaces. We use new
methods that provide new insights on the scaling properties of cracks. At first,
we study the distribution of height variation of the surface in order to investigate
whether profiles extracted on crack surfaces are self-affine or multi-affine. Then,
we show that the current description — with one roughness exponent — of the
roughness of fracture surface is incomplete. A complete description of the crack
roughness is shown to require the use of a two-dimensional analysis. In particular,
the fracture surface is observed to follow a Family–Vicsek scaling involving two
scaling exponents.

In order to study the robustness of our observations, we have chosen to study
five very different materials, broken under five different loading conditions1:
silica glass, an aluminum alloy, mortar, wood and AlPdMn quasicrystal. The new
properties of fracture surfaces reported here will be shown to be independent
of the material/loading conditions. The case of sandstone fracture surfaces that
exhibit a surprisingly low roughness exponent ζ � 0.5 [2, 35] will be studied in
the next chapter.

1. Materials and methods

In this section, we present in detail the experimental techniques used in this
study. Fracture surfaces investigated here were obtained from various fracture

1. But still in mode I.
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22 Crack propagation in disordered materials: how to decipher fracture surfaces

Table 2.1. For each material studied, the type of fracture test and the scanning technique
used are listed in the second and third column. DCDC, CT and TDCB mean Double
Cleavage Drilled Compression, Compact Tension and Tapered Double Cantilever Beam,
respectively. The crack growth velocity as well as the typical length scale of the features
observed on the fracture surface are then given. The sixth column gives the research group
that performed both the fracture test and the scanning of the fracture surface. Let us note
that except for the quasicrystals fracture surfaces the propagation direction of the crack is
known a priori.

Material Fracture Scanning Crack Length Research
test technique velocity scale group

Silica glass DCDC AFM 10−12 to nm “Fracture”
102 m s−1 group (CEA

Saclay) [33]

AlPdMn Cleavage STM rapid nm Ebert’s
quasi-crystal group

(Jülich) [52, 53]

Aluminum CT SEM and rapid μm ONERA
alloy stereoscopy (Châtillon)

[50, 51]

Mortar TDCB optical quasi-static mm Morel’s
profilometer group

(Bordeaux) [30]

Wood TDCB optical quasi-static mm Morel’s
profilometer group

(Bordeaux) [29]

tests, and scanned using various techniques. They are listed in Table 2.1. The
crack growth velocity and the typical length scale of the features observed on the
fracture surfaces are also given in Table 2.1. The research groups that performed
the fracture tests and the scanning of the fracture surfaces are also listed in this
table. The experimental procedure is given in details in the following paragraphs
for each material.

Silica glass. The experiments were performed by the “Fracture” group (CEA
Saclay) [33]. Fracture surfaces of silica glass were obtained by applying a DCDC
(Double Cleavage Drilled Compression) to parallelepipedic (5 × 5 × 25 mm3)
samples under stress corrosion in mode I (see [54] for details). After a transient
dynamic regime, the crack propagates at low velocity through the specimen under
stress corrosion. This velocity was measured by imaging in real time the crack
tip propagation at the free surface through Atomic Force Microscopy (AFM).
In the stress corrosion regime, the crack growth velocity can be controlled by
adjusting the compressive load applied to the specimen [15]. The protocol is then
the following: (i) a large load is applied to reach a high velocity; (ii) the load is
decreased to a value lower than the prescribed one; (iii) the load is increased again
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2 Morphology of fracture surfaces revisited 23

up to the value that corresponds to the prescribed velocity2 and kept constant. This
procedure allows to obtain for the same sample various crack growth velocities
ranging from 10−6 m s−1 to 10−12 m s−1 corresponding to zones on the post mortem
fracture surfaces which are clearly separated by visible arrest marks. Each arrest
mark is numerated and its distance to the initiation is measured so that it is possible
to identify post mortem the zone corresponding to the velocity to investigate on the
fracture surface. A higher velocities zone is obtained near the hole where the crack
initiated. During the dynamic transient regime, the crack velocity is estimated
to be of the order of 102 m s−1. The topography of these fracture surfaces is then
measured through AFM with in-plane and out-of-plane resolutions of the order of
5 nm and 0.1 nm, respectively. To ensure that there is no bias due to the scanning
direction of the AFM tip, each image is scanned in two perpendicular directions
and the analyses presented hereafter are performed on the two sets of images.
These images represent a square field of 1 × 1 μm (1024 by 1024 pixels).

Quasicrystal. Cleavage of quasicrystals and fracture surface scanning were
performed by Ebert and co-workers at Jülich in Germany [52, 53]. Single qua-
sicrystal samples of Al70.5Pd21Mn8.5 were cleaved along two different cleavage
planes in ultrahigh vacuum. In order to measure the topography of the fracture
surfaces, the samples were transferred to an Ultra Vacuum Scanning Tunneling
Microscope (US-STM) without breaking the vacuum. As a consequence, the di-
rection of crack propagation is a priori unknown. We will see in Section 3 that this
direction can however be deduced post mortem from the 2D analysis of the scal-
ing properties of the cleaved surfaces. The lateral resolution of the STM images
(500 × 500) was estimated to be 0.1 nm and 0.2 nm parallel and perpendicular to
the scanning direction, respectively.

Aluminum alloy. The fracture test was performed by Bouchaud (ONERA,
Châtillon) and the scan of the fracture surface was achieved by Amman (ONERA,
Châtillon) [50] and Pouchou and co-workers (ONERA, Châtillon) [51]. Fracture
surfaces of the commercial 7475 aluminum alloy were obtained from CT (Compact
Tension) specimens, first precracked in fatigue and then broken under uniaxial
mode I. In the tensile zone, the fracture surface has been observed with a scan-
ning electron microscope at two tilt angles. High resolution surface height maps
have been produced from the stereo pairs using the cross-correlation based sur-
face reconstruction technique described in [50]. Two reconstructed images of the
topography corresponding to two zones of the same fracture surface have been
obtained and correspond to rectangular fields of 565× 405 μm (512 by 512 pixels).
The in-plane and out-of-plane resolutions are of the order of 2−3 μm.

2. The value of the load F required to get the prescribed velocity is known because: (i) the applied
stress intensity factor is given by KI = Fg(c) where g(c) is a function of the crack length c and has
been estimated through finite element simulations [15, 55]; (ii) the relation between the applied stress
intensity factor KI and the crack growth velocity has been measured previously for silica glass [15].

Ann. Phys. Fr. 32 • No 1 • 2007



24 Crack propagation in disordered materials: how to decipher fracture surfaces

Mortar. The experiments on mortar and wood were performed by Mourot and
Morel (LRBB, Bordeaux) [30]. Fracture surfaces of mortar were obtained by ap-
plying four points bending to a notched beam of square cross section leading to
a mode I failure. The displacement is controlled during the test. The length of
the beam is 1400 mm and its height and thickness are both equal to 140 mm.
The topography of the fracture surfaces has been recorded using an optical pro-
filometer. The maps is made of 500 profiles of 4096 points (pixel size: 20 μm)
recorded along the direction of the crack front, perpendicular to the direction of
crack growth. The first profile is close to the initial notch. Two successive profiles
are separated by 50 μm along the direction of crack propagation. The lateral and
vertical accuracy are of the order of 5 μm. A transient regime was observed on
the fracture surfaces. On the first 10 mm of the crack propagation, corresponding
to the first 200 profiles, the roughness of the profiles increases with the distance
to the initial straight notch. A full description of the roughness in this region of
the fracture surface is given in [30]. The present study focuses on the geometry
of the surface far from the initial notch and the first 200 profiles are therefore
systematically removed from the maps.

Wood. The experiments were performed by Morel [29]. Fractured wood sur-
faces were obtained from modified Tapered Double Cantilever Beam specimens
(TDCB) subject to uniaxial tension with a constant opening rate leading to mode I
failure (see [56] for details). The wood species used in the study is a Spruce (Picea
excelsa W.) which is strongly anisotropic. The crack propagated along the longi-
tudinal direction of the wood. As a result, the characteristic length scales of the
elementary features of the fracture surface are anisotropic: it is respectively of the
order of a mm and of a few tens of micrometer in the longitudinal and transverse
directions. These values correspond respectively to the length and the diameter
of the wood cells. As a consequence, the height of the surface has been scanned
by an optical profilometer over a 50 × 50 mm area with a higher resolution in
the transverse direction (25 μm) than in the longitudinal one (2.5 mm): this map
includes 50 profiles parallel to the crack front with 2048 points each. As for the
mortar fracture surfaces, the maps of the wood fracture surfaces correspond to
the zone far from the initial straight notch where the roughness is statistically
stationary, i.e. approximately 50 mm from the initiation.

Visual features of the surfaces. In all four cases, the reference frame (�ex, �ey,
�ez) is chosen so that �ex and �ez are respectively parallel to the direction of crack
propagation and to the crack front. Figure 2.1 shows three-dimensional views of
the fracture surfaces as observed in silica glass, AlPdMn quasicrystals, aluminum
alloy, mortar and wood. These surfaces display striking visual differences: the
in-plane (along x or z) and out-of-plane (along h) length-scales of the observed
features strongly depend indeed on the considered material. They are respectively
of the order of 50 nm and 1 nm for the silica glass surface, about 3 nm and 1 nm
for quasicrystal, approximately 100 μm and 30 μm for aluminum, and 5 and
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Figure 2.1. (Color online) Topographic images of fracture surfaces of silica glass, AlPdMn
quasicrystal, aluminum alloy, mortar and wood. Square fracture regions are represented
here for the sake of clarity. The x-axis and z-axis correspond to the crack propagation
direction and to the crack front direction respectively.

0.6 mm for mortar. The wood fracture surface is highly anisotropic: the typical
in-plane sizes of the patterns are respectively 50 and 1 mm along the longitudinal
(x-axis) and transverse (z-axis) directions and out-of-plane features have a typical
height of 200μm. Despite their apparent differences, these surfaces share common
scaling properties to be discussed in next paragraphs.
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2. Statistics of fracture surfaces

Scaling of the 1D correlation function. Since the 80’s and the pioneering
work of Mandelbrot et al. [25], the roughness of fracture surfaces has been widely
studied. These works have been motivated by the puzzling scaling invariance
properties of these surfaces. Extensive experimental investigations have lead to
the conclusion that fracture surfaces are self-affine, characterized by a universal
roughness exponent ζ � 0.8 [26, 27]. A key consequence of this scale invariance
is that the height–height correlation function defined as the standard deviation
σΔh(Δr) = 〈(ΔhΔr)2〉1/2r = 〈(h(r+Δr)−h(r))2〉1/2r of the distribution of height variation
{Δh}Δr scales as

σΔh

l
=
(
Δr
l

)ζ
. (2.1)

Here ζ is the roughness or Hurst exponent and l the topothesy, i.e. the length
scale at which σΔh is equal to Δr. Many other methods have been proposed to
study the scaling properties of signals [48,49,57]. The choice of the height–height
correlation function made here is motivated by the fact that this method is most
efficient3 when the signal is characterized by two self-affine regimes — or one
regime and one saturation — which is the usual case for experimental signals.

Figure 2.2 shows the evolution of the height–height correlation function com-
puted on profiles extracted along the z-axis (perpendicular to the propagation
direction) for silica glass and aluminum alloy fracture surfaces. A typical profile
is given in the inset of the same figures. In a given range of Δz ranging from 4 to
40 nm for silica glass and from 2 to 35 μm for aluminum, σ is found to evolve as
a power-law with Δz. This evolution is characterized by a roughness exponent
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Figure 2.2. Height–height correlation function computed on profiles extracted along the
z-axis of fracture surfaces of silica glass (a) and aluminum alloy (b). The straight lines
correspond to power-law fits σ = �1−ζ

z Δzζ with ζ = 0.81, �z = 0.58 fm (a) and ζ = 0.74,
�z = 14 μm (b).

3. This method leads both (i) to physically relevant value of the crossover length scales and (ii) do not
induce bias on the value of the exponents when two self-affine regimes are present on the same signal.
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corresponding to the slope of the power-law fit in the logarithmic representation
of Figure 2.2 and found to be ζ = 0.81 and ζ = 0.74 for silica glass and aluminum
respectively. These values are in agreement with the “universal” value ζ � 0.8
widely reported in the literature. The topothesy are measured to be �z = 0.58 fm
and �z = 14 μm for silica glass and aluminum respectively. To summarize, the
correlation function computed along the z-axis is found to be σΔh = �

1−ζ
z Δzζ.

Distribution of height fluctuations. This result gives no hint of the actual
statistical distribution of {Δh}Δz giving rise to such a scaling. In this part, we
go beyond the sole computation of the roughness exponent and compute the
statistical distribution for the fluctuations Δh of height of the fracture surfaces.
This study is motivated by recent experimental results [58] reporting multi-affine
scaling of crack surfaces obtained by rupture of a sheet of paper. In that case of
failure of a 2D solid, one obtains crack line resulting from the propagation of a
point — the crack tip — in the material. In the present study, the fracture surfaces
result from the propagation of a crack front in a 3D solid. Although the two
systems are quite different, it is of great interest to study the whole distribution
of height variation and so the multi-affinity of fracture surfaces.

We define the statistical distribution P(Δh) of height variationΔh between two
points distant of Δz along the z-axis. This distribution P(Δh) is plotted in the
insets of Figure 2.3 for silica glass and aluminum alloy for various values of Δz
corresponding each to a given color. The points corresponding to the standard
deviation σΔz calculated for the same Δz values are plotted in the same color in
Figure 2.2. Using the values of ζ and �z calculated previously, it can be seen in the
main graphs of these same figures that a very good collapse of the distributions
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Figure 2.3. (Color online) The insets show the distribution of the height fluctuations Δh
for various values of Δz for fractured silica glass (a) and aluminum alloy (b) surfaces. The
collapse of the curves was obtained using equation (2.2) with the values of the exponents ζ
and topothesies �z measured from the calculation of the height–height correlation function
(cf. Fig. 2.2).
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can be obtained by dividing the abscissa by �1−ζ
z Δzζ and multiplying the ordinates

by �1−ζ
z Δzζ. After a normalization of the random variable Δh by the width of

the distribution σΔh = �
1−ζ
z Δzζ, all the normalized distributions corresponding to

various Δz become the same. In other words:

P(Δh) =
[
1/(�1−ζ

z Δzζ)
] [

g(Δh/(�1−ζ
z Δzζ)

]
(2.2)

as long as Δz belongs to the self-affine regime. In other words, not only does the
standard deviation display scale invariance, but also the whole distribution of
height fluctuations and this scale invariance can be described through one single
scaling exponent ζ.

The function g that corresponds to the collapse of all the normalized distri-
butions does not depend on Δz. It is plotted in Figure 2.4 in a semi-logarithmic
representation. At first, it can be seen that even in this new representation, the
collapse of the distributions corresponding to various values of Δz is rather good.

The Gaussian distribution p(x) = (1/
√

2π)e
−x2

2 with a standard deviation equal
to unity is also plotted in Figure 2.4. For small Δh values, the master curve g is
rather well fitted by a Gaussian distribution. However, deviations to the Gaussian
behavior can be observed in the tail of the distributions. No clear explanation of
these deviations has been found yet.
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Figure 2.4. (Color online) Normalized distribution of height fluctuations presented in
Figure 2.3 in a semi-logarithmic representation for fractured silica glass (a) and aluminum
alloy (b) surfaces. The Gaussian distribution p(x) = (1/

√
2π)e−x2/2 is represented as a

dashed line.

Following equation (2.2), once the roughness exponent and the topothesy are
known, it is possible to give the evolution of the whole distribution of height
fluctuation with the scale of study Δz. In other words, one exponent is sufficient
to describe the scaling properties of the fracture surfaces along the crack front
direction. For example, one can easily show from equation (2.2) that the nth
order moment of P(Δh) scales as Δznζ. This study brings new insights into a
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currently widely debated question. In a recent study [58], it was reported that
fracture surfaces of quasi-two-dimensional (2D) media (e.g. paper sheet) display
multiscaling properties, in the sense that the nth order moments of the height
fluctuations over any distance Δr scale as a function of Δr with a characteristic
exponent that depends nonlinearly on the order n of the moment. In other words,
only one exponent is not enough to describe fully the statistical properties of the
roughness of crack in paper sheet (2D medium). An analysis of profiles obtained
on 3D granite samples also display multiscaling properties [28]. A multiscaling
analysis were then performed by Santucci et al. [59] that shown that multiscaling
occurs only at small length scales compared to the typical size of the disorder in
the materials, both for 2D and 3D media. The current models of crack propagation
proposed in the literature (elastic line based models as well as damage coalescence
based models) do not predict such multiscaling properties of fracture surfaces.
The study reported here on five different materials (the results on mortar, wood
and quasicrystals are not shown but their distribution of height fluctuation scales
also with a single exponent) is a strong argument in favor of mono-affinity of
fracture surfaces in the investigated range of length scales4.

3. Anisotropy of fracture surfaces

Context and motivation. In the previous part, the statistical properties of the
surface height parallel to the z-axis, perpendicular to the crack growth direction,
have been shown to be fully described by a single scaling exponent, the roughness
exponent ζ. From now on, we will focus on the standard deviation σΔh (noted
Δh for sake of simplicity) which is sufficient to estimate this roughness exponent
and therefore the whole statistical properties of the profiles. In this section, we
go beyond the analysis of profiles parallel to the z-direction and we study the
statistics of surface height along other directions.

The scaling properties of fracture surfaces are usually believed to be isot-
ropic [35, 48]. However, for surfaces obtained by shear fracture (mode II), it
was reported in reference [60] that the scaling exponent measured on profiles
parallel to the crack propagation was slightly smaller than for profiles along the
perpendicular direction.

The analysis of such an anisotropy on samples obtained under tensile failure
(mode I) is the central point of this paragraph. This point is crucial because, as we
will see in Section 5, it will determine the kind of models developed to describe
crack front propagation in heterogeneous materials. As reviewed in Section 2 of
Chapter 1, the various competing theoretical approaches for failure of disordered
materials lead to conflicting conclusions about the isotropy of fracture surfaces.

4. We will see in Section 4 that an “apparent” multiscaling is present at length scales smaller than the
grain size in sandstone samples in agreement with the observations made in reference [59]. However,
one can question the relevance of these observations made at a scale where the roughness of one
individual grain/elementary microstructural feature becomes the dominant factor.
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Scaling behavior parallel and perpendicular to the crack growth direction.
In order to investigate the anisotropy of the experimental fracture surfaces, the
1D height–height correlation functions Δh(Δz) = 〈(h(z+Δz, x)− h(z, x))2〉1/2 along
the z direction, and Δh(Δx) = 〈(h(z, x+Δx)− h(z, x))2〉1/2 along the x direction were
computed for each material. They are represented in Figure 2.5.

These curves indicate a clear dependence on the measurement direction al-
though all profiles are self affine. Indeed, the height–height correlation functions
Δh(Δz) and Δh(Δx) computed respectively along the crack front and crack propa-
gation directions are found to scale as:

Δh
�z
=
(
Δz
�z

)ζ
and

Δh
�x
=
(
Δx
�x

)β
(2.3)

where ζ and �z refer to the roughness exponent and topothesy measured along
the direction of the crack front, while β and �x refer to the roughness exponent and
topothesy measured along the crack growth direction. Along the crack front, the
scaling exponent is found to be ζ � 0.8 irrespective to the nature of the material
studied. This observation is fairly consistent with the “universal” value of the
roughness exponent reported in the literature [22, 26, 27, 61]. Parallel to the crack
front, the measured Hurst exponent β is significantly smaller, of the order of 0.6,
irrespective of the nature of the material. The values of the scaling exponents ζ
and β measured on the five materials are listed in Table 2.2.

Table 2.2. Scaling exponents and topothesies measured on profiles extracted on fracture
surfaces of silica glass, quasicrystal, metallic alloy, mortar and wood. The exponent ζ and
the topothesy �z corresponds to the value obtained after the analysis of profiles parallel
to the crack front direction. β and �x corresponds to profiles extracted along the crack
propagation direction. The error bars correspond to a confidence interval of 95% calculated
from the various values of exponents measured on each profile studied.

ζ β �z �x

Silica glass 0.81 ± 0.04 0.64 ± 0.04 0.58 fm 1.7 pm
AlPdMn quasicrystal 0.81 ± 0.03 0.67 ± 0.05 0.32 nm 0.19 nm
Aluminum alloy 0.74 ± 0.04 0.57 ± 0.03 14 μm 5.6 μm
Mortar 0.76 ± 0.05 0.62 ± 0.05 12 μm 18 μm
Wood 0.79 ± 0.05 0.59 ± 0.05 18 pm 2.0 μm

On the other hand, the range of length scales on which the power-law behavior
is measured does depend on the material studied. To select the range over
which the scaling exponents are measured, we used the following procedure: the
derivatives ∂ log(Δh)/∂ log(Δz) and ∂ log(Δh)/∂ log(Δx) are computed. A rather
good plateau behavior is in general observed at smaller scales below the cut-off
length scale. The correlation function is then fitted over a domain of length scales
ranging from the resolution of the scanning apparatus up to this cut-off length
scale. The vertical resolution of the apparatus has never been observed to be the

Ann. Phys. Fr. 32 • No 1 • 2007



2 Morphology of fracture surfaces revisited 31

10
0

10
1

10
2

10
3

10
−1

10
0

Δz or Δx (nm)

Δh
 (

nm
)

Silica glass

Along the crack       
propagation direction 

Along the crack 
front direction 

10
−2

10
−1

10
0

10
1

10
−1

10
0

Δz or Δx (nm)

Δh
 (

nm
)

Along the crack       
propagation direction 

Along the crack 
front direction 

Quasicrystal

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Δz or Δx (µm)

Δh
 (

µm
)

Along the crack 
front direction 

Along the crack       
propagation direction 

Aluminum alloy 

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

Δz or Δx (mm)

Δh
 (

m
m

)

Along the crack       
propagation direction 

Along the crack 
front direction 

Mortar

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

Δz or Δx (mm)

Δh
 (

m
m

)

Along the crack       
propagation direction 

Along the crack 
front direction 

Wood

Figure 2.5. 1D height–height correlation functions measured parallel to the crack propaga-
tion direction and to the crack front for silica glass, quasicrystals, aluminum alloy, mortar
and wood. The straight lines are power-law fits. The scaling exponents, corresponding to
the slope of these lines, are listed in Table 2.2.
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limiting parameter that prevents a fit on smaller length scales. For the silica glass,
the aluminum alloy and the quasicrystals, the lateral resolution is of the order
of two pixels while it is smaller than one pixel for mortar and wood. This size
sets the lower bound of the power-law fit for each material. This procedure leads
to self-affine domains that are observed to be roughly the same along the z- and
x-axis except for wood which has an anisotropic structure. For this material, the
lower limits are a few tens of μm and a mm along the z- and x-axis, respectively,
and correspond to the dimensions of the wood cell5. The existence of these
length scales creates a lower cut-off for the self-affine domains. It is remarkable
that, despite the strongly anisotropic structure of the wood, the same scaling
exponents as for isotropic materials are measured parallel and perpendicular to
the crack growth direction, even though the length scales involved in these two
directions are different.

As for the surface height along the z-axis, the profiles along the x-axis are
mono-affine: their description requires the use of only one single exponent β.
This has been verified by computing the distribution of height fluctuation, using
the same procedure as in Section 2.

In addition to the scaling exponents, the topothesies in both directions z and
x were also measured. Their values are listed in Table 2.2 for the five materials
studied. Presently, we do not know what select these topothesies. They provide
information on the roughness amplitude. An interpretation of this quantity will
be given in Section 2 of Chapter 4 for another kind of fracture surfaces. In this
chapter, we will only use it because they will allow us to work with dimension-
less quantities in order to compare the roughness properties of fracture surfaces
of different materials irrespective of the various length scales involved in these
experiments.

Scaling behavior along intermediate directions. It is crucial to note that
pure power-law scaling is only observed along the directions x and z parallel
and perpendicular to the crack growth direction. For instance, the 1D correlation
function computed on an aluminum fracture surface along a transverse direction
characterized by an angle of 30◦ with the z-axis is plotted in Figure 2.6. To em-
phasize its peculiar scaling properties, the correlation function computed along
the z- and x-axis are also represented and all three are normalized by Δrβ with
β = 0.57 as measured previously on this surface. As expected,Δh(Δx) correspond-
ing to the x-axis displays a plateau behavior after normalization. Then, Δh(Δz)
corresponding to the z-axis varies following a power-law characterized by the
exponent ζ− β = 0.17 after normalization until a decreasing due to the saturation
of the correlation function observed in Figure 2.2. The behavior of the normalized
correlation function computed along the intermediate direction is more complex:
it remains constant and then scales as a power-law with the same exponent ζ− β.
It means that along this transverse direction, the correlation function follows two

5. The wood cells are oriented along the x-axis because the crack propagates along the longitudinal
direction of the wood.
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Figure 2.6. (Color online) 1D normalized
height–height correlation functions mea-
sured on an aluminum fracture surface for
three directions corresponding to angles of
0◦, 30◦ and 90◦ with the z-axis. The func-
tions are normalized by (Δr)β with β = 0.57.
The straight solid lines correspond to the
power-law behavior with exponent ζ − β =
0.17.

distinct behaviors. At small scales, it evolves as a power-law characterized by the
exponent β and, at larger scales, it evolves as another power-law characterized
by the exponent ζ. We will show in the following that the crossover length scale
between these two regimes increases with the tilt angle, leading to pure scaling
behavior only along the z- and x-axis. Let us note that in Figure 2.6, the anisotropy
of the fracture surface is very clear. This anisotropy is emphasized by the normal-
ization of the correlation function by Δxβ that results in a plateau behavior along
the x-axis and a power-law behavior along the z-axis. In the following, another
method based on 2D measurements will also emphasize the anisotropy.

Application. The intrinsic scaling anisotropy of fracture surfaces suggests a
method to determine the direction of the crack propagation from a post mortem
analysis of the surface of a broken solid, as follows: although intermediate di-
rections θ exhibit a combination of the two scaling behaviors, let’s fit the cor-
responding correlation function in coarse approximation by a single power-law
characterized by an effective exponent H(θ) between β and ζ. In Figure 2.7, the
evolution of the effective exponent is plotted versus the direction of analyze for a
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Figure 2.7. Variation of the effective Hurst ex-
ponent H measured along a direction making an
angle θ with the z-axis. The maximum and min-
imum (at 0◦ and 90◦ respectively) of H coincide
with the z- and x-axis, i.e. the direction of crack
propagation and the direction of the crack front
respectively.
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quasicrystal fracture surface. θ = 0 coincides here with the scanning direction of
the STM tip used to study the surface. The angle θ where H is minimum (resp.
maximum) coincides then with the direction of the crack propagation �ex (resp.
the crack front direction �ez). Using this methodology, it is possible to find the
propagation direction of the crack leading to the fracture surface.

In addition to the previous studies presented here where the propagation
direction of the crack was known a priori, we decided to perform a blind-test of
this technique on fracture surfaces of an AlPdMn quasicrystal. The experiments
were performed by Ebert and co-workers at Jülich in Germany [52, 53] while
we performed the analysis of the fracture surfaces. The aim was to guess the
propagation direction of the crack without knowing a priori the experimental
procedure. These guesses were then sent to Ebert and co-workers that confronted
it with their experimental procedure. We proceeded as follows: two samples
of quasicrystals were cleaved under ultra-vacuum (see Sect. 1 for details). For
each sample, three images of the fracture surface are then recorded through STM
measurement. The scanning direction of the STM tip was chosen in order to scan
along the local minimum apparent slope of the surface to avoid rapid vertical
motion of the tip. Thus, this direction is chosen independently of the propagation
direction of the crack and can change from image to image. They then sent us the
images without providing us with any additional information. We sent them back
our guess for the propagation direction of the crack for each images. Knowing the
experimental procedure, it was possible to show that our proposed propagation
direction for the crack corresponded to an angle of 35◦±5◦with respect to the sides
of the cleavers irrespective to the STM image and so to the scanning direction.
This result is a quite good agreement with what is expected from a cleavage
experiment6. This result validates the method and confirms that the anisotropy
measured on quasicrystal surfaces is not linked to a possible anisotropy induced
by the scanning apparatus.

It is worth mentioning that this technique of analysis of fracture surfaces may
have interesting appraisal application. Applied on various zones of a fracture
surface of a broken structure, this method allows the post mortem determination
of the field of local orientation of crack propagation direction. Therefore, one can
reconstruct the history of the process that led to the failure of a structure. This may
have interesting applications in domains such as aeronautics or civil engineering.
This led us to register a patent [62, 63].

4. Two-dimensional scaling properties of fracture
surfaces

Motivation. The observation of the anisotropy of fracture surfaces raises a
crucial question debated in [33, 64]: is this anisotropy a universal property of the

6. In a cleavage experiment, the crack is expected propagating within a well-defined plane, but along
an a priori unknown direction. However, the same fracture surface is expected to reveal the same crack
propagation direction, irrespective to the scan direction, as it is observed here.
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fracture surface due to a physically relevant underlying phenomenon? Or is it a
simple perturbation of the isotropic case and thus an experimental bias due to the
choice of a particular fracture test configuration?

In this last case, the fracture surface might be described as an isotropic object
with an additional anisotropic perturbation: this would lead to a roughness
exponent that would vary continuously with the direction of analysis without
any remarkable structure. In the former case, the whole anisotropic geometry
of the fracture surface is expected to display universal properties that would
be a signature of an underlying physical phenomenon. The analysis of profiles
extracted along a random directions suggests that they are not self-affine, but
display two distinct scaling behaviors (cf. Fig. 2.6). In order to study in detail
the two-dimensional structure of the fracture surface roughness, the computation
of the 1D correlation function only is not enough. A new approach based on
the analysis of the 2D height–height correlation function Δh(Δ�r ) = 〈(h(�r + Δ�r ) −
h(�r ))2〉1/2

�r
has therefore appeared to be necessary. This analysis should confirm

the anisotropy measured by 1D technique and provides additional information
on the 2D properties of fracture surfaces.

2D height–height correlation function. The observation of two pure scaling
behaviors along the two different directions z and x of the fracture surfaces (see
Sect. 3) suggests that the 2D height–height correlation function defined in the
Cartesian frame (�ez, �ex) could be the appropriate quantity. This function Δh is
defined as:

Δh(Δz, Δx) = 〈[h(z + Δz, x + Δx) − h(x, z)]2〉1/2z,x . (2.4)

The variations of correlation functions ΔhΔx(Δz) corresponding each to a fixed
Δx value are plotted as a function of Δz in Figure 2.8a for an aluminum fracture
surface. For the smallest values of Δx, the correlation function Δh varies as Δzζ

with ζ = 0.74 in perfect agreement with the result obtained for the 1D correlation
function along the z-axis. The other curves corresponding to larger values of Δx
display a plateau regime followed by a power low variation also characterized
by the scaling exponent ζ. The crossover length scale between the two regimes
increases with Δx. More precisely, it varies as Δx1/z while the plateau value varies
as Δxβ. Indeed, by dividing the abscissa by Δx1/z with z = 1.26 and the ordinates
by Δxβ with β = 0.58 as shown in Figure 2.8b, the curves collapse onto a single
master curve characterized by a plateau regime and then a power-law regime
with exponent ζ. The part of the curves that correspond to Δz values larger than
the upper limit of the self-affine domain of the 1D correlation function plotted in
Figure 2.2 does not collapse. The curves corresponding to Δx values that do not
belong to the self affine domain of the 1D correlation function Δh(Δx) does not
collapse either (they are not represented here). In other words, as long as Δx and
Δz values belong to the self-affine domains:

Δh(Δz, Δx) ∼ Δxβ f (Δz/Δx1/z) where f (u) =
{

1 if u� 1
uζ if u� 1 . (2.5)
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Figure 2.8. (Color online) (a) 2D correlation function variations computed on an aluminum
alloy fracture surface. The straight line correspond to a power-law fit with ζ = 0.74. (b) The
data collapse is obtained from equation (2.5) using β = 0.58 and z = 1.26.

The following procedure is then applied to the fracture surface: 2D correlation
functions ΔhΔx(Δz) are computed forΔz andΔx values belonging to the self-affine
domain as measured in Figure 2.5. These functions are represented in the insets
of Figure 2.9 for the five materials studied. The values of β and z that optimize the
collapse of the curves by normalizing the abscissa and the ordinates by Δx1/z and
Δxβ respectively are then computed. It can be seen in the main graphs of Figure 2.5
that a very good collapse is obtained. The resulting master curve is characterized
by a plateau region and followed by a power-law variation of exponent ζ.

The exponents β and z which optimize the collapse, and the ζ exponent de-
termined thereafter by fitting the large scale regime followed by the master curve
are listed in Table 2.3. The three exponents are found to be ζ � 0.76 ± 0.03,

Table 2.3. Scaling exponents measured from the calculation of the 2D correlation function
(see Eq. (2.5)) on fracture surfaces of silica glass, AlPdMn quasicrystal, metallic alloy,
mortar and wood. ζ, β, z and ζ/β are respectively the roughness exponent, the growth
exponent and the dynamic exponent z while the fourth column contains the ratio of ζ to β.
Error bars are computed from the values of the exponents measured on the various local
height maps studied.

ζ β z ζ/β
silica glass 0.77 ± 0.03 0.61 ± 0.04 1.30 ± 0.15 1.26
AlPdMn quasicrystal 0.76 ± 0.03 0.65 ± 0.04 1.20 ± 0.08 1.17
aluminum alloy 0.75 ± 0.03 0.58 ± 0.03 1.26 ± 0.07 1.29
mortar 0.71 ± 0.06 0.59 ± 0.06 1.18 ± 0.15 1.20
wood 0.79 ± 0.05 0.58 ± 0.05 1.25 ± 0.15 1.36
average 0.76 ± 0.03 0.61 ± 0.04 1.23 ± 0.05 1.25
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Figure 2.9. Normalized 2D height–height correlation function variations with Δz for
various values of Δx for silica glass, AlPdMn quasicrystal, aluminum alloy, mortar and
wood. The data collapse was obtained from equation (2.5) using exponents reported in
Table 2.3.
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β � 0.61 ± 0.04 and z � 1.23 ± 0.05, independent of the material and of the crack
growth velocity over the whole range from ultra-slow stress corrosion fracture
propagation (picometer per second) to rapid failure (several meters per second).
They are therefore conjectured to be universal.

Comparing Tables 2.2 and 2.3, one observes that the exponents ζ and β depend
slightly on the method used here (computation of the 1D or 2D correlation func-
tion). The computation of the 2D correlation function involves a larger number
of data and should lead therefore to slightly more accurate values of the scaling
exponents.

The ratio ζ/β, measured from the 2D correlation function, is given in the fourth
column of Table 2.3. It is worth noting that the exponent z satisfies the relation
z = ζ/β. This makes perfectly coherent the 1D and 2D measured scaling properties
of the fracture surfaces as given in equations (2.3) and (2.5).

Finally, the results presented in this paragraph confirm the anisotropies ob-
tained thanks 1D measurements. The best collapse of the curve that can be
obtained under the condition z = 1 (that corresponds to ζ = β, i.e. to an isotropic
surface) is shown in Figure 2.10 for an aluminum fracture surface. It appears
clearly that the best collapse is obtain for z = 1.26 as shown in Figure 2.9.
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Figure 2.10. Normalized 2D height–
height correlation function for an alu-
minum fracture surface under the condi-
tion z = 1 corresponding to an isotropic
surface. The collapse is found clearly bet-
ter if the value z = 1.26 is chosen as in
Figure 2.9. This is an additional proof of
the anisotropy of fracture surfaces.

Crossover function. Let us now look more closely at the crossover function
f (u) involved in the 2D correlation function for the five materials. Its asymptotic
behavior u→ 0 and u→∞was shown to be universal: it exhibits a plateau regime
at small scales and a power-law regime with a scaling exponent ζ � 0.75 at large
scales (see Eq. (2.5)). In order to compare quantitatively the crossover function for
different materials, one needs to define dimensionless variables because the latter
involve length scales that depend crucially on the material considered. Using the
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topothesies �z and �x defined in equation (2.3), the 2D correlation function can be
rewritten:

Δh(Δz, Δx) = �x

(
Δx
�x

)β
f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
�z

�x

)1/ζ
(
Δz
�z

)
(
Δx
�x

)1/z
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where f (u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u� 1

uζ if u� 1
.

(2.6)
In other words, introducing the topothesies allows to replace all the signs ∼ by
signs =, and consequently to qualitatively compare the structure functions mea-
sured in the various materials. Assuming that the scaling properties of the 2D
correlation function given in equation (2.5) are satisfied, the form given in equa-
tion (2.6) is the only one compatible with the definition of the topothesies given
in equation (2.3). For various values of Δz and Δx, f = Δh/(�x Δx/�x) is plotted in
Figure 2.11 as a function of the dimensionless variable u = (�z/�x)1/ζ (Δz/�z)

(Δx/�x)1/z using
the values of the topothesies listed in Table 2.2 and the exponents ζ = 0.76 and
z = 1.23 corresponding to the mean of the exponents measured on the various
materials. f has been plotted for silica glass, quasicrystal, aluminum alloy and
mortar fracture surfaces. The crossover function is observed to be independent of
the material, not only in the plateau and power-law corresponding to u � 1 and
u� 1, but also in the crossover domain, i.e. for u ∼ 1. The crossover function cal-
culated on the wood fracture surface is not represented in Figure 2.11. Its shape is
observed to be slightly different in the crossover domain. The highly anisotropic
microstructure of the wood may account for this observation.
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Figure 2.11. (Color online) Scaling
function f involved in equation (2.6)
and measured on four different ma-
terials.
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5. Physical interpretation

In this section, we give the physical interpretation of the very specific 2D scaling
properties of fracture surfaces. In particular, we will show a new representation
of the 2D correlation function (represented in Fig. 2.9) that reveals more clearly
the physical meaning of its scaling (given in Eq. (2.5)). This will lead us to give the
physical sense of the second “universal” exponent measured on fracture surfaces,
i.e. the exponent z � 1.2. The implication of the 2D scaling properties of fracture
surfaces on the models of failure will then be discussed.

Family–Vicsek scaling of fracture surfaces. At first, let us return to the
shape of the 2D height–height correlation function. Figure 2.12a displays a color
scale representation of Δh in the (Δz, Δx) plane for the fractured aluminum alloy
surface. The function Δh is normalized by Δxβ and logarithmic scales are used to
emphasize the anisotropy of the power-law scaling. This representation clearly
demonstrates two distinct behaviors of the 2D correlation function depending on
the orientation of the vector �AB of components (Δz, Δx).
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Figure 2.12. (Color online) (a) 2D representation of the height–height correlation function
for an aluminum fracture surface (Δh is normalized by Δxβ with β = 0.58). (b) Domains of
different types of variation of the height–height correlation function in the (Δz, Δx) plane.
The grey zone corresponds to a height–height correlation function varying as Δh ∝ Δxβ.

If �AB lies within the grey region in Figure 2.12b (corresponding to the blue do-
main in Fig. 2.12a), the 2D correlation function scales as Δxβ and does not depend
on Δz. In formula (2.5), this correspond to the regime where u = Δz/Δx1/z � 1,
and so f (u) = 1. The straight boundaries of this domain in these logarithmic
coordinates indicate that its width ξ (Fig. 2.12b) increases following a power-law
ξ ∝ Δx1/z where z � 1.2. In other words, from any given point A of the fracture
surface, a domain where the 2D correlation function scales as Δxβ develops over
a width Δz = ξ increasing as Δx1/z (the crack propagates parallel to x). Outside
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2 Morphology of fracture surfaces revisited 41

of this domain, the 2D correlation function depends only on Δz. In formula (2.5),
this corresponds to the regime where u = Δz/Δx1/z � 1, and so f (u) = uζ.

Considering now the simple following scenario, we give the physical meaning
of the development of this correlation domain (represented in grey in Fig. 2.12b)
from any point of the fracture surface: let’s consider a line, a straight crack front,
propagating in a 3D space. The fracture surface is then the successive positions of
the crack line. For the sake of simplicity, a constant crack velocity will be assumed,
x and t being thus proportional. Let’s assume that the front is perturbed at a given
point A inducing a local out-of-plane displacement (along h, perturbation that will
be then observed on the fracture surface) at time t = 0. In agreement with the
experimental observation of the development of a correlation cone in front of
any point of the fracture surface, this perturbation will have repercussions on the
resulting fracture surface in a zone of width (Δx)1/z where Δx is the distance to
the point A, as represented in Figure 2.12. This can be simply understood by
considering that the information represented by the perturbation can propagate
along the crack line as the crack propagates. More precisely, the information will
propagate overΔz ∼ t1/z along the crack line during time t leading to a correlation
domain Δz ∼ Δx1/z since t is proportional to Δx.

This anomalous “diffusion” like process — very different from the classical
diffusion process for which Δz ∼ √t — along a line has been widely studied
theoretically and referred to as kinetic roughening processes [65]. The latter
appears for example when an elastic line (of minimal energy when it is straight)
is perturbed by an external disorder which roughens its profile. The competition
between these two antagonist effects can be described in the theoretical framework
of an elastic manifold driven in a random medium. The transient roughening
development of a line h(z, t) starting from an initially straight line h(z, t = 0) = 0 is
generally studied. It is characterized by a 1D height–height correlation function
Δh(Δz, t) scaling as [65]:

Δh(Δz, t) = tβg(Δz/t1/z) where g(u) ∼
⎧⎪⎪⎨⎪⎪⎩

uζ if u� 1

1 if u� 1
(2.7)

where ζ, β and z refer to the roughness, growth and dynamic exponents respec-
tively. Signature of this roughening scaling can also be found in the steady state
regime reached at long times when the mean roughness of the line remains con-
stant even though it fluctuates. In this regime, the 2D height–height correlation
function Δh(Δz, t) is expected to scale as [38, 39]:

Δh(Δz, Δt) = Δtβ f (Δz/Δt1/z) where f (u) ∼
⎧⎪⎪⎨⎪⎪⎩

1 if u� 1

uζ if u� 1
(2.8)

which is exactly the scaling law (2.5) followed by the experimental surfaces after
the time t has been replaced by coordinate x parallel to the crack propagation. This
so called Family–Vicsek scaling [66], provides a rather strong argument in favor
of models like [36, 41, 67, 68] that describe the fracture surface as a juxtaposition
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of successive positions of the crack front — modeled as a pseudo elastic line —
moving through materials with randomly distributed local toughness. In this
scenario, the Hurst exponents ζ � 0.75 and β � 0.6 measured along the crack
front direction and the crack propagation direction respectively coincide with
the roughness and the growth exponents as defined within the framework of
elastic string models [65]. Let us note moreover that in such models, the dynamic
exponent z is expected to be related to ζ and β through z = ζ/β [66]. This leads to
a value of z = 1.2 in perfect agreement with the value measured experimentally.

Physical meaning of the scaling exponents. Finally, we can give the physi-
cal meaning of these three exponents: the roughness exponent ζ � 0.75 character-
izes the geometry of the fracture surface perpendicularly to the crack propagation
direction. It provides information on the static geometrical properties of the crack
front. The second independent exponent z � 1.2 characterizes the way a relief on
the crack front “diffuses” along the line when it propagates in the material. On
a general manner, the exponent z provides information on the dynamical prop-
erties of the elastic line in motion. However, we will see in Chapter 4 that this
dynamical exponent z measured on the fracture surface gives no hint on the local
velocities of a crack front propagating in a solid. To be more precise, we will
show in Section 1 of Chapter 4 that the properties of the fracture surface — the
trajectory of the crack front — and its dynamical properties — its local velocity
— are two independent problems. Finally, the third exponent, β = ζ/z � 0.6,
characterizes the fracture surface morphology along the direction of propagation.
The value of these experimental scaling exponents as well as the universal shape
of the crossover function will be crucial in the following to discriminate between
the various models of crack propagation.

Implications on the models of fracture. Let us discuss now the implications
of the two-dimensional scaling of fracture surfaces on the various models of
fracture suggested in the literature. The observation of the Family–Vicsek scaling
for all the fracture surfaces investigated represents a rather strong argument in
favor of two of the four classes of models put forward to explain the fracture
surface morphology and reviewed in Section 2. For the kind of models published
in reference [46] and referred as (iv) in this section, fracture surfaces are suggested
to result from a damage coalescence process. Whenever no crack front can be
defined, the fracture surface is expected to be isotropic. As proposed in [64], a
slight anisotropy could however be observed, but it would be induced by possible
geometrical constraints and would not reflect an underlying relevant physical
phenomenon7. In other words, the fracture surfaces resulting from this kind
of models would not display Family–Vicsek scaling. For the models published
in references [42, 43] and referred as (iii) in Section 2, this question has not been

7. In a similar way, turbulence which is an intrinsically isotropic process has been observed to display
slight anisotropic properties in experiments where boundary conditions favored a particular direction.
But this anisotropy is not characterized by a Family–Vicsek scaling.
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directly addressed yet. But to our knowledge, none of the simulations of failure in
3D bond networks led either to anisotropic surfaces or to Family–Vicsek scaling.
In the types of models published in references [36,40,41,68], and referred as (i) and
(ii) in Section 2, cavities and microcracks — that are allowed in the other models
— are neglected and the path followed by the crack front through the defects
of the material is suggested to explain the full fracture surface morphology. In
that case, fracture surfaces are expected to be anisotropic and characterized by
a Family–Vicsek scaling. Even though damage cannot be neglected to explain
the scaling of fracture surfaces reported here (see Chap. 4), the observation of
a Family–Vicsek scaling irrespective of the various materials studied and the
various geometries used suggests that the latter approach is more suitable to
reproduce our experimental observations. In other words, the two-dimensional
scaling of fracture surfaces bring a strong argument in favor of models (i) and (ii).

Another remarkable property of fracture surfaces will help us to identify the
relevant theoretical approach to describe failure of disordered materials: silica
glass fracture surfaces obtained from a broad range of crack growth velocities in
the quasi-static regime limit (from 10−12 m s−1 to 100 m s−1) have been investi-
gated. No influence of the velocity on the value of the scaling exponents has been
observed. We will see in Chapter 4 that only the upper cut-off length is influ-
enced by the crack growth velocity. This experimental observation questions the
scenario proposed in reference [36] and referred to model (i) in Section 2. In these
studies, the roughness of fracture surfaces is interpreted as resulting from a pin-
ning/depinning transition of the crack front within the microstructural obstacles
of the material. In these models, two kinds of scaling exponents were predicted:
at small scales, ζquenched was expected to result from a quenched noise due to the
microstructural obstacles present in the material whereas at larger scales, ζthermal
was expected to result from an effective thermal noise induced by the finite crack
growth velocity as predicted in pinning/depinning models [39]. The crossover
length between both regimes is also expected to increase with the crack growth
velocity. This was observed on TiAl3 based metallic alloy fracture surface as well
as for soda-lime glass [22] where ζquenched was measured to be of the order of 0.5
and ζthermal � 0.8 at small and large scales respectively. In this present work, no
influence of the crack growth velocity was observed in a very broad range of crack
growth velocity (14 decades) on another amorphous material. This questions the
universality of such observations and the validity of the pinning/depinning sce-
nario. The observation of a self-affine regime characterized by ζ � 0.8 until the
atomic scale on fractured quasicrystal surfaces is an additional argument that
questions the existence of a second universal small roughness exponent at small
scales on fracture surfaces.

The observation of (i) the Family–Vicsek scaling of fracture surfaces and (ii)
the robustness of their scaling properties with respect to the crack growth ve-
locity has brought precious information on the relevant theoretical approach: to
describe failure in disordered materials, pinning/depinning scenarios and dam-
age coalescence processes appears limited. At the opposite, models based on the
Linear Elastic Fracture Mechanics and that describe crack surfaces as solution of

Ann. Phys. Fr. 32 • No 1 • 2007



44 Crack propagation in disordered materials: how to decipher fracture surfaces

a Langevin equation [40,41] reproduce these two properties. Unfortunately, they
do not lead to the experimental value of the scaling exponents. We will explain
the reasons of this discrepancy in Chapter 4 and will propose an alternative model
leading to their correct value.

6. Concluding remarks

In this chapter, the statistical properties of five very different fracture surfaces
have been investigated. The main experimental results can be summed up as
follows:

(i) profiles parallel and perpendicular to the crack growth direction are self-
affine, in fact they are perfectly mono-affine. They are fully described by
the value of their self-affine exponent: ζ = 0.76 ± 0.04 and β = 0.61 ± 0.04
in the crack front direction and the crack growth direction respectively. The
value of these exponents depends very weakly on the material, the crack
growth velocity, the loading conditions and the fracture test geometry in the
experimental ranges studied. Their value is conjectured to be universal;

(ii) in all the experimental cases studied, the 2D height–height correlation func-
tion computed in the set of coordinates parallel to the crack front and the
propagation directions follow a specific shape given by equation (2.5) re-
ferred to as Family–Vicsek scaling. Among other implications, this scaling
implies that profiles extracted along a direction that is neither the crack front
direction nor the crack propagation direction are not self-affine;

(iii) the various scaling properties of the correlation function are universal: the
three scaling exponents and the crossover function (if the material has an
isotropic microstructure) do not depend on the three following parameter:
the material, the crack velocity and the geometry of the fracture test;

(iv) these properties of fracture surfaces have led us to identify the relevant
approach for future theoretical investigations of crack propagation in dis-
ordered materials (a model based on the Linear Elastic Fracture Mechan-
ics describing the toughness of the disordered material as an uncorrelated
noise as in Refs. [40, 41]; see Chap. 4) and to eliminate other ones (pin-
ning/depinning transition [22, 36], damage coalescence process [46]). It is
worth noting that weakly disordered materials have been studied here. Fail-
ure of strongly disordered materials could lead to a different fracture surface
morphology with, in particular, isotropic properties. Let us note also that,
without the presence of a notch used in all our experimental situations,
damage spreading would have been larger. In these other cases, a damage
coalescence approach could capture the whole physics of the failure process
as suggested by Hansen and Schmittbuhl [46] and anisotropic geometri-
cal conditions could induce a slightly non-universal anisotropy of fracture
surfaces as predicted in reference [64] by Bouchbinder, Procaccia and Sela.
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While our analysis have mainly focus on the universal properties of fracture
surfaces, an important feature of their morphology has been shown to depend
crucially of the nature of the material: the upper bound of the self-affine domain8.
Indeed, it was observed to vary from some nanometers in quasicrystal or silica
glass to some millimeters in mortar and wood. The mechanisms that set this length
scale will be investigated in the following. This material dependent length scale
will be proved to be crucial to capture the physics of fracture of heterogeneous
materials.

But at first, we investigate in the following chapter the scaling properties
of fractured porous materials for which a surprisingly low roughness exponent
ζ � 0.4−0.5 has been recently reported [2, 35].

8. The lower bound of the self-affine domain has not been studied. Indeed, we were in most cases
limited by the resolution of the scanning technique. However, for the STM images (atomic resolution)
of fracture surfaces of quasicrystal, self-affine behavior of the roughness were observed down to the
atomic scale. This suggests that in the general case, self-affine behavior with exponents {ζ � 0.75; β �
0.6} exists down the atomic scale.
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3
Low roughness exponents of fractured

porous material surfaces

In the previous chapter, morphology of fracture surfaces has been studied. It
was observed that their scaling properties can be described by two independent
“universal” scaling exponents ζ = 0.76 ± 0.03 and z = 1.23 ± 0.05. But somehow,
the robustness of their scaling behavior makes difficult the investigation of its
physical origin. However, in a recent study, Boffa et al. reported in reference [2]
a surprisingly low roughness exponent ζ � 0.45 on fractured sandstone surfaces.
Understanding why sandstone surfaces display such a scaling and why the other
materials studied in Chapter 2 display another one is a quite interesting chal-
lenge: it would certainly help us to identify the physical origin of their self-affine
geometry.

The observation of a low exponent on sandstone surfaces was interpreted as
a signature of the intergranular propagation of the crack between the cemented
grains that composed it. On the other hand, a transgranular rupture was sug-
gested to lead to ζ � 0.75 [2]. To test this scenario, we will study artificial
sandstone obtained by sintering glass beads and referred to as glass ceramics.
Despite the wide range of porosities investigated — from 3% to 26% —, fracture
surfaces have been observed to display the same scaling properties, characterized
by the roughness exponent ζ = 0.40± 0.03 — perpendicularly to the crack growth
direction. At the opposite, the amplitude of the roughness varies considerably
with the porosity φ: it is observed to be roughly proportional to φ. We will show
that this result leads to the conclusion that the fracture mode in glass ceramics
with low porosity is transgranular while a high porosity implies an intergranular
fracture, without, however, any effect on the value of the roughness exponent. In
addition to the broad range of porosities investigated, two sets of bead diame-
ter and various crack growth velocities have been studied to determine to what
extent this apparent “second class” of fracture surfaces with ζ � 0.4 is robust to
system changes. Finally, following the same approach than in Chapter 2, we will
study the two-dimensional scaling properties of fracture surfaces of glass ceram-
ics. They are also observed to be anisotropic, but characterized by two different
“universal” scaling exponents ζ = 0.40±0.03 and β = 0.48±0.05 — corresponding
to the crack front and the crack growth direction, respectively.
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In the following section, the geometry of fractured sandstone surfaces are
studied. Their scaling properties are observed to be quite similar to those of glass
ceramics. On the other hand, the influence of sample width is systematically
studied. We observe that only the upper bound of the self-affine domain is
changing. The latter increases linearly with the sample width L and the roughness
at this scale evolves as Lζ with ζ � 0.4. For the very first time, fracture surfaces
are observed to display a perfect Family–Vicsek scaling when the width of the
system is changing. In other words, the so-called anomalous scaling that refers
to the existence of two different roughness exponents — one for the scaling of the
roughness with the system size and one for the local properties of the roughness
of one sample — is found to be irrelevant for describing our system.

For the two materials, the approach is therefore the following: at first, we
analyze the 1D self-affine properties of their fracture surfaces. In particular, pos-
sible multiscaling is investigated through the analysis of the distribution of height
fluctuations. Then, the effects of the microstructure and the system size on the
self-affine domain are systematically studied. Finally, the 2D height correlations
are investigated in order to reveal the anisotropy of fracture surfaces.

1. Materials and methods

Preparation of fracture surfaces of glass ceramics. First, fracture surfaces
of an artificial material comparable to sandstone, glass ceramics made of sintered
glass beads, are studied. The synthesis as well as the characterization of the
samples of glass ceramics have been performed by P. Vié (LCPC, Marne la Vallée).
The glass ceramics are prepared by heating a mold filled with glass beads. Two
series of beads are used: beads with diameters ranging from 104 to 128 μm and
beads with diameters 50−65 μm. The beads are made of a soda-lime glass mainly
composed of SiO2, Na2O and CaO represented at 73%, 14% and 8% respectively.
The mold is then heated at 700 ◦C during a defined duration ranging from 20 to
200 minutes. This duration sets the porosity φ that can be tuned from 3% to 26%.
In the following, the characteristic microscopic length scale d is taken equal to the
mean bead diameter. The open porosity is measured by saturating the sample
with water and the profile of the total porosity (open+ closed) along the sample is
measured by gamma-ray absorption1. Porosity variations along the samples are
measured to be of the order of 1% so that φ may be considered as constant and
equal to the mean value within ±1%. This process produces cylinders of glass
ceramics of radius and height equal to 40 mm and 130 mm, respectively. The
samples used in the fracture tests are cut out from this cylinder.

1. The open porosity of a material is made of the pores that are connected to a free surface by
connections with the other pores so that the open porosity can be measured by saturating the material
of water. The close porosity is made of the pores that are not connected to a free surface. The total
porosity is defined as the sum of the open and close porosity.
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Two kinds of mode I fracture tests were performed. Some of these tests were
performed in the laboratory of structural engineering at the federal university of
Rio de Janeiro in collaboration with E. Fairbairn and R. Toledo and the others in
Laboratoire de rhélogie du Bois at Bordeaux in collaboration with S. Morel and
G. Mourot. Fast fracture propagations are generated through modified Brazilian
fracture tests: a uniaxial compressive load is applied to an annular specimen of
inner and outer radii equal to 15 mm and 40 mm, respectively, and width equal
to 20 mm. Two symmetrical cracks are then initiated. They propagate from the
inside toward the outside where the compressive forces are applied. A picture of
the samples used in the experiments is shown in Figure 3.1.

Figure 3.1. Two samples that have been used to generate fracture surfaces of glass ceramics:
modified Brazilian test geometry that leads to rapid mode I fracture (left) and modified
Tapered Double Cantilever Beam geometry that leads to stable mode I fracture (right). The
outside diameter of the annular sample is 80 mm.

Quasistatic fracture propagations are generated using modified Tapered Dou-
ble Cantilever Beam (TDCB) samples. A typical sample is shown in Figure 3.1.
The fracture is initiated from a straight notch (thickness 1 mm) by applying on
both sides a uniaxial tension with a constant opening rate: the tapered shape of
these specimens results in a stable mode I crack growth (see Ref. [69]). 2D finite
element calculations were performed to determine both the stress intensity factor
and the compliance variations for various specimen dimensions. Therefore, it
was possible to choose the dimensions of the samples to get a nearly constant
crack growth velocity on the first 20 mm: in particular, their height and length are
respectively 20 mm (perpendicular to the crack propagation) and 60 mm (parallel
to it). Their width along the crack front direction is 20 mm. The crack propagation
velocity vcrack is determined from the variations of the electrical resistance of a
thin gold layer deposited on the side of the sample. As expected, vcrack has been
observed to remain fairly constant during the propagation. Crack growth veloc-
ity ranging from 50 μm s−1 to 40 mm s−1 were obtained by varying the opening
rate of the testing machine. A force sensor measures the applied loading. The
experimental setup used for the quasistatic fracture tests is shown in Figure 3.2.
The mechanical parameters that have been measured during the fracture tests are
analyzed in Annexe A.
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Figure 3.2. Experimental setup used
to perform the quasistatic fracture
tests.

Typical 1D profiles of fracture for three samples with three different porosities
are displayed in Figure 3.3. The roughness amplitude increases by almost two
orders of magnitude from �1 μm when φ = 3% up to �100 μm when φ =
26%: different profilometers are therefore necessary to scan all the samples. For
surfaces with very low rms roughness — and at the same time porosity — we
use an interferometric optical profilometer2 (TMTalysurf CCI 6000) with a vertical
resolution better than 0.1 nm and a lateral resolution �1 μm. Unfortunately, such
an interferometric optical profilometer remains confined to very smooth surfaces,
with local slope smaller than 5%. In practice, the fracture surfaces are too rough
for such an interferometric technique when the porosity is larger than 7%. We then
use a mechanical stylus profilometer (TMTalysurf Intra) with respective vertical
and lateral resolutions �10 nm and �2 μm. For lower porosities (φ < 7%), both
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Figure 3.3. Height profiles extracted
from fracture surfaces of three sintered
glasses with three different porosities
but with beads with the same diameter
104−128 μm.

2. These scans were realized at Taylor Hobson with C. Buisson.
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profilometers are usable (although the mechanical one has a poorer resolution)
which allowed to check the consistency of the two measurements. For both
profilometers the maps contain 1024 × 1024 points and the fields of view are
respectively 3 × 3 and 6 × 6 mm. In the second technique, the stylus remains
in contact with the surface and, for porosities higher than 18%, it often gets
jammed into the deepest asperities of the surface. One then uses a point by point
mechanical profilometer. A sensor tip is lowered until it touches the surface
in order to measure its height; the tip is then raised by 200 μm before getting
moved laterally by 25 μm to the next measurement point. The vertical and the
lateral resolutions are respectively�3 μm and �10 μm. The typical field of view is
8×8 mm. The consistency of the measurements was verified by comparing profiles
provided by the two mechanical systems for φ = 18%. The scanning technique
used for each porosity is listed in Table 3.2. These measurements provide 3D maps
of the surface and thus surface elevation profiles of the type shown in Figure 3.3.

Preparation of fracture surfaces in sandstones. Fracture surfaces of a nat-
ural sandstone are also analyzed. Mode I fracture tests have been performed on
samples cut out from the same block of Fontainebleau sandstone. The latter is
characterized by the distribution of grain diameter plotted in Figure 3.4a. It was
possible to measure its granulometry after that a small piece of the block has been
crushed. The mean grain size is d � 240 μm. The porosity of the sandstone is
measured from SEM images performed on thin strips of sandstone. A typical
example of these images is represented in Figure 3.4b. We measureφ = 10%±1%.
Its grain composition measured through X-ray is quartz at 99%.

Fracture surfaces are induced by fast growing cracks, using a modified Brazil-
ian fracture test (inner and outer radii equal to 13 mm and 50 mm respectively)
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Figure 3.4. (a) Diameter distribution of grains composing the sandstone. The mean grain
size is d � 240 μm; (b) typical example of SEM images of thin strip of sandstone. The
analysis of various images corresponding to different zones of the sandstone block leads
to a mean porosity φ = 10%.
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Table 3.1. Elevation maps recorded on fracture surfaces of sandstone with various sample
widths L. For each scan of the surfaces, the pixel size dz × dx as well as the pixels number
nz × nx of the scan are given.

Sample L dz (μm) dx (μm) nz nx

� 1 8 mm 25 250 272 133
� 1 8 mm 50 500 95 45
� 2 14 mm 50 250 263 136
� 2 14 mm 25 526 1
� 3 26 mm 100 100 248 252
� 3 26 mm 25 25 972 8
� 4 52 mm 50 1000 1007 30
� 4 52 mm 25 1991 1

in the same spirit as the tests performed on glass ceramics (see preceeding
paragraph). Samples of width ranging from 7.8 mm to 52 mm are studied. One
uses then the point by point mechanical profilometer previously used to scan the
fracture surfaces of glass ceramics with large porosities.

For each sample, the fracture surface is scanned twice: first, a height map
of the whole fracture surface (L × 37 mm) is recorded. The pixel size dz × dx —
the distance between two successive points of the scan along the z- and x-axis
respectively — as well as the size nz × nx of the scan (in number of points) are
listed in Table 3.1. Moreover, a small part — generally one profile — of the surface
is also scanned with a smaller pixel size (see Tab. 3.1). Therefore, it is possible to
test the robustness of our analysis by studying height maps with different sizes.
To avoid any influence of the transient roughening regime, only the part of the
surface far enough from the initiation (some millimeters) is then analyzed. The
full procedure is described in Section 3 in this chapter. A typical snapshot of a
fractured sandstone surface corresponding to a specimen width of L = 26 mm
is shown in Figure 3.5. The in-plane (along x and z) and out-of-plane (along h)
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Figure 3.5. (Color online) Topographic
image of a fractured sandstone surface.
The x-axis and z-axis correspond to the
crack propagation direction and to the
crack front direction, respectively.
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length scales of the largest features observed on this surface are of the order of
5 mm and 300 μm respectively.

2. Fracture surfaces of glass ceramics

In a recent study [2], fracture surfaces of sandstone were observed to display a
roughness exponent ζ � 0.45 remarkably lower than the “universal” exponent
ζ � 0.75 (see Chap. 2). In this section, we study the fracture surfaces of an
artificial sandstone, glass ceramics. This study is motivated by two main reasons:
(i) we will test the scenario proposed in reference [2] for which the low roughness
exponent observed for sandstone samples is a signature of their intergranular
mode of rupture. This point will be discussed in Section 3 where a transition
from trans to intergranular failure mode when φ is increasing will be observed,
without, however, any effect on the value of the roughness exponent. (ii) We
study materials with slightly different microstructures compared to sandstone. In
other words, we test the robustness of the observations reported by Boffa et al. in
an artificial material, glass ceramics, which is also made of cemented grains, but
with a microstructure that can be tuned experimentally. In particular, both the
porosity and the grain size can be chosen independently, so that their influence
on the morphology of fracture surfaces can be characterized.

One-dimensional scaling properties. Figure 3.6 displays the variations of
the 1D correlation function Δh(Δz) as a function of Δz in logarithmic scales for
several samples with different porosities ranging from 3% to 26%. They have
been fractured either quasistatically (vcrack ranging from 50 μm s−1 to 40 mm s−1)
mode or after a fast crack propagation (vcrack of the order of �1 m s−1). The
curves correspond to an average ofΔh(Δz) over profiles corresponding to different
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Figure 3.6. Log-log representation
of Δh (averaged over profiles at dif-
ferent x values) as a function of Δz
for surface roughness profiles of sev-
eral sintered glass samples. Sam-
ples fractured using the TDCB test
with porosities φ = 7% (×), 15% (�)
and 26% (+). Samples fractured us-
ing the Brazilian test with porosities
φ = 3% (◦) and 25% (♦). Range of
bead diameters used to realize sam-
ples: 104−128 μm. Straight lines:
linear fits with slope ζ (Tab. 3.2).
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distances x to the initiation and lying within the region where the statistics of the
roughness is stationary.

Let us examine, for instance, the lowest curve corresponding to a 3% porosity
sample fractured using the modified Brazilian test procedure. The variation
can clearly not be fitted by a single power-law over the full range of Δz values
investigated: three domains of variation are visible and correspond to exponents
respectively equal to 1, 0.36 and 0 (straight lines). The last value indicates that
the surface appears as a plane at large length scales and the first one reflects the
Euclidean geometry of individual grains. The surface profile is therefore self-
affine (here with an exponent ζ = 0.36) only in the intermediate domain between
two limiting length scales: in the log-log plot of Figure 3.6, these boundaries
correspond to the intersections between the straight lines fitted in the different
domains. The lower boundary is of the order of the bead radius d/2 and the upper
one is referred to as L⊥c .

This result is generalized by comparing the different curves in Figure 3.6 cor-
responding to samples of various porosities and fractured both in the quasistatic
and fast propagation modes. All the curves have the same general shape and,
in logarithmic coordinates, their slopes are nearly the same in the intermediate
domain: this shows that the roughness exponent is very similar in all cases while
the vertical shift between the curves reflects different roughness amplitudes.

The numerical values of the parameters characterizing all these curves are
listed in Table 3.2 for all samples investigated in the present work. Table 3.2
confirms that ζ has a very similar value ζ = 0.40±0.04 for all samples independent
of the bead size, of the porosity and of the crack propagation velocity: this common
value is much lower that the value 0.75 reported for many materials and closer to

Table 3.2. Physical and statistical characteristics of the glass ceramics; (φ) sample porosity;
glass beads diameter range (B.D.1) 104−128μm, (B.D.2) 50−65μm; crack propagation mode
(Rap.) rapid, (Q.S.) quasi-static; (Tech.) surface measurement technique (1) interferometric,
(2) stylus profilometer (3) point by point. Statistical characteristic parameters of 1D profiles
normal to crack propagation (ζ , ζFT) self-affine exponent values obtained respectively
from the variation of Δh with Δz and from the Fourier power spectrum; (Δh(d)) roughness
amplitude in μm; (L⊥c ) upper boundary of self-affine domain along the z-axis in mm.

φ = 3% φ = 7% φ = 15% φ = 18% φ = 25% φ = 26% Average value
B.D.1 B.D.1 B.D.1 B.D.2 B.D.1 B.D.1
Dyn. Q.S. Q.S. Dyn. Dyn. Q.S.

Tech. 1−2 2 3 2−3 3 3
ζ 0.36 0.43 0.43 0.40 0.39 0.39 0.40 ± 0.03
ζFT 0.38 0.44 0.38 0.37 0.39 0.39 0.39 ± 0.02
β 0.43 0.48 0.51 0.43 0.42 0.45 0.46 ± 0.03
ζ2D 0.42 0.41 0.37 0.36 0.36 0.42 0.40 ± 0.03
β2D 0.44 0.52 0.53 0.42 0.46 0.51 0.49 ± 0.04
z 0.91 0.79 0.73 0.84 0.76 0.83 0.81 ± 0.06
Δh(d) 3.3 7.9 32 15 54 44
L⊥c 1.1 1.9 2.4 0.8 1.1 1.6
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the value 0.45 obtained for sandstone in Section 4, in this chapter. This result is
robust with respect to the method used to determine ζ as shown by the comparison
with the values ζFT in Table 3.2 obtained from the analysis of power spectra [57].
The upper boundary L⊥c of the self-affine domain is of the order of 1 mm for
toroidal samples, i.e. a twentieth of the sample width. The variation of the upper
limit of the self-affine domain as a function of the sample width is systematically
studied in Section 4 for sandstone. The ratio of the cut-off length over the width is
found to be slightly larger for the TDCB geometry, of the order of a tenth. Finally,
let us note that the roughness amplitude Δh(d) depends strongly on the porosity.
This will be quantitatively analyzed in Section 3.

Statistics of height variations. In order to analyze further the geometry of
the profiles, we shall now focus on the distribution of height variation P(Δh).
This distribution is computed at various scales Δz and Δx parallel to the crack
front (z-axis) and to the crack growth (x-axis) respectively. After normalization,
the distributions ΔzζP(Δh/Δzζ) and ΔxβP(Δh/Δxβ)) collapse on the same curve
shown in Figures 3.7a and 3.7b. In other words, the profiles studied do not exhibit
multiscaling and one scaling exponent (ζ = 0.39 or β = 0.45 in the present case
depending on the direction investigated) is enough to describe the statistics of
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Figure 3.7. (Color online) Normalized distributions of height variations on a fracture
surface of glassy ceramics with a porosity φ = 26% in a semi-logarithmic representation
for profiles parallel (a) to the crack front and (b) to the crack propagation forΔz (respectively
Δx) equal to 200 μm (blue), 400 μm (red) 700 μm (green) and 1.1 mm (cyan). The master
curves obtained with ζ = 0.39 and �z = 23 μm (resp. β = 0.45 and �x = 21 μm) along the
z-axis (resp. the x-axis) are found to be Gaussian distributions p(x) = 1/

√
2πe−x2/2 (dashed

line). The variations of the 1D correlation functions, i.e. the standard deviation of the
distributions, are shown in the inset. The dashed lines are power-law fits from which the
values of ζ, β, �z and �x are determined.
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the variations of height. These exponents can be calculated by normalizing these
distributions to get a collapse but also from the power-law variation of any of
their moment. For example, the variations of the square root of the second order
moment referred to as the 1D correlation functions Δh(Δz) and Δh(Δx) are shown
in the insets of Figures 3.7a and 3.7b along the z-axis and x-axis respectively.
The fit of these variations as a power-law leads also to the values ζ = 0.39 and
β = 0.45. The scaling exponents measured through this second technique are
listed in Table 3.2 for various samples: the exponent β = 0.46 ± 0.03 is found
systematically larger than the other one ζ = 0.40± 0.03 irrespective of the sample
porosity, its bead diameter as well as the crack growth velocity. However, and in
spite of different scaling properties, profiles parallel to the z- and x-axis display
both Gaussian distributed height variations.

Two-dimensional structure. To capture the physical origin of this anisotropic
scaling, one suggests to study in detail the two-dimensional structure of the glass
ceramics fracture surfaces. The appropriate statistical tool is the 2D height–height
correlation function Δh(Δz, Δx) defined in formula (2.4) as the typical difference
of height3 between two points separated by the distance Δz and Δx along the
crack front and the crack growth direction respectively. Figure 3.8 displays the
variations of the normalized function ΔhΔx/Δxβ2D as a function of the normalized
variable Δz/Δx1/z for different values of Δx. All curves collapse onto a single
master curve with a plateau behavior at small distances and then a power-law
variation. In other words, the scaling of the correlation function can be described
by equation (2.5) referred to as a Family–Vicsek scaling [66]:

Δh(Δz, Δx) ∼ Δxβ2D f (Δz/Δx1/z) where f (u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u� 1

uζ2D if u� 1
. (3.1)

The set of scaling exponents used to obtain the collapse of the curves is β2D � 0.5
and z � 0.8 and the exponent of the power-law behavior of the collapsing curve is
ζ2D � 0.4. Their numerical value obtained for each sample investigated is listed
in Table 3.2: this indicates that the two-dimensional scaling properties depend
very weakly on the microstructural properties of the glassy ceramics.

These results are in agreement with the values of the scaling exponents ζ and
β obtained from the scaling of the 1D correlation function. Letting Δz tend to zero
in equation (3.1) leads to Δh ∼ Δxβ2D so that β2D = β is expected. Letting Δx tend
to zero in formula (3.1), one obtains Δh ∼ Δxβ2D−ζ2D/zΔzζ2D so that, in addition
β2D = β and z = ζ2D/β2D. The last column of Table 3.2 giving the mean value of
the various scaling exponents confirms that these relations are respected.

3. The typical difference of height is defined here as the square root of the second order moment
of the distribution P(Δh) of the variations of height between two points of the surface separated by
the distance Δz along the z-axis and Δx along the x-axis. With this definition, Δh(Δz, Δx = 0) and
Δh(Δz = 0, Δx) coincide with the 1D correlation function computed along the z-axis and the x-axis
respectively.
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Figure 3.8. The inset dis-
plays the 1D correlation func-
tions computed along the
crack front direction (◦) and
the crack propagation direc-
tion (+). The main panel
shows the 2D height–height
correlation functions ΔhΔx(Δz)
corresponding to different val-
ues of Δx vs. Δz for a frac-
ture surface of glassy ceramic
with porosity φ = 6%. The
data collapse was obtained us-
ing equation (2.5) with expo-
nents ζ � 0.4, β � 0.5, and
z = ζ/β � 0.8.

To conclude this first section, let us insist on the high robustness of the rough-
ness properties investigated here: the distribution of the variations of height, the
2D structure of the surface and the value of its three scaling exponents are ob-
served to depend neither on the characteristic length scale of the microstructure
nor on the porosity. The comparison of these scaling properties with a natural
material with a similar microstructure, a sandstone, is performed in Section 4.
But at first, let us focus on characteristics of fracture surfaces that depend on the
microstructure.

Up to now, the discussion was limited to the scaling laws verified by the
roughness at different length scales. We shall now be concerned with the over-
all amplitude of the roughness and with its dependence on the characteristic
parameters of the material.

3. Roughness amplitude

The previous section has been devoted to the study of the self-affine properties
of fracture surfaces. For instance, the 1D correlation function Δh computed on
profiles perpendicular to the crack growth direction was found to be proportional
to Δzζ. One can replace this proportionality relation by the following equality:

Δh
Δh(d)

=
(
Δz
d

)ζ
, (3.2)

where d can be taken equal to the characteristic length scale of the microstructure
of the material (we will take the mean grain size). As a consequence, the am-
plitude of the roughness may be characterized by the value of Δh(d) (amplitudes
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corresponding to other Δz values can then be obtained from Eq. (3.2)). In the
following, we will use the normalized amplitudeΔh(d)/d because its value can be
interpreted in terms of fracture mode (trans- and inter-granular rupture) as will
be discussed at the end of this section. The amplitude defined in such a way is
directly linked to the topothesy �z, i.e. the scale at which Δh is equal to Δz, by the
relation Δh(d)/d = (�z/d)1−ζ.

If an important effort has been devoted in the past to the scaling properties of
fracture surfaces, very few studies have dealt with the amplitude of the roughness
in spite of its obvious practical interest and its possible relevance to understand
the underlying mechanisms of failure of materials. The series of sintered materials
we are using allows, for the very first time, to study specifically the influence of
microstructural parameters (the porosity φ and the typical microstructural length
scale d) on the roughness amplitude. But in order to estimate quantitatively the
effect of the microstructure on this quantity, we will study at first the influence of
the fracture test geometry and the distance to the crack initiation.

Effect of the crack initiation. Various authors [29, 70] have reported that
roughness properties were not stationary in a small zone of the fracture surface
near the initiation of the crack. This transient regime is studied in Figure 3.9 for a
fracture surface of glassy ceramics with φ = 3% broken in the modified Brazilian
geometry. In this figure, data points correspond to single profiles parallel to z at a
given distance x from the side of the sample where the crack was initiated. The lo-
cal roughness is characterized by its normalized amplitudeΔh(d, x)/d. A transient
regime in which Δh(d, x)/d decreases with the distance x is indeed observed: the
width of this zone is xc � 1 mm. At larger distances, Δh(d, x)/d merely fluctuates
around an average value (dashed line). This mean value will correspond to the
roughness amplitude and the corresponding error will be taken equal to three
times the standard deviation of the fluctuations observed, i.e. representing an
interval of confidence of 95%. For the other glass ceramics and sandstone sam-
ples investigated, the width xc of the transient regime zone has the same order of
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Figure 3.9. Variations of the roughness char-
acteristic exponent ζ and amplitude Δh(d)
with the distance x to the initiation notch for
the same sample (φ = 3%) as in Figure 3.6.
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magnitude. These results allow to restrict (as in the previous sections) the statis-
tical analysis to distances larger than 1 mm where the roughness is statistically
stationary: this justifies our use in Figures 3.14 and 3.6 of curves obtained from
an average over several profiles corresponding to different x values.

Effect of the sample width. After a brief study of the transient regime near
the crack initiation, let us study the effect of the sample width on the roughness
amplitude. The effect of the specimen geometry on its roughness has only been
studied for fractured sandstone surfaces. The detailed analysis of these surfaces
is shown in next section.

Studying the transient roughening development during fracture test starting
from a straight notch, Lopez and Schmittbuhl [71] have observed on granite
fracture surfaces that this amplitude depends on the distance to the initiation.
This evolution has been described through a scaling law referred to as anomalous
involving the existence of a second exponent ζg referred to as global roughness
exponent different from the local roughness exponents ζmeasured until now. This
anomalous scaling of the transient roughening has then been observed on other
quasi-brittle materials such as mortar [30] and wood [29]. The local exponent was
measured to be ζ � 0.75 for these three materials whereas the value of the global
exponent was shown to change from material to material. As reported in [72],
the anomalous scaling can also be measured in the stationary part of the fracture
surface, i.e. far enough from the initiation so that the roughness amplitude can be
considered as independent of the distance to the initiation. Indeed, the value of
the amplitude depends on the width L of the broken sample and scales as:

Δh(Δz = cst) ∼ Lζg−ζ. (3.3)

Here, we have investigated such a scaling for fractured sandstone surfaces. Fig-
ure 3.10 presents the variations of the roughness amplitude with the width L of
the sample. In order to test the robustness of the measurement, the amplitude
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Figure 3.10. Absence of variation of the
roughness amplitude of fracture surfaces of
sandstone with the width L of the sample —
the roughness amplitude is measured as the
value of the 1D correlation function Δh(Δz)
for two values of Δz.
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Δh(Δz) is measured at two different length scales Δz = 100 μm and Δz = 1 mm.
The mean value of the amplitude is found to fluctuate by less than 5% from
sample to sample at the two scales studied: the roughness amplitude remains
therefore independent of the sample width in the range investigated. This result
can also be qualitatively observed in Figure 3.14a where the correlation functions
Δh(Δz) corresponding to various sample widths are plotted on the same graph:
the curves superimpose each other in the domain of length scales where they are
all evolving as a power-law. As a consequence, sandstone fracture surfaces do
not exhibit anomalous scaling as defined by equation (3.3).

This result suggests strongly that the roughness amplitude does not depend
on the geometry of the fracture test (even if we only studied the influence of the
sample width) if it is measured in the stationary part of the fracture surface. This
suggests that the only parameter that may change its value is the crack growth
velocity and the microstructure of the material.

Effect of the crack growth velocity. The effect of the crack growth velocity on
the amplitude of crack roughness has been studied by Backers et al. [73] for sand-
stone samples. Analyzing fracture surfaces resulting from crack growth velocities
ranging from 1 μm s−1 to 10 mm s−1, they only observed random fluctuations —
on the order of 15% — of the roughness amplitude around the mean value. This
suggests that for a very similar material such as glass ceramics, the crack rough-
ness may be also independent of the crack velocity. This is confirmed by our
experimental results: the roughness amplitude corresponding to glass ceramics
samples with φ � 25−26% differs from 20% (see Tab. 3.2) when the crack growth
velocity is changed by almost 3 decades. In the following section, we will see
that the roughness amplitude of all the samples follow the same function of the
porosity and the bead diameter, irrespective of the broad range of velocities inves-
tigated in this study. This is an additional argument in favor of the weak influence
of the crack velocity on the roughness amplitude4.

Effect of the microstructure. As stressed in the previous sections, the rough-
ness amplitude depends strongly on the microstructure and very weakly on the
other parameters such as crack growth velocity and sample width. In this section,
we identify the microstructural parameters that set the amplitude and provide
a relation between glassy ceramics microstructure and amplitude of their crack
roughness. In Figure 3.11, the normalized amplitude Δh(d)/d obtained for all
the glass ceramics and sandstone samples studied is plotted as a function of
their porosity. The fracture surfaces have been obtained either after a quasistatic
rupture (◦) or a dynamic one (�). Except one glass ceramics sample which is
composed of glass beads with d � 58 μm (�), the samples are made of grains with
d � 116 μm.

4. From a theoretical point of view, we will see in Section 2 of Chapter 4 that an effect of the crack
growth velocity is only expected for values of vcrack near the sound velocity.
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Figure 3.11. Variation of Δh(d)/d as
a function of porosity φ for the glass
ceramics samples: range of bead di-
ameters used to make the samples —
104−128 μm (�): dynamic fracture (◦):
quasistatic fracture — 50−65μm (♦) rapid
fracture. The slope of the dashed line
is 1.7.

Let us consider at first the sample of glass ceramics made of small beads
(d � 58 μm and φ = 18%). Although d is two times smaller than in the other
samples, its normalized roughness amplitudeΔh(d)/d is close to the one of a glass
ceramics with a similar porosity (φ = 15%) but with larger beads (d � 116 μm).
This result suggests that the roughness amplitude Δh(d) is roughly proportional
to the typical size of the microstructure5.

On the other hand, the normalized amplitude seems to evolve linearly with
the porosity φ. A linear fit of the experimental data leads to

Δh(d)/d � 1.7φ. (3.4)

This result is quite remarkable in view of the large range of crack velocities
investigated as well as the two fracture test geometries used in this study. In
other words, within our domain of study of the various experimental parameters,
the amplitude is found to be given by the very simple proportional law given in
equation (3.4).

The increase of Δh(d)/d with φ may be related to phenomena at the scale of
a bead diameter. For high porosity samples, the crack propagates by breaking
cemented necks binding two beads: the difference in height between neighboring
beads is then of the order of their radius and Δh(d)/d � 0.5. For low porosity
samples, neighboring beads are more strongly welded to each other and the crack
propagates through the beads: the deflections of the surface are weaker compared
to the bead radius and Δh(d)/d is lower. This is consistent with the increase of
Δh(d)/d from 0 to 0.5 shown in Figure 3.11 when φ is increasing from 0 to 30%.
These differences in the propagation of the cracks are confirmed by scanning
electron microscope (SEM) images of fractured samples: these display a transition
from transgranular to intergranular propagation as the porosity increases. It is
remarkable that this transition has no influence on the characteristic exponent ζ.

5. Even though one single example of glass ceramics with d different from 116 μm has been studied.
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Concluding remarks. This study on the roughness amplitude of glass ce-
ramics has allowed to identify the relevant parameter that sets its value: the
microstructure of the material. In particular, we have shown that the amplitude
defined as the value Δh(d) of the correlation function at a distance of the order of
the grain diameter d is proportional both to the grain diameter d and the poros-
ity φ. An important implication of this observation is the inter- to trans-granular
propagation of cracks as the porosity increases. At the opposite, the scaling prop-
erties of crack surfaces — and in particular the roughness exponent ζ = 0.4 —
were shown to be independent of the porosity (see Sect. 2 in this chapter). These
results question the scenario proposed in reference [2] that suggested that a trans-
granular rupture could explain the low roughness exponent measured on porous
materials. The origin of this exponent will be the challenging question addressed
in Chapter 4. But at first, let us study in detail the properties of sandstone surfaces.

4. Morphology of fractured sandstone surfaces

Why did we study the morphology of fracture surfaces of natural sandstone while
glass ceramics present the advantage to have a microstructure that can be tuned
in a control manner? At first, it is important to verify that the scaling properties of
the two materials are similar. Moreover, because sandstone is an abundant natural
material, it is possible to investigate relatively large samples. Therefore, in this
section devoted to fracture sandstone surfaces, we will investigate the influence
of the system size on the roughness of crack surfaces.

Statistics of height variations. We will start this study by the analysis of
profiles parallel to the z-axis (i.e. to the crack front) and located far enough from
the initiation region so that the roughness properties are statistically stationary. We
will reproduce for fractured sandstone surfaces the same approach than for glass
ceramics. The scaling properties of these profiles are characterized by their 1D
height–height correlation function, Δh(Δz) = 〈(h(z+Δz)− h(z))2〉1/2z . This function
(◦) is plotted in the main panel of Figure 3.12 in a log-log scale for the sample
of width L = 8 mm. One can see a nice power-law behavior characterized by a
roughness exponent ζ = 0.43 up to a cut-off length scale L⊥c , and a plateau above
L⊥c (straight and dotted lines respectively). In other words, the surface appears
as a plane at length scales larger than L⊥c = 1.7 mm defined as the abscissa of the
intersection between the power-law fit and the plateau. At length scales Δz < L⊥c ,
the profiles are self-affine with an exponent ζ = 0.43. The variation (+) of the
correlation function computed on a second height map produced by another scan
of the same fracture surface (see Tab. 3.1) is represented on the same graph. This
scan contains 45 × 95 pixels and represents a field of 23 × 5 mm2 while the first
analysis was performed on a larger map (133 × 273 pixels representing a field
of �33 × 7 mm2). As it appears in Figure 3.12, changing the number of pixels
does not change the general shape of the correlation function as well as the value
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Figure 3.12. Height–height correla-
tion function computed along the crack
front direction (z-axis) on two different
scans of the same fractured sandstone
surface. (◦) 133 × 273 pixels representing
�33×7 mm2; (+) 45×95 pixels representing
�23×5 mm2. The straight line is a power-
law fit of the larger height map (◦) in the
self-affine regime for Δz > d = 240 μm.
Its slope is found to be ζ = 0.43. The inset
displays the variations of the local slope
— defined as ∂ log(Δh)/∂ log(Δz) — of
the logarithm of the correlation function
computed on the larger height map (◦).

of the cut-off length L⊥c . In other words, the finite number of data points is not
responsible for the saturation of the correlation function observed at large scales.

The inset of Figure 3.12 that represents the variations of the local slope of
the logarithm of the correlation function — defined as ∂ log(Δh)/∂ log(Δz) —
computed on the larger height map (◦), confirms this self-affine property which
is reflected by a domain of constant slope in this representation. However, if we
look carefully at this curve, one can observe slight deviations to the self-affine
behavior for Δz < d � 240 μm. This precise point requires a deeper analysis of the
profiles morphology.

The whole distribution P(Δh) of height variation for a given distanceΔz is now
analyzed. For perfectly self-affine profiles, one would expect that the distributions
corresponding to various Δz values collapse onto a single curve when they are
normalized according to formula (2.2). Figure 3.13 displays these normalized
distributions for various values of Δz in a log-lin scale. Within the range d <
Δz < L⊥c (solid lines), the curves collapse nicely onto a same Gaussian distribution
(dashed line). For Δz values lower than the grain diameter d (dotted lines), the
curves and, more precisely, their tail do not collapse. The profiles are therefore self-
affine (here with an exponent ζ = 0.43) only in the intermediate domain between
the two limiting length scales d and L⊥c although the 1D correlation function
behaves as a power-law even for length scales smaller than d (see Fig. 3.12). Let
us note that the effect of the grain size on the analysis of the roughness of fracture
surfaces can lead to a misunderstanding of their properties. The “effective multi-
scaling” observed here is an artifact related to the presence of a typical length scale
in the microstructure of our system — the grains here. Finally, the investigation
domain for the scaling behavior is relatively small (between d = 240 μm and
L⊥c = 1.7 mm) for the sample studied here. In next paragraph, we show that L⊥c
increases with the sample width. This leads to larger self-affine domains for larger
samples that will confirm the results obtained here.
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Figure 3.13. (Color on-
line) Normalized distribution
of height fluctuations in a
semi-logarithmic representa-
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points do not collapse any
more onto the master curve
(dotted lines).

Effect of the sample size on the scaling properties. The dependence of this
self-affine range with the size of the samples will now be studied on samples with
four different widths: 1D height–height correlation functions computed for these
four samples on profiles parallel to the crack front are displayed in Figure 3.14a.
For each fracture surface, Δh varies first following a power-law of Δz and be-
comes constant. All curves are superimposed in the self-affine regime which is
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Figure 3.14. (Color online) (a) Height–height correlation function for profiles parallel to
the crack front direction (z-axis) on fractured sandstone samples of various widths. The
straight line is a power-law fit to all curves in the self-affine regime for Δz > d � 240 μm,
with slope ζ1D = 0.47. (b) Fourier power spectrum of profiles parallel to the direction of
the crack front. The slope of the power-law fit is found to be −(1 + 2ζFT) with ζFT = 0.46.
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Table 3.3. Scaling exponents measured from the calculation of the 1D correlation function
(ζ1D and β1D), the Fourier analysis (ζFT and βFT) and the 2D correlation function (ζ2D, β2D
and z) on fracture surfaces of sandstone for samples with various widths L.

Sample L ζ1D β1D ζFT βFT ζ2D β2D z
� 1 8 mm 0.43 0.40 0.45 0.46 0.38 0.38 1.03
� 2 14 mm 0.46 0.51 0.43 0.50 0.43 0.50 0.90
� 3 26 mm 0.48 0.46 0.46 0.47 0.42 0.43 0.99
� 4 52 mm 0.51 0.53 0.50 0.48 0.50 0.56 0.90
Average 0.47 0.48 0.46 0.48 0.43 0.47 0.95

ζ = 0.45 ± 0.06 β = 0.48 ± 0.05 z = 0.95 ± 0.1

characterized by the roughness exponent ζ � 0.47 corresponding to the slope of
the global power-law fit on data from all samples in the range d < Δx < L⊥c (L). The
roughness exponent measured on each sample is listed in Table 3.3. The variations
from sample to sample lead to the following error bar for the global roughness
exponent ζ = 0.47 ± 0.04 measured through the 1D correlation function. This
value is in agreement with other experimental studies performed on sandstone
fracture surfaces [2, 35]. The roughness exponent measured here is remarkably
lower than those measured on the various other materials studied in Chapter 2. In
order to confirm this low value by an independent determination of the self-affine
exponent, the Fourier power spectrum of the profiles has been computed and is
shown in Figure 3.14b for the various samples. A power-law fit is made on all
data points in the range 1/L⊥c (L) < f < 1/d. The slope of the fit (dashed line) is
found to be −(1 + 2ζ) with ζ = 0.46 in agreement with the other method.

The Fourier power spectrum displays a power-law behavior up to a higher
length scale value than the upper bound of the self-affine domain determined by
the analysis of the correlation function. The latter is more reliable to measure a
cut-off length scale than the Fourier analysis (see Ref. [54]). Thus, we will use only
Figure 3.14a that displays correlation function variations for studying the plateau
regime observed at large scales. One can observe that these regimes clearly do
not coincide for the various sample widths.

The cut-off length L⊥c is plotted in Figure 3.15 as a function of the specimen
width. This quantity L⊥c can be interpreted as the in-plane size of the largest
features observed on the fracture surfaces. This length is observed to increase
linearly with the specimen width as L⊥c = 0.15L.

This observation suggests that there is no intrinsic upper bound to the scale
invariance behavior of fractured sandstone surfaces — and more generally on
surfaces with a low roughness exponent. This observation represents a major
difference with fracture surfaces characterized by ζ � 0.75. Indeed, we will show
in Chapter 4 that the upper bound of the self-affine domain is an intrinsic quantity
of the material (and do not depend on the sample width when the latter is large
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Figure 3.15. The correlation length L⊥c (�)
(resp. L‖c (�)) is plotted as a function of the
specimen width (resp. the specimen length).
The slope of the dashed line is 0.15.

enough). The implications of this result on the origin of the self-affine geometry
of fracture surfaces are largely debated in next chapter.

2D scaling properties. In Chapter 2, we have shown that the analysis of
profiles parallel to the z-axis was insufficient to fully describe the 2D scaling
properties of fracture surfaces. The full characterization calls for the use of the 2D
height–height correlation function.

We will now use the same type of analysis to study the 2D properties of
the sandstone fracture surfaces in order to determine whether their properties
are isotropic or not. Figure 3.16 displays the 1D correlation functions Δh(Δz)
and Δh(Δx) computed along the crack front (z-axis) and parallel to crack growth
(x-axis), respectively (sample width L = 14 mm). Both variations can be fitted
by a power-law. However, the curves do not exactly coincide. The roughness
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Figure 3.16. 1D height–height correla-
tion functions measured parallel to the
direction of crack propagation and to the
crack front for the surface of a fractured
sandstone sample with L = 14 mm. The
straight lines are power-law fits in the
self-affine domain for Δz > d � 240 μm.
The scaling exponents, corresponding to
the slope of these lines, are respectively
equal to 0.46 and 0.50 parallel to the crack
front and to the crack propagation.
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amplitude is slightly larger along the crack front direction. This has been system-
atically observed on all samples. Moreover, the scaling exponents corresponding
to the slope of the power-law fits performed in the self-affine domains [d, L⊥c ] and
[d, L‖c] are found to be slightly different: the roughness exponent ζ = 0.46 mea-
sured parallel to the direction of the crack front is found to be slightly smaller than
β = 0.50 measured along the direction of the crack growth. However, fluctuations
of the same order of magnitude as the difference between these exponents are
observed on samples of different widths — ζ1D and β1D measured on each sample
are listed in Table 3.3. The difference measured between the two scaling exponents
is therefore not large enough to determine whether the surfaces are isotropic or
not. As shown in Chapter 2, the analysis of the 2D correlation function brings
more precise information because it involves a larger statistical ensemble6.

The 2D correlation function computed on the sandstone fracture surface ana-
lyzed previously is shown in the insets of Figure 3.17. At first, we look for the two
exponents β and z that optimize the collapse of the curves after normalization of
the axis using equation (2.5). These are found to be β = 0.43 and z = 0.90. The
obtained collapse is shown in Figure 3.17a. As a comparison, one sets z equal
to unity, and looks for the value of β that optimizes the collapse, also following
equation (2.5). The best possible collapse, obtained for β = 0.47, is shown in
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Figure 3.17. Normalized 2D variations withΔz of the height–height correlation function at
various values ofΔx for the surface of the fractured sandstone sample of width L = 14 mm:
(a) β = 0.50 and z = 0.90 are chosen to optimize the data collapse using equation (2.5). The
straight line that corresponds to the fit of the power-law regime of the collapsing function
has a slope of ζ = 0.43; (b) best data collapse obtained by setting z = 1.

6. If the surface studied is composed of n × n data points, the method based on the power-law fit
of the 1D correlation function involves about n points (Δh(Δr)) each computed as the mean of n2

experimental points while the method based on the calculation of the 2D correlation function involves
the collapse of n2 points (Δh(Δz, Δx)) each computed from n2 experimental points.
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Figure 3.17b. The good collapse of the curves obtained using the first procedure
(Fig. a) and the poorer one obtained in the second case by setting z = 1 (Fig. b)
suggests that the surface is anisotropic and that the 2D correlation function fol-
lows the Family–Vicsek scaling given in equation (2.5) with z < 1. According to
equation (2.5), the roughness exponent corresponds to the scaling exponent of the
power-law regime of the collapsing curve. By fitting the experimental variations,
one obtains ζ = 0.43. Computing the 2D correlation function on the other frac-
ture surfaces of samples with other widths, one observes systematically that the
exponent ζ is smaller than β7. In addition to ζ1D (resp. ζFT) and β1D (resp. βFT)
measured from the 1D correlation function (resp. 1D Fourier power spectrum) of
each investigated surface, the two exponents β2D and z that optimize the collapse
of the curves as well as the exponent ζ2D corresponding to power-law behav-
ior of the collapsing curve are listed in Table 3.3. Compiling the three different
techniques, one finds ζ = 0.45± 0.06, β = 0.48± 0.05 and z = 0.97 ± 0.08.

5. Concluding remarks

In this chapter, the morphology of fracture surfaces of materials made of cemented
grains has been investigated. This study was motivated by the observation of
a roughness exponent ζ � 0.4−0.5 on sandstone fracture surfaces [2, 35] much
lower than the universal roughness exponent ζ � 0.75 (see Chap. 2). A series
of fractured glass ceramics samples realized by the same process but displaying
very different characteristics (porosity, grain size, fracture propagation velocity)
has been studied systematically: the fact that the same roughness exponent was
found in these materials as in natural sandstone samples in a broad range of
porosities (3% < φ < 26%) and of grain diameters (50 μm < d < 240 μm) has
demonstrated the robustness of this low value.

More precisely, fracture surfaces of artificial and natural sandstone were ob-
served to exhibit self-affine properties with a roughness exponent ζ � 0.42 ± 0.05
measured along the crack front direction in both the quasi-static and rapid failure
regimes. Moreover, the fracture surfaces investigated were shown to display clear
Gaussian distribution of the height variation in the self-affine domain of length
scales ranging from the grain size to a given fraction of the sample width. In
other words, the whole geometry of profiles parallel to the crack front is entirely
described by one exponent up to a cut-off length scaling with the system size. The
two-dimensional geometry of the fracture surfaces is rather more complex: pro-
files parallel to the crack growth direction are also self-affine with Gaussian height
fluctuations but characterized by a slightly larger scaling exponent β � 0.48±0.05.
More generally, these anisotropic fracture surfaces are well described by their
2D height–height correlation function that follows a Family–Vicsek scaling (see
Eq. (3.1)).

7. Even though their values lie within the error bars of each of them.
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3 Low roughness exponents of fractured porous material surfaces 69

The roughness amplitude was observed to depend very weakly on both the
fracture test geometry and the crack growth velocity, and to increase linearly with
both the grain diameter and the porosity. This result suggests that the transition
from trans- to inter-granular fracture propagation that occurs with increasing
porosity does not affect the value of the scaling exponents.

In the following chapter, we will propose an explanation for the observed low
value of the roughness exponent. In particular, we will explain why the materials
studied in Chapter 2 display a roughness exponent ζ � 0.75 and while those
studied in Chapter 3 display a lower value ζ � 0.4. As a starting point, we will
study the propagation of a crack in a perfectly brittle heterogeneous material and
will give the properties of the fracture surface roughness expected in that case.
The effect of the damage at the crack tip on the fracture surface morphology will
be also discussed.
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4
Fracture surfaces for model linear elastic

disordered materials

In the previous chapters, the minimal set of relevant parameters necessary to
characterize the 2D scaling properties of fracture surfaces was identified: their 2D
scaling properties can be described by the so-called Family–Vicsek scaling char-
acterized by two independent scaling exponents, ζ and β, measured respectively
perpendicularly and parallel to the direction of the crack growth. The second
important experimental result is the existence of two sets of exponents, namely
ζ � 0.75 and β � 0.60 for fractured aluminum alloy, silica glass, mortar, wood and
quasi-crystal samples and ζ � 0.40 and β � 0.50 for glassy ceramics and sandstone
samples. The value of the exponents is robust as it depends neither on the crack
growth velocity1 nor on the details of the microstructure. This suggests the ex-
istence of, at least, two universality classes for failure problems in heterogeneous
materials.

These experimental observations raise many questions: what is the origin of
these two universality classes? What is the origin of their universal properties?
The peculiar rupture mode of glass ceramics is a key element: in these materi-
als, the crack is expected to propagate by breaking the solid bridges between the
sintered grains sequentially, one after the other. In other words, the fracture of
glass ceramics reproduces at the scale of the bead diameter the classical picture of
perfectly brittle rupture [8]. Annexe A is devoted to the study of the mechanical
properties of glass ceramics. Strong arguments in favor of a scenario of brittle
fracture in these materials are given there. This suggests that a model of crack
propagation in an ideal perfectly linear elastic brittle disordered material could
explain the experimental measurements of Chapter 3. In the first section of this
chapter, we will predict within the Linear Elastic Fracture Mechanics (LEFM)
framework the surface properties of these ideal materials. We will show that
— in this framework — fracture surfaces are expected to be anisotropic and to
satisfy the Family–Vicsek scaling. Moreover, the predicted exponents are ζ = 0.39
and β = 0.49, in very good agreement with the experimental observations re-
ported for glass ceramics and sandstone samples. In the second section, model
and experimental measurements will be compared quantitatively. The assump-
tions performed to predict theoretically the surface properties will be confronted

1. In the quasi-static limit.
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independently with experiments. This analysis will establish the extent up to
which the theoretical model describes the fracture of sandstone and glass ceram-
ics. Finally, the second universality class {ζ � 0.75 and β � 0.6} for failure problems
will be investigated. As the archetype of minimal elastic material, the fracture of
silica glass will be studied in detail: mechanisms that are not taken into account in
the theoretical description of brittle fracture will be shown to take place at length
scales consistent with those at which the self-affinity with exponents ζ � 0.75 and
β � 0.60 is observed. In other words, the geometry of surfaces of fractured silica
glass at the nanometer scale does not result from brittle failure. The case of the
aluminum alloy, mortar, wood and quasi-crystal fracture will be also discussed.
A scenario where damage processes play a central part is suggested to explain
the value of the exponents measured on these materials.

1. Model of crack propagation in ideal linear elastic
disordered materials

The objective of this section is to predict the morphology of crack surfaces in a
perfectly linear elastic disordered material. In the next section, the predictions will
be compared to the experimental results obtained for glass ceramics representing
a good example of such a material (see Annexe A). We consider a single crack
propagating in an ideal linear elastic disordered material. We restrict the following
analysis to the case where the crack speed is small enough compared to the sound
speeds2 in the material so that the quasi-static approximation is relevant. We
will focus here on a mode I loading corresponding to the experimental situations
studied in Chapters 2 and 3. The crack front (oriented along the z-axis) is thus
confined roughly to a plane (x, z) perpendicular to the tensile forces (along the y-
axis) and propagates along the x-axis. In a homogeneous material, the crack would
propagate at uniform velocity and would lead to a planar fracture surface (the
plane (z, x)). But the heterogeneities of the material induce both in-plane (along x)
and out-o f -plane (along y) perturbations of the shape of the edge. Schematic views
of the in-plane f (z, t) and out-of-plane h(x = x0+ f (z, t), z) displacements are shown
in Figure 4.1. For simplicity, the out-of-plane perturbations are represented for a
crack front without in-plane perturbations ( f (z, t) = 0). The fracture surface is the
print of the out-of-plane perturbations h(x, z) of the crack front. In the following,
we will see that, for small enough perturbations, the out-of-plane displacements
are independent of the in-plane displacements so that the shape of the fracture
surface can be predicted independently of f (z, t). This implies that the dynamical
properties of the crack — the local velocities of the crack front ∂ f (z, t)/∂t — are
decoupled from the crack trajectory h(x, z). An experimental argument based on
the analysis of fracture surfaces will also support this statement (see Sect. 2 in this
chapter).

2. Speed of longitudinal, transverse and Rayleigh waves.
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Figure 4.1. Geometry of perturbed cracks subject to mode I loading (large arrows indi-
cating the direction of macroscopic loading). (a) In-plane perturbations. (b) Out-of-plane
perturbations. The shape of the fracture surface is effectively the history of the out-of-plane
perturbations of the crack front. (Taken from Ref. [40], reprinted with permission from
EDP Sciences).

Stress field in the vicinity of a slightly perturbed crack front. We consider
now a point M of the crack front characterized by its position (x = x0 + f (z, t), y =
h(x, z), z). The local stress field around M determines its trajectory. The stress at a
distance r ahead of the point M in the direction θ can be written as the sum of the
contributions of each of the three fracture modes (see Sect. 1, Chap. 1), each mode
being developed as a rk/2 expansion with k ≥ −1

σi j =

III∑
p=I

Kp√
2πr

gij
p (θ) + Tpkij

p (θ) + Aplij
p (θ)
√

r + ... (4.1)

where Kp (the so-called stress intensity factors), Tp (T-stress) and Ap are constants
depending on the loading and the geometry of the sample. gij

p , kij
p and li j

p are

universal functions of θ (see Eq. (1.2) for the complete expression of gij
I (θ) for

example).
Even though we focus here on a dominantly mode I loading situation, KII and

KIII are not equal to zero. The perturbations h and f of the crack shape induce
small shearing loading around the crack front. Assuming h and f to be small, the
value of the stress intensity factors Kp can be developed to first order as

KI = K(0)
I + K(1)

I + ... (4.2)

KII = K(0)
II + K(1)

II + ... (4.3)

KIII = K(0)
III + K(1)

III + ... (4.4)

The first terms K(0)
p in these developments are equal to the stress intensity factors

in the unperturbed planar case with a straight crack front while the second terms
K(1)

p in the developments are linear in h or f . We assume that the perturbations f
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and h are small so that terms of higher order than 1 can be neglected. K(0)
p is set

by boundary loading conditions imposed far from the crack front. The external
loading is of mode I type so that K(0)

I = Kext
I and K(0)

II = K(0)
III = 0. The dependence of

the term K(1)
I on f has been studied in reference [74] and then in reference [75]. The

terms K(1)
II and K(1)

III were analyzed in reference [76]. They showed the existence
of two terms depending on h. The study of Mochvan et al. [77] confirmed only
the form of the first one. The second term, so-called “memory term” because it
gives the dependence of the stress intensity factor with the whole shape of past
trajectory of the crack front, was shown to be much more complicated than the
expression proposed in reference [76]. The authors derived also an another term
linear in h (the last term of Eq. (4.6)). All these results calculated through linear
elasticity for an infinite sample of Poisson’s ratio ν broken under a mode I loading
in the quasi-static limit can be summarized as

KI = K(0)
I +

K(0)
I

2π

∫ +∞

−∞

f (z′) − f (z)
(z′ − z)2 dz′ (4.5)

KII =
K(0)

I

2
∂h
∂x
− K(0)

I

2π
2 − 3ν
2 − ν

∫ +∞

−∞
h(x, z′) − h(x, z)

(z′ − z)2 dz′ + ΔKmemory
II +

√
π
2

AIh(x, z)

(4.6)

KIII = K(1)
III (h, z,K(0)

I ) (4.7)

where the “memory” term ΔKmemory
II is given by

ΔKmemory
II (x, z) = −

∫ x

−∞

∫ +∞

−∞

{
wII

x (x − x′, z − z′)
(
∂(hTxx)
∂x

|(x′,z′) + ∂(hTxz)
∂z

|(x′,z′)
)

+ wII
z (x − x′, z − z′)

(
∂(hTxz)
∂x

|(x′,z′) + ∂(hTzz)
∂z

|(x′,z′)
) }

dx′dz′ (4.8)

with

wII
x (x, z) =

√−2xH(x)
π3/2(x2 + z2)

(
1 +

2ν
2 − ν

1 − (z/x)2

1 + (z/x)2

)

wII
z (x, z) =

√−2xH(x)
π3/2(x2 + z2)

2ν
2 − ν

2z/x
1 + (z/x)2 (4.9)

where H(x) is the Heaviside function.

Equation of the crack path in a homogeneous material. From these three
equations and equation (4.1), one can calculate the diverging part of the stress
field in the vicinity of a crack front for given distortions h and f . This stress field
determines the crack trajectory. Indeed, the path chosen by a crack propagating
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in an elastic isotropic material is the one for which the local stress field is of mode
I type (“criterion of local symmetry” [9–11]) 3. In other words, the net mode II
stress intensity factor should vanish in each location z along the crack front and
any position x of the mean line. Taking the right part of equation (4.6) equal to
zero, one gets

∂h
∂x
=

1
π

2 − 3ν
2 − ν

∫ +∞

−∞
h(x, z′) − h(x, z)

(z′ − z)2 dz′ − 2
ΔKmemory

II

Kext
I

− AI

Kext
I

√
2πh. (4.10)

This means that the path — the angle ∂h(x, z)/∂x — followed by the crack in
M = (x, h(x, z), z) depends only on the out-of-plane perturbation h of the crack
shape. This represents an important simplification of the problem because the
knowledge of the in-plane displacement f is not necessary to predict to first order
the fracture surface morphology. Moreover, equation (4.10) is time independent.
In other words, this so-called path equation that predicts the path followed by the
crack is independent of the dynamics of the propagation. The dynamics, i.e. the
local velocities of the crack front, is described by a decoupled equation of motion
satisfied by f .

In the right part of equation (4.10), three terms are involved: the first one
gives the dependence of the crack path on the full shape of the crack front at its
current position x. The second term shows that the crack keeps the “memory”
of the path followed in the past, its contribution resulting from an integral over
the crack front shape on all x′ and z′ values such as x′ ≤ x (see Eq. (4.8)). Finally,
the third contribution is purely local and depends only on the position h(x, z)
of the point M. These three contributions are in fact not equivalent. In order
to compare the various terms involved in the right part of equation (4.10), one
calculates their Fourier transform. Denoting by ĥ(kx, kz), ŵII

x (kx, kz), and ŵII
z (kx, kz)

the Fourier transform of h(x, z), wII
x (x, z), and wII

z (x, z), respectively, the first term
leads to [(2 − ν)/(2 − 3ν)]|kz| ĥ(kx, kz), the second to4

[
ŵII

x (kx, kz)
(

Txx

Kext
I

kx +
Txz

Kext
I

kz

)
+ ŵII

z (kx, kz)
(

Txz

Kext
I

kx +
Tzz

Kext
I

kz

)]
2iĥ(kz, kx)

3. The “criterion of local symmetry” was proposed to predict the crack path for two-dimensional
problems invariant along the z-axis. In the three-dimensional case treated here, we make the assump-
tions — widely used in the literature [40, 41] — that the crack only propagates along the x-axis and
that the criterion of local symmetry is still valid. This assumption neglects the effects of the mode III
contribution for which we ignore until now the consequence on the crack path.
4. Txx, Tzz and Txz have been supposed to have weak dependence in x and z compared to h so that

the second term in the expressions
∂hTij
∂x = Tij

∂h
∂x + h

∂Tij
∂x and

∂hTij
∂z = Tij

∂h
∂x + h

∂Tij
∂x can be neglected in

equation (4.8). In view of the important fluctuations of height, this assumption seems justified.
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and the third one to −√2π(AI/Kext
I )ĥ(kx, kz). The ratio — in absolute value — of

the second and the third term to the first one leads to5

(2)
(1)
≤ (|Txx| + 2|Txz| + |Tzz|) √c

Kext
I

(
1√|kx|c
+

1√|kz|c
)

;
(3)
(1)
� |AI| c

Kext
I

1
|kz|c . (4.11)

Thus, as soon as the scale of interest Δz = 2π/kz along the crack front is smaller
than a typical length scale c of the system, e.g. the crack length, the first term is
dominant compared to the second and third ones6.

This is a great simplification because the path followed by the crack depends
only, to first order, on the perturbation of the crack edge and does not keep
memory on its past, i.e. of its trajectory. Let us note that the term ∂h/∂x on the
left-hand side of equation (4.10) is of the same order than (1) that’s why it is
also relevant compared to (2) and (3). A direct experimental confirmation of this
hierarchy will be given in Section 2.

Effect of the imperfect mode I loading. Until now, the model predicting the
crack path, and especially the stress field in the vicinity of the crack tip, has been
derived in the ideal case of a mode I loading (K(0)

I = Kext
I and K(0)

II = K(0)
III = 0). From

an experimental point of view, a pure mode I loading is hypothetic. Resulting
from unavoidable imperfections of the loading system or in crack alignment, the
sample is submitted to small mode II and mode III loadings that imply K(0)

II = Kext
II

and K(0)
III = Kext

III that are small compared to Kext
I . In particular, the expression

of KII given in equation (4.6) does not reduce to the lonely term K(1)
II . Another

term K(0)
II = Kext

II has to be added. Using the same argument as in the previous

5. The details of the calculation of the Fourier transform (2) of the second term in equation (4.10)
are the following. First, the calculation of the Fourier transform of wII

x and wII
z leads to

ŵII
x = (|kx |)−1/2α(kz/kx) and ŵII

z = (|kx |)−1/2β(kz/kx) with α(X) =
∫ ∫ +∞
−∞ e−iue−ivXwII

x (u, v)dudv and

β(X) =
∫ ∫ +∞
−∞ e−iue−ivXwII

z (u, v)dudv. Numerical integration of the preceding expressions leads

to α(X) X∼0∼ β(X) X∼0∼ X, α(X) X∼1∼ β(X) X∼1∼ 1 and α(X) X∼+∞∼ β(X) X∼+∞∼ 1/
√

X. Therefore,

one deduces the asymptotic behaviors (2) kz�kx∼ kz

Kext
I

(
Txx+Txz√|kx | +

(
kz
kx

)
Txz+Tzz√|kx |

)
� kz

(Txx+Txz)
√

c

Kext
I

1√|kx |c ,

(2) kz∼kx∼ kz
(Txx+2Txz+Tzz )

√
c

Kext
I

1√|kz |c and (2) kz�kx∼ kz

Kext
I

(
Txz+Tzz√|kz | +

(
kx
kz

)
Txx+Txz√|kz |

)
� kz

(Txz+Tzz)
√

c

Kext
I

1√|kz |c . Finally,

whatever the value of kx and kz, one gets (2) ≤ kz
(|Txx |+2|Txz |+|Tzz |) √c

Kext
I

(
1√|kx |c +

1√|kz |c
)
. This leads to the

ratio (2)/(1) given in equation (4.11).
6. We assume here that both Tij

√
c and AIc are of the same order as the applied stress intensity factor

Kext
I . For example, considering for pedagogical reasons the case of the semi-infinite sample with a

notch and submitted to a constant external loading σext, one can show [78] that Kext
I =

√
πc σext,

Txx
√

c = Tzz
√

c = −(1−ν)σext, Txz = 0 and AI = 0. This leads to ratios in equation (4.11) inferior to one
for all length scales Δx and Δz smaller than the crack length c. In this geometry, the terms (2) and (3)
of equation (4.10) are negligible at all length scales. Finite element calculations have shown that this
result can be generalized to various geometries, and in particular remains valid for the fracture test
geometries used experimentally for the work presented in Chapter 3.
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paragraphs to derive the path of the crack front (KII = 0), one gets

∂h
∂x
=

1
π

2 − 3ν
2 − ν

∫ +∞

−∞
h(x, z′) − h(x, z)

(z′ − z)2 dz′ + F0 (4.12)

where F0 = −2Kext
II /K

ext
I . Although this term is very small7, we will see in next

paragraphs that it is relevant for setting the scaling properties of fracture surfaces.

Effect of disorder. Until now, the elastic material has been considered as per-
fectly homogeneous. In that case, we have shown that the out-of-plane displace-
ment of the crack front — which determines the shape of the fracture surface —
satisfies equation (4.10) where the two last terms can be neglected at small scales
compared to the system size. The second term of this equation acts as a restoring
force: any perturbation of the straight crack vanishes and the resulting fracture
surface is flat8. The elasticity competes with the effect of the disorder which makes
the crack front rough: even though elasticity theory predicts a straight propaga-
tion of the crack front, the disorder of the material can favor some directions
because they correspond to “weak planes” in which the bonds are easier to break.
In other words, the crack front takes advantage of the disorder of the material
by wandering between stronger zones. One can model this effect by adding a
new term Kdis

II to the stress intensity factor in mode II in equation (4.6). Using
then the equation of trajectory KII = 0, one gets another term η = 2Kdis

II /K
(0)
I in

equation (4.10). In other words, the direction of propagation of a point M of the
crack ∂h/∂x predicted by the linear elasticity deviates from η(x, h(x, z), z) because
of the disorder. This additional noise depends on the position of this point M
and has a zero mean value since the heterogeneities of the material do not favor
particularly the deviation of the crack front toward either positive or negative h
values. Finally, from equation (4.10) derived for a homogeneous material, one
obtains the following equation for the crack trajectory

∂h
∂x
= A(ν)

∫ +∞

−∞
h(x, z′) − h(x, z)

(z′ − z)2 dz′ + η(x, h(x, z), z)+ F0 (4.13)

where A(ν) = (2 − 3ν)/[π(2 − ν)] is a constant depending only on the Poisson’s
ratio of the material.

It must be emphasized that time does not play any role in this equation. In
particular, the x coordinate is not necessarily proportional to time. Equation (4.13)
only provide the path followed by the crack but give no information on the time
dependence of the crack front position. In contrast with models as in [36] where
the fracture surface is described as the trace left by the crack front, the dynamics

7. From the measurement of the slight deviation α of the mean plane of the fracture surface with
respect to the plane perpendicular to the direction of the external mode I loading, it is possible to
estimate F0 = −2Kext

II /Kext
I = −3α. Measured values of α � 2◦ leads to |F0| � 0.07.

8. The presence of the first term on the right-hand side of equation (4.10) ensures the stability of the
crack for perturbations of small sizes. To ensure the stability of the crack with respect to perturbations
of all sizes, the second term is required. This stability condition is fulfilled if the T-stress is negative [10].
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of which is described through a Langevin equation, the path equation proposed
here gives no information on the motion — the dynamics — of the crack front.
The important consequences for the expected fracture surface morphology are
discussed in the following.

Family–Vicsek scaling of fracture surfaces. Equation (4.13) describes the
path followed by a crack in a brittle disordered material in the quasi-static limit for
small perturbations h and at small scales compared to the system size. Its solution
h(x, z) is the map of the heights of the fracture surface under these hypotheses.

This equation describes the propagation of an elastic line in a random potential.
A general property of the solution of such equations is already known [38, 39]:
h(x, z) follows the so-called Family–Vicsek scaling [66]

〈(h(x + Δx, z + Δz) − h(x, z))2〉1/2x,z ∼ Δxβg(Δz/Δx1/z) (4.14)

where g(u) is a scaling function equal to a constant when u � 1 and to uζ when
u � 1. The roughness exponent ζ, the growth exponent β and the dynamic
exponent z are related by ζ = β z. The general solution of this equation is in
agreement with the 2D scaling properties of fracture surfaces: they follow the
Family–Vicsek scaling and are characterized by two different exponents ζ and β,
perpendicularly and parallel to the crack growth direction, respectively. In other
words, fracture surfaces resulting of brittle failure are expected to be anisotropic.

The properties of the noiseη(x, h, z) will set the value of these scaling exponents.
Equations similar to equation (4.13) are rather well understood in cases where 2D
random potentials — either η(x, z) or η(h, z) — are involved. But the effect of a 3D
random potential η(x, h, z) on the value of the scaling exponents is still an open
question. In the next paragraph, we will give simple arguments that demonstrate
some links between the two problems. They will be used to interpret the value
of the experimental exponents measured on fracture surfaces of brittle materials
but cannot be considered as sufficient to solve the difficult theoretical question of
the line propagation in a 3D random potential.

Quenched versus thermal disorder. We focus here on the properties of the
3D random potential. Although its three arguments are the three variables of
space, they are not equivalent. In particular, the variable x may be considered
as representing time because it does not play any explicit role in equation (4.13).
As a consequence, the noise η(x, h, z) does not appear as a three dimensional
quenched noise9, but rather as a two-dimensional noise η(h, z)x slowly varying
with an effective “time” x.

In the following, we will use qualitative arguments to assess roughly the
relative contribution of the quenched and thermal fluctuations. At first, let’s
analyze the variations of the noise η when a point M(x0, h0, z0) of the crack front

9. The expressions “quenched” and “thermal” will be used here to designate a noise that depends on
the position and the time respectively.
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Figure 4.2. Trajectory of a point M of
the crack front. While the point is mov-
ing over a distance Δx along the x-axis,
it is also moving over the distance Δh =
l1−β
x Δxβ along the y-axis (see Eq. (4.14)).

is moving forward in the plane (x, z) 10 to another point M′(x0 + Δx, h0 + Δh, z0)
(see Fig. 4.2). According to equation (4.14), when the point M of the crack front
propagates over a distance Δx along the x-axis, its typical height moves over
a distance Δh = �1−β

x Δxβ along the h-axis11. As a result, the variation of the
normalized noise η = η/

√〈η2〉 felt by the crack tip for a small increment Δx is

η(M′) − η(M) = ��ηM · �dM =
∂η

∂x
dx +

∂η

∂h
dh =

∂η

∂r
(dx + �1−β

x dxβ) � dx
rη
+
�1−β

x dxβ

rη
.

(4.15)

The first term in the noise variation plays the role of the “thermal” contribution to
the fluctuations while the second one corresponds to the “quenched” contribution.
We have considered here an isotropic material so that the spatial correlation length
rη of the noise η(x, h, z) is the same in all directions. Thus, the gradient of the
normalized noise ∂η/∂r = 1/rη is also the same in all directions.

Let’s consider now a point M propagating over the distance rη along the x-
axis. It will thus feel a normalized “thermal” fluctuation of the order of unity.
According to equation (4.15), it will also undergo a “quenched” fluctuation of
amplitude �1−β

x rβη/rη caused by its propagation along the h-axis. This incremental
path is represented Figure 4.2. As a consequence, the ratio (rη/�x)1−β is a good
estimate for the relative strength of the thermal noise compared to the quenched
noise. Assuming that the noise η can be written without loss of generality as the
sum of its thermal and quenched contribution, equation (4.13) becomes

∂h
∂x
= A(ν)

∫ +∞

−∞
h(x, z′) − h(x, z)

(z′ − z)2 dz′ + ηq(h, z)+ ηt(x, z) + F0 (4.16)

with 〈ηq(h, z) ηq(h′, z′)〉 = DΔ(h− h′)Δ(z− z′) and 〈ηt(x, z) ηt(x′, z′)〉 = D (rη/�x)2(1−β)

Δ(x − x′) Δ(z − z′). Here, D is the strength of the disorder η(x, h, z) and Δ(u) is a
rapidly decreasing function of u for u > 0 with Δ(0) = 1 and decays exponentially
to zero over a distance rη 12. The experimental measurement of rη (typical length

10. Using the “criterion of local symmetry” that is a two-dimensional criterion to derive equa-
tion (4.13), we limited previously our model to cracks for which all the points of the front propagate
in the plane (x, y). Motion along the z-axis are in fact forbidden.
11. We use here the topothesy �x, or scale at which Δh is equal to Δx, in order to work with equalities
and not proportionality relations.
12. We suppose that the disorder is spatially uncorrelated in the material (see the discussion in Sect. 2
in this chapter).
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scale of the disorder in the material) and �x (related to the roughness amplitude) are
of the same order for glass ceramics so that thermal and quenched contributions
of the noise are also of the same order. The consequences on the fracture surface
morphology are now discussed.

Fracture surface morphology. The morphology of the fracture surface is
given by equation (4.13). We made the hypothesis that it can be written as
equation (4.16). We have then shown that thermal and quenched noise have
roughly the same amplitude. This last equation describes the motion of an elastic
line h(z) that “creeps” — the x coordinate playing the role of time — in a random
potential ηq due to the thermal fluctuations ηt. The geometry of the line — and
so the crack surface morphology — is described by its 2D correlation function
Δh(Δz, Δx) that follows a Family–Vicsek scaling (see Eq. (4.14)) involving two in-
dependent scaling exponents ζ and β. Let’s focus at first on the value of ζ. Recent
numerical works [79,80] lead to the following picture: the line is characterized ei-
ther by its properties at equilibrium (ζeq = 1/3 [81]) or at the depinning threshold
(ζdep = 0.39 [82,83]) 13. These properties are observed at different length scales and
ζeq = 1/3 (resp. ζdep = 0.39) corresponds to small length scales (resp. large length
scales). Moreover, one can also predict that the geometry of the line at very short
distances is governed by its thermal fluctuations so that ζ = ζth = 0 (logarithmic
correlation of height). On the other hand, because of the finite velocity of the line,
quenched disorder acts effectively as a thermal noise at very large length scales
so that the roughness exponent is also ζth at these distances [39]. These results
can be summarized by the phase diagram shown in Figure 4.3.

Figure 4.3. Phase diagram giving the geom-
etry of an elastic line driven in random po-
tential at finite temperature. The roughness
exponent of the line — perpendicularly to the
crack growth direction of the fracture surface
— depends both on the length scale Δz and
the driving force F. The relevant situation
to predict the fracture surface morphology
(Eq. (4.16)) corresponds to F0 � Fc.

Two features of the equation governing the morphology of fracture surfaces
are crucial here: (i) F0 is very small so that the effect of the finite velocity (that
tends to zero when the driving force tends to zero) acts at very large length scales;

13. For an elastic line in a quenched random potential, the geometry that minimized its energy (elastic
plus potential) is characterized by the roughness exponent at equilibrium ζeq. Considering now a line
driven by an external constant force in a quenched potential, its motion is possible only for F > Fc.
For F = Fc corresponding to the depinning threshold, the line is characterized by the roughness
exponent ζdep.
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(ii) the thermal and quenched contributions of the noise are of the same order —
at least for the case of glass ceramics — so that the effect of thermal fluctuations
at short distances is confined to very small length scales.

For these reasons, the expected roughness exponent resulting from the path
equation of the crack front is ζeq at small length scales and ζdep at larger ones.
Therefore, the large scale exponent expected on fracture surfaces of brittle ma-
terials corresponds to the one measured at the pinning/depinning transition
(ζdep = 0.39). The corresponding growth and dynamic exponents are β � 0.50
and z � 0.80, respectively [84]. Their values coincide, within the error bars, with
the experimental measurements ζ = 0.42± 0.05 and β = 0.48± 0.05 made on glass
ceramics and sandstone fracture surfaces, that are archetypes of brittle materials
(see Annexe A).

Concluding remarks. Within the framework of the linear elastic fracture me-
chanics, we have shown that a single crack propagating quasi-statically in a brittle
material leads to a self-affine fracture surface with, at large scales, a roughness
exponent ζ = 0.39 14. According to equation (4.14), the two-dimensional scaling of
the fracture surfaces is also predicted: its anisotropic scaling properties are charac-
terized by a slightly larger scaling exponent β = 0.50 along the crack propagation
direction. Its 2D correlation function is expected to follow Family–Vicsek scaling.
These results are in agreement with the experimental measurements made on
glass ceramics, archetype of brittle materials, at least at scales larger than their
bead size (see Annexe A). We now compare the predictions of our theoretical
model with the experimental facts on fracture surfaces established in Chapter 3.

2. Fracture surface of porous materials:
interpretation

In the previous section, the equation of the path of a crack propagating in an ideal
elastic brittle disordered material has been derived from Linear Elastic Fracture
Mechanics. Within the hypothesis of quasi-static crack propagation, the fracture
surface is predicted to display anisotropic Family–Vicsek self-affine properties
characterized by the scaling exponents ζ = 0.39 and β = 0.50 along the crack front
and the crack growth directions respectively. This result is consistent with the
experimental measurements made on glass ceramics which is very close to an
“ideal” elastic brittle material at scales larger than its bead diameter.

In this section, we go beyond the comparison between the experimental expo-
nents and those predicted by the model. We will show that this model reproduces

14. Previous models discussed in references [40, 41] and based on the same theoretical framework
predicted logarithmic correlations for the height fluctuation of fracture surfaces. The main difference
between these models and the present analysis is the properties of the disorder: we have considered a
more general case where the disorder of the material is three dimensional. Especially, the h-dependence
of the mechanical properties of the material are not neglected as in references [40, 41]. This is crucial
because in the latter case, the disorder would play the role of an effective temperature. Therefore, the
crack surface morphology would be given by the line fluctuations at thermal equilibrium.
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quantitatively many other statistical properties of experimental fracture surfaces.
This section has two purposes: (i) to validate this model for describing crack
propagation in brittle materials. In particular, many hypothesis of the theoretical
analysis of brittle crack propagation will be directly confronted to the experimental
fracture surfaces through appropriate statistical analysis of their roughness; (ii) to
discuss the physical origin of the properties of crack roughness.

We will show that analyzing the roughness of crack surfaces through the pro-
posed theoretical model can provide information on the broken material. Before
this study, we return to the main hypothesis of this model of brittle cracks.

Effect of the crack growth velocity. One of the basic assumptions of the
model proposed in Section 1 is the quasi-static propagation of the crack within the
material, i.e. vcrack � vsound. If the crack growth velocity vcrack is a non negligible
fraction of the sound speed vsound, inertial effects occur and another approach is
required [85] (see for example [41] for the theoretical analysis of the implication
on fracture surface roughness). In Table 4.1, the crack growth velocities and the
sound velocity are listed as a function of their porosity for the samples used in
the present study. They have been measured using the experimental technique
described in Annexe A.

Table 4.1. Crack growth velocity vcrack and velocity of the sound vsound for glass ceramics
samples with various porosities φ and the same mean glass bead diameter d = 116 μm
broken either in the Brazilian test geometry (Dyn.) or in the TDCB geometry (Q.S.). The
hypothesis of quasi-static crack propagation (vcrack � vsound) is always valid.

φ = 3% φ = 7% φ = 15% φ = 25% φ = 26%
Dyn. Q.S. Q.S. Dyn. Q.S.

vcrack �1 m s−1 40 mm s−1 50 μm s−1 �1 m s−1 2 mm s−1

vsound 3.35 km s−1 3.31 km s−1 3.23 km s−1 3.11 km s−1 3.11 km s−1

Sound velocity in the glass ceramics decreases slightly with the porosity but
remains on the order of 3 km s−1, at least three orders of magnitude larger than
the crack growth velocity: this justifies the quasi-static approximation used to an-
alyze the crack propagation in the theoretical investigation of the fracture surface
morphology.

It must also be emphasized that a broad range of crack growth velocities has
been investigated. As underlined in Chapter 3, this parameter apparently does
not influence the scaling properties of the fracture surfaces for the various samples
of glass ceramics investigated. This observation questions previous theoretical
analysis [36] that described the crack front propagating in a disordered material
as a moving line close to its depinning transition. In that case, one expects to
observe two different self-affine regimes on the fracture surface: at small (resp.
large) length scales, the scaling exponents correspond to an effective quenched
noise (resp. thermal noise). The crossover length scale between these two regimes
is expected to decrease with the crack growth velocity. This effect is not observed
although the velocities investigated vary over more than five decades.
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Moreover, the roughness amplitude depends very weakly on the velocity.
Plotted on the same graph (see Fig. 3.11) as a function of the porosity, these
amplitudes lie on the same linear curve although these measurements correspond
to different crack growth velocities. This is in perfect agreement with one of the
major prediction of the model presented in Section 1: the trajectory and velocity of
the crack front are fully decoupled. The parameters involved in the path equation
(Eq. (4.12)) — some properties of the disorder in the material and its Poisson’s
ratio — depend on the material but not on crack growth velocity. It can be noted
that this equation holds only in the quasi-static limit: as soon as the crack growth
velocity approaches the velocity of sound, the dynamics of the crack front will
influence its trajectory, leading for example to the patterns observed on mist and
hackle zones on glass fracture surfaces.

Time symmetry of fracture surfaces. The morphology of the fracture sur-
faces has been observed to be independent of the crack growth velocity. This is in
agreement with the theoretical argument showing the decoupling between the dy-
namic (or in-plane perturbations) and the trajectory (out-of-plane perturbations)
of the crack. After discussion with J.-P. Bouchaud from CEA-Saclay, we decided to
go deeper into this analysis and to tackle the following related problem: because
of clear geometrical reasons, the in-plane motion of the crack is oriented along
the x-axis toward the positive value of x (see Fig. 4.1). Is there any signature of
this directionality on the out-of-plane perturbations of the crack? In other words,
is it possible to distinguish between backward and forward of crack propagation
from the analysis of a fracture surface?

The issue of the determination of the orientation of the crack propagation
from the fracture surface morphology has been already addressed in Section 3: it
is possible to take advantage of the anisotropic scaling properties of the fracture
surface to know after complete rupture the propagation orientation of the crack
that led to the failure (see the patent in [62]). To test the possible presence of a
signature of the direction of the crack propagation on the fracture surface, we will
use statistical tools developed by Pomeau [86]: instead of using the classical time
two points correlation function 〈h(t) h(t + Δt) − h(t)h(t − Δt)〉t, we will compute a
four points correlation function defined as

ψ(Δt) = 〈h(t) h(t+ 2Δt) − h(t + Δt) h(t + 3Δt)〉t (4.17)

which is a priori not invariant under the transformation Δt → −Δt and thus
sensitive to the propagation direction. In the following, the correlation function
ψwill not be computed on h(x = t, z) where x and z are the propagation and crack
front direction respectively, but on its derivative ∂h(x = t, z)/∂t 15. The correlation

15. We compute the correlation function on the derivative in time — or in x — of the studied signal
in order to have a stationary signal with a constant mean value. This justifies the use of an average
over the time t as required in the definition of ψ given in equation (4.17). Indeed, for the signals that
will be studied in the following, i.e. elastic line propagating in a random medium, h(t, z) is increasing
in average while its derivative ∂h/∂t keeps a constant mean value.
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Figure 4.4. Correlation function as de-
fined in equation (4.17) computed on sim-
ulated signals ∂hz(t)/∂t where hz(t) is a
solution of the Edwards-Wilkinson equa-
tion with thermal (◦) and quenched dis-
order (�). The equation of motion of the
line is invariant under the transformation
Δt to −Δt only in the first case. The signa-
ture of these properties is obvious on the
variations of correlation function ψ.

function ψ is calculated for various values of z and then averaged over these z
values.

To illustrate the properties of this correlation function, one can compute it
on signals for which we know a priori their properties of symmetry. Figure 4.4
displays the correlation function as defined in equation (4.17) for a signal h(t, z) so-
lution of the Edwards-Wilkinson equation [87] with either thermal (◦) or quenched
disorder (�) (see footnote 9). While the equation with thermal disorder is invariant
under the transformation Δt to −Δt, the solution of the equation with quenched
disorder is expected to be asymmetric in time (see footnote 16). The signature of
this asymmetry is obvious on its correlation function represented in Figure 4.4.

We use now this statistical tool to reveal a possible signature of the propagation
sense of the crack front on the roughness of fracture surfaces of porous materials.
Figure 4.5 displays the variations of this correlation function computed on the
experimental height map h(x, z) of the fracture surface of glass ceramics with
porositiesφ = 26% (Fig. 4.5a) andφ = 7% (Fig. 4.5b). In both cases, the mean bead
diameter that corresponds also to the pixel size of the height map of the surface
is � 100 μm. We do not observe any significant signature of a time asymmetry
as found on simulated signals in Figure 4.4. Moreover, the slight deviations of
ψ to the zero value were found to be uncorrelated with the physical direction of
propagation measured during the fracture test. They are interpreted as statistical
fluctuations.

This result agrees with the structure of the equation of trajectory proposed in
Section 1. Indeed, the latter is invariant by the transformation x→ −x 16. Finally,
let us note that at scales smaller than the grain size where the surface is not self-
affine, a signature of the propagation sense can be observed as shown in the insert

16. To realize it, let’s come back at first on the Edwards-Wilkinson equations. With a thermal disorder,
one can use the variable change h = ĥ + F t so that equation ∂h/∂t = ∂2h/∂z2 + η(z, t) + F becomes
∂ĥ/∂t = ∂2ĥ/∂z2+η(z, t) which is invariant by the transformation t to −t. This change of variable in the
case of the Edwards-Wilkinson equation with a quenched disorder η(h, z) leads to a noise η(ĥ + F t, z)
which is not symmetric in time. The constant term F0 in the equation of trajectory of the crack front
(Eq. (4.13)) is so small that it can be neglected. Thus, the variable change h = ĥ + F t is not required
and the equation is symmetric with respect to x.
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Figure 4.5. Correlation functionψ as defined in equation (4.17) computed on experimental
signals ∂h/∂x and averaged over various values z where h(x, z) is the fracture surface of
glass ceramics with porosities φ = 26% (a) and φ = 7% (b). The x-axis corresponds to the
direction of propagation. In the both cases, we do not observe any significant signature of
a time asymmetry as found on simulated signals in Figure 4.4. The analysis performed on
a fracture surface with a smaller resolution (pixel size of 20 μm in insert instead of 100 μm
in the main graph) suggests that a sense signature could be found on the fracture surfaces,
but for length scales that are not in the self-affine domain (Δx < 100 μm).

of Figure 4.5b. It displays the variations of the correlation function computed on
the height map of the same fracture surface that in the main panel, but with a
better lateral resolution (pixel size of 20 μm). The curves are clearly asymmetric
in the range −100 μm < Δx < 100 μm similar to those observed in Figure 4.4 for
simulated signals with time-asymmetry properties.

Three concluding remarks result from this statistical analysis of the fracture
surfaces:

(a) their roughness, i.e. the out-of-plane perturbations of the crack front, is
found to be symmetric with respect to the direction of propagation. In
contrast, the in-plane perturbations of the crack front are not symmetric
by the transformation x → −x. This confirms the decoupling — at least
for small perturbations — between these two problems as predicted by
the Linear Elastic Fracture Mechanics: the dynamics of the crack and its
trajectory are independent;

(b) fracture surfaces are symmetric by the transformation x → −x. Therefore,
the corresponding path equation of the crack front must be invariant by the
transformation x → −x. To derive this equation in Section 1, we compared
the various contributions to the mode II stress intensity factor. It was shown
that the effect of the fracture surface morphology — the “memory” term in
equation (4.10) — on the path chosen by the crack is negligible. Contrary
to the other terms involved in the path equation, this one is not symmetric
when x is changing to −x. We confirm by the present analysis that the
“memory” term is negligible;
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(c) the roughness of the fracture surface cannot reveal all the history of the
failure of a material. In particular, if the orientation of the crack propagation
is possible through a statistical analysis of fracture surfaces [62], the deter-
mination of its direction is impossible, at least on length scales for which
the fracture surface is self-affine. This result holds for fracture surfaces of
porous materials that exhibit a low roughness exponent ζ � 0.4 but also for
the broader range of materials studied in Chapter 2 with ζ = 0.75 17. How-
ever, a determination of the crack propagation direction is possible when
the path equation of the crack front does not hold, i.e. at scales smaller than
typical disorder length scale in the material beyond the self-affine domain
of crack surfaces18.

Inverse method on fracture surfaces. Here, we will compare quantitatively
the model of brittle crack and the experimental fracture surfaces. After discussion
with J.-P. Bouchaud, we decided to follow this procedure: from the experimental
fracture surfaces, we determine the coefficients of equation (4.13) that describes
its roughness. The values obtained for the coefficients are then compared to
a priori expectations. This methodology is shown to be useful both for measuring
the Poisson’s ratio of a material as well as for quantifying some properties of its
mechanical disorder.

Measure of the Poisson’s ratio from the roughness of fracture surfaces: here, we
will give a method to determine the Poisson’s ratio ν of a brittle material by
measuring the coefficient of the elastic restoring force A(ν) = (2 − 3ν)/[π(2− ν)]
involved in the path equation of the crack front. This coefficient is extracted
from the experimental fracture surfaces through a method inspired by the work
of Lam and Sanders [88]. They estimated the coefficients of Langevin equations
∂h/∂t = AH(z, {h}) + η(z, t) from profiles h(z, t) solution of these equations. We
will use this inverse method in a different context because the noise involved in
equation (4.13) depends on the space variables x, h and z and not on the time t.
The method is the following: at any time t and any position z (resp. any point on
the fracture surface (x, z)), one can estimate both H(z, {h}) and ∂h/∂t (resp. ∂h/∂x).
According to the associated equation, the mean value of these quantities are
proportional providing that 〈η(z, t)〉z,t = 0 (resp. 〈η(z, h, x)〉z,h,x = 0), irrespective of
the value of ∂h/∂t (resp. ∂h/∂x). This assumption is clear for a thermal noise but
could be questionable for a quenched noise for which the noise value at a point
of the line can be strongly correlated with the local line geometry at this point.
The assumption that this effect can be neglected is made a posteriori by comparing
the results of the method with expected values. The coefficient of proportionality

17. The time-symmetry of these surfaces is not shown here. This point will be discussed in the
Section 4 devoted to these kinds of surfaces.
18. One mentions also that once the field of local orientation of propagation on a fracture surface is
determined through the method proposed in reference [62], the propagation sense can be deduced
from the geometry of this field, the crack propagating from zone of high divergence to low divergence
(see Ref. [62] for details).
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Figure 4.6. Variation of the angle ∂h/∂x with respect to the elastic restoring force∫
[(h(x, z′) − h(x, z))/(z′ − z)2]dz′. These quantities are estimated on all the points of a frac-

ture surface of glass ceramics with φ = 26% for δz = δx = 100 μm. Even though the
drawn quantities seems very slightly correlated — they are expected to be proportional
(see Eq. (4.13)) within the noise η which explained the important scattering of the data —,
we make a linear fit of the points. It leads to ∂h/∂x = A

∫
[(h(x, z′) − h(x, z))/(z′ − z)2]dz′

(dashed line) with A � 0.2.

between ∂h/∂x and

H(z, {h}) =
∫

h(x, z′) − h(x, z)
(z′ − z)2 dz′

gives an estimate of the coefficient A in front of the elastic interaction term
H(z, {h}) 19. Figure 4.6 shows the variation of ∂h/∂x with respect to

∫
[(h(x, z′)−

h(x, z))/(z′ − z)2]dz′ for a fracture surface of glass ceramics with a porosityφ = 26%.
These two quantities are estimated in every point (zi, xi) of an experimental frac-
ture surface made of N × N points representing a field of 100N × 100N μm2 with
N � 300 by the relations ∂h/∂x = (h(xi+1, zi) − h(xi, zi))/δx with δx = 100 μm and

∫
h(x, z′) − h(x, z)

(z′ − z)2 dz′ =
j=N∑
j=1

h(xi, zj) − h(xi, zi)

(zj − zi)2 .

Even though the drawn quantities seems very slightly correlated — they are
expected to be proportional (see Eq. (4.13)) within the noise η which explained
the important scattering of the data —, we make a linear fit of the points. It leads
to ∂h/∂x = A

∫
[(h(x, z′) − h(x, z))/(z′ − z)2]dz′ (dashed line) with A � 0.2.

To test the robustness of the method, we apply the same procedure after having
coarse grained the profiles over a length δz 20. The coefficient A is expected to be

19. Note that the constant term F0 of equation (4.13) cannot be measured through this method because
the mean plane of the fracture surface is systematically subtracted to the height map.
20. The coarse graining of the profiles is obtained by truncating their Fourier components with
wavelengths smaller than δz. See references [88, 89] for the details of the procedure.
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independent of the coarse graining length scale δz, provided that the associated
equation is correct [88, 89]. The value obtained for the coefficient A is plotted
in Figure 4.7 as a function of δz for four glass ceramics samples with different
porosities. The coefficient A depends very slightly on the coarse graining length
scale as long as this one lies within the self-affine domain 100 μm < δz < 1 mm.
This is a strong argument in favour of the proposed equation.
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Figure 4.7. (Color online) Estimation of the coefficient A of equation (4.13) from the
experimental fracture surfaces of four glass ceramics. Their value does not depend on the
length scale of the coarse graining of the profiles over their self-affine domain 100 μm <
δz < 1 mm as expected if equation (4.13) describes the fracture surface morphology. The
obtained value A(ν) = (2 − 3ν)/[π(2 − ν)] � 0.22 depends very slightly on the porosity. This
value is quite comparable with the value A � 0.24 (plotted in dashed line) expected using
the experimental value ν = 0.21 obtained by measuring the shear and compressive waves
speed in glass ceramics samples of various porosities (see Tab. A.1).

On the other hand, we observe that the coefficient A depends very slightly
on the sample porosity. Thus, one gets A(ν) = (2 − 3ν)/[π(2 − ν)] � 0.22 indepen-
dently of porosity. To test the relevance of this value, we measure the Poisson’s
ratio in our samples. The propagation velocity of compressive and shear waves
are measured and we obtain a value ν � 0.21 irrespective of the glass ceramics
porosity (see Tab. A.1). The corresponding value for the coefficient A is therefore
A = (2 − 3ν)/[π(2 − ν)] � 0.24. The expected value for A is plotted in Figure 4.7
(dashed line) to enable a comparison with the results of the inverse method: the
value of the coefficient A obtained from a direct measurement of the Poison’s
ratio and the value obtained from the analysis of the fracture surfaces are very
close (within less than 10%). This agreement confirms experimentally that the
non-local elastic interaction term in equation (4.13) describes the elastic force of
the crack front in glass ceramics. This also confirms that the other terms in the
development of KII (see Eq. (4.10)) can be neglected in first approximation.

Properties of the disorder: we have estimated the coefficient of the elastic restor-
ing force and therefore the Poisson’s ratio of glass ceramics through the statistical
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Figure 4.8. (Color online) (Left) 3D representation of the disorder η(x, z) on a fracture
surface of a glass ceramics with φ = 26% obtained by the inverse method described in the
text using equation (4.18). (Right) The solid and dotted lines are the spatial correlation
functions computed along the z-axis and x-axis respectively.

analysis of the crack roughness. The value is found in agreement with those
measured directly for glass ceramics samples. Now, we can go further in the
inversion process and analyze the properties of the disorder term η(x, h, z) in the
equation of crack propagation. This method should give interesting information
on the mechanical disorder of the material. These properties are estimated here
for glass ceramics samples with various porosities.

Equation (4.13) leads to the relation

η(x, h, z) =
∂h
∂x
− A
∫

h(x, z′) − h(x, z)
(z′ − z)2 dz′ (4.18)

where the coefficient A is taken equal to the value measured previously for each
porosity. It should be emphasized that the noise η(x, y = h(x, z), z) obtained by this
analysis corresponds to the one encountered by the crack front during its motion,
and can be biased compared to the one describing the structural disorder of the
glass ceramics21. From equation (4.18), it is possible to draw a map of η(x, z) by
measuring at each point of the fracture surface, the angle ∂h/∂x and the elastic
restoring force22. Figure 4.8 displays a 3D representation of a typical disorder
η(x, z) obtained on the surface of a fractured glass ceramic (φ = 26%).

To study quantitatively its properties, its spatial correlation functions

C(Δx) =
〈η(x + Δx, z)η(x, z)〉x,z

〈η(x, z)2〉x,z
21. See for example reference [90] for a comparison between the disorder of the material and the
effective noise encountered by the moving crack front in the slightly different context of interfacial
fracture.
22. In fact, we can measure η(x, h(x, z), z) where h is imposed by the position of the crack front. In
other words, we do not measure the disorder of the material in a given plane (x, z) but the disorder
on the rough surface defined by the crack front trajectory.
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and

C(Δz) =
〈η(x, z + Δz)η(x, z)〉x,z

〈η(x, z)2〉x,z
are computed along the x- and z-axis respectively. The curves corresponding to
the same sample (φ = 26%) are shown in Figure 4.8. This analysis gives qualita-
tively similar results for other porosities. The correlation function along the crack
propagation direction becomes uncorrelated after a distance Δr � 100 μm. This
is in rather good agreement with the length scale of mechanical heterogeneity
expected for a porous material characterized by its grain size d � 116 μm. On
the other hand, the function η(x, h(x, z), z) exhibits long-range correlation along
the crack front direction. This result is clearly incompatible with the isotropic
properties of the sample. However, as mentioned in footnote 22, the measured
disorder corresponds to that encountered by the crack front during its propaga-
tion. It can have properties differing from those of the material. Such a structure
would have been certainly impossible if the disorder used in the path equation
of the crack front (Eq. (4.13)) had been annealed and not quenched. Indeed, in
a recent work [91], Bolech and Rosso have considered the problem of an elastic
line of position x = h(z) in a random quenched potential U(z, x) at the depinning
threshold (F = Fc). They showed that the noise η(x = h(z), z) along the line is
strongly correlated, characterized by a spatial correlation function with a power-
law decreasing tail. This was interpreted as a signature of the critical transition
of pinning/depinning. This suggests that the measurement of noise correlation
along the crack front is also reminiscent of its subcritical motion.

After studying the spatial distribution of the disorder measured on the glass
ceramics, let us now focus on its magnitude. Figure 4.9 displays the distribution
of η measured on two fracture surfaces corresponding to two porosities. Each
curve is well fitted by a Gaussian distribution although they display different
second order moments σ that characterize here the amplitude of the disorder. In
the inset of Figure 4.9, this standard deviation σ is plotted as a function of the
porosity of the broken sample. The latter is found to be roughly proportional to
the porosity.

We recover the simple picture that the more porous the glass ceramics is,
the more disordered it appears from a mechanical point of view — the limiting
case being the homogeneous material corresponding to φ = 0. We suggest here a
simple quantitative explanation of this variation. At first, one recalls the definition
η = 2Kdis

II /〈KIc〉of the disorder given in Section 1. Therefore, the standard deviation
σ of η is given by δKdis

II /〈KIc〉where δKdis
II is the standard deviation of the toughness

Kdis
II . Let us assess first the mean toughness 〈KIc〉 of the glass ceramics. Using

equations (A.3) and (A.7) giving the variation of their Young’s modulus E(φ) and
their fracture energy GIc(φ), one gets the variation of their toughness

〈KIc〉(φ) =
√

G(φ)E(φ) =
K0

Ic√
1 − c

2
3

√(
1 − 2φ

) (
1 −
(

c
1 − φ

))
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Figure 4.9. Distribution of the disorder η of two samples of glass ceramics with two dif-
ferent porosities measured from the fracture surfaces using the inverse method suggested
in [88]. The disorder is Gaussian with standard deviation σ, which is plotted in inset with
respect to the porosity φ and found to be roughly given by σ � 1.8φ (dashed line). The
theoretical estimation of the standard deviation of the disorder in glass ceramics proposed
in this paragraph is also plotted in the inset (solid line).

where K0 is the toughness of the glass and c = 0.63. Note that this expression
has been validated experimentally (see the insert of Fig. A.3 in Annexe A). To
estimate δKdis

II , one has to notice that the spatial fluctuations of any quantity Q
in a porous material made of solid grains characterized by Q = Q0 in the bulk
and Q = 0 in the voids are given by δQ = Q0

√
φ(1 − φ) 23. Finally, one gets the

following estimate of the standard deviation

σ � 2δKdis
II

〈KIc〉 =
2K0

II

K0
Ic

√√√√√√√√√√ φ(1 − φ)
(
1 − c

2
3

)

(1 − 2φ)

⎛⎜⎜⎜⎜⎝1 −
(

c
1 − φ

)2/3⎞⎟⎟⎟⎟⎠
.

The coefficient 2K0
II/K

0
Ic is not simple to estimate because there is not clear physical

interpretation of the toughness in mode II. We have simply taken this coefficient
equal to 1/2 and plotted the expected variations of σ with respect to φ in solid
line in the insert of Figure 4.9. Experimental points and the theoretical curve are
in correct agreement.

Using the inverse method presented in [88], we have determined the coef-
ficients of equation (4.13) from the analysis of the morphology of the fracture
surface. The obtained values are quite reasonable in view of the mechanical prop-
erties of the glass ceramics. This supports the relevance of the model of crack

23. One can calculate the standard deviation of the spatial distribution of the quantity Q of a two-phase
material characterized by Q = Q0 and Q = 0 in the solid and empty phase, respectively. One gets
(δQ)2 = 〈Q2〉 − 〈Q〉2 = V−1

∫
V Q(M)2dM− (V−1

∫
V Q(M)dM)2 = V−1

∫
Vsolid

Q2
0dM+V−1

∫
Vvoids

02dM−
(V−1(Vsolid × Q0 + Vvoids × 0))2 = (1 − φ)Q2

0 − (1 − φ)2Q2
0 that leads to δQ = Q0

√
φ(1 − φ).
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propagation in disordered media discussed in Section 1. The previous result sug-
gests also that fracture surfaces could be used as a tool to measure the disorder
properties of a material. Using the preceding method, it is possible to measure
both the correlation length rη of the disorder and its strength σ from a statistical
analysis of the roughness of their crack surfaces. This method of characterization
will be greatly improved when the link between material disorder and disorder
encountered by the crack front will be theoretically made.

In the next part, we will focus on the amplitude of the crack surface roughness.
This quantity is reminiscent of the properties of the material disorder, i.e. rη and
σ, studied previously. At first, the relation between this property of fracture
surfaces and the material properties is established. Then, we will test it on the
experimental case of glass ceramics.

Roughness amplitude. One of the most striking features of the experimental
results reported in Chapter 3 is the robustness of the roughness exponents of the
fracture surfaces with respect to the type of porous materials. On the other hand,
the amplitude of the roughness — the proportionality coefficient in the power-
law relation between the distance between two points of the fracture surface and
their height difference — was shown to be sensitive to structural properties of
the material such as the grain size d or the porosity φ. The analysis of various
samples of glass ceramics led to

Δh(d)/d � 1.7φ (4.19)

where Δh(Δz) is the 1D correlation function computed along the direction of the
crack front on the fracture surfaces (see Sect. 3 in Chap. 3 for details). This relation
was shown to reproduce rather well the experimental results irrespective of the
crack growth velocity. This point was then discussed in the first paragraph of
Section 2 and shown to be in agreement with the suggested model of crack prop-
agation in brittle materials. In the present paragraph, we use again this model:
we will compare theoretically the relation between the structural properties of the
disordered brittle material and the amplitude of the fracture surface roughness.
This prediction will be then compared to the experimental results summarized
by equation (4.19) obtained on the model disordered brittle material discussed in
this chapter, the glass ceramics.

The morphology of the fracture surfaces has been shown to be well described
by the motion of an elastic string creeping within a quenched disorder (see
Eq. (4.12)). Its scaling properties along the crack front direction are given by
the properties of this elastic string and characterized by ζ = 0.39. The amplitude
of the roughness along this direction is also given by the geometry of the string.
We investigate here this geometry at the depinning threshold — driving force
applied to the line is equal to the critical force (F = Fc) — and not in the creep
regime (F < Fc) while assuming that the roughness amplitude is comparable in
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both situations. In the first situation, the correlation function of the string is

Δh = k0rη
(
Δz

LLarkin

)ζ
. (4.20)

Here, k0 is a constant of the order of unity, rη is the correlation length of the
disorder, ζ is the roughness exponent and LLarkin is the Larkin length, i.e. the
length scale at which the elastic restoring force is equal to the pinning force of the
disorder. For the model of crack propagation with non-local elasticity, one gets
ζ = 0.39 and LLarkin = rη (A/σ)2 where A = (2 − 3ν)/[π(2− ν)] is the coefficient of
the elastic restoring force. This leads to

Δh = k0r1−ζ
η

(
σ
A

)2ζ
Δzζ. (4.21)

To obtain the constant k0, we solve numerically (see the following paragraph for
details) the equation giving the path of the crack (Eq. (4.13)) with all the coefficients
— rη, σ, and A — equal to unity. The approximation of a 2D quenched disorder
η(h, z) instead of the noise η(x, z, h) is used. The solution is characterized by its
height correlation function Δh∗(Δz∗) = k0(Δz∗)ζ with k0 = 0.35 ± 0.01. Using the
following estimates derived both theoretically and experimentally (see previous
paragraphs) σ � 1.8φ, A = 0.22 and rη � d/2 for a glass ceramics of porosity φ
and a mean bead diameter d, one gets from equation (4.21) the expression of the
roughness amplitude for these materials

Δh(d)/d = 1.18φ2ζ. (4.22)

First at all, this confirms theoretically what was observed experimentally: Δh(d)
is proportional to d and the coefficient depends only on the porosity φ of the
material. The variations of Δ(d)/d with φ are plotted in Figure 4.10 and compared
to the experimental measurements. The agreement between both curves is rather
good. Let us note that the model proposed here uses no adjustable parameters.
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Figure 4.10. Variation of the roughness
amplitude Δh(d)/d of fracture surfaces of
glass ceramics samples with respect to
their porosity φ. The solid line is the the-
oretical prediction of the model proposed
in this chapter. Note that this curve has
been derived without any adjustable pa-
rameters.
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The apparent linear variation of the amplitude with φ observed experimentally
— compare equations (4.22) and (4.19)) — is rather close to the expected variation
in φ2ζ � φ0.8. However, the amplitude is overestimated at low porosities. The
possible decreasing trend of the correlation length rη of the disorder with φ could
be responsible for this slight discrepancy.

In this paragraph, we have shown that the amplitude of the roughness in the
case of a brittle rupture is set by two microstructural parameters of the material:
the “strength” σ of the disorder in the material and its spatial correlation length rη.
In the case of glass ceramics, we established the relation between these two
parameters and the porosity φ and the bead diameter d which could be varied
in a controlled manner. Therefore, it was possible to check experimentally the
relation between the microstructure and the fracture surface morphology. It must
be emphasized that this relation — equation (4.21) especially — applies to any
material after a brittle fracture. Therefore, the roughness amplitude reflects the
properties of the disorder in the material while the roughness exponent will be
shown to be determined by the rupture mode of the material.

Height variation distribution. In this paragraph, we will interpret an impor-
tant feature of fracture surfaces of porous materials using the model described
in the present chapter: the distribution of height differences PΔz(Δh) between
two points for various distances Δz collapses after normalization by Δzζ onto a
Gaussian distribution (see Sects. 4 and 2, Chap. 3). In other words

P(Δh) = 1/Δzζ g(Δh/Δzζ) (4.23)

where g is a Gaussian distribution. In the model, the crack surface is given by an
equation of motion of a line in a disordered medium which leads to a mono-affine
geometry of the line [65] so that the collapse described in equation (4.23) with a
unique exponent ζ is expected. More interestingly, one can wonder whether such
a model can reproduce, in addition to the value of the roughness exponent and
to the roughness amplitude, the shape of the distribution of the height variations.
This is a crucial point because all the geometrical features of the surface would
then be explained24. To answer this question, we shall solve numerically the
equation of trajectory25 proposed in the model and then compute the distribution
P(Δh). Two types of simulation are used. Equation (4.12) is solved through a
Runge–Kutta algorithm. The thermal noise term in this equation is removed and
a constant driven force along the line is added so that the motion of the line above
the critical threshold (F > Fc) is simulated (see footnote 25). The second simulation
is a discrete model using an extreme dynamics: at any time step, one point of the

24. Statistically speaking, the geometry of a self-affine profile is entirely defined by the three fol-
lowing parameters: the self-affine exponent, the roughness amplitude and the distribution of height
differences.
25. The morphology of the fracture surface is set by the subcritical motion (F < Fc) of an elastic line
in a random potential (see Eq. (4.12)). Here, we will solve numerically the same equation but at the
critical threshold (F = Fc) and above it (F > Fc), the height variation distribution of the rough line
being expected to be nearly the same in all these cases [80].
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Figure 4.11. (Color online) Normalized distribution of height variations of the elastic line
on a simulated fracture surface obtained by (a) a direct resolution of the path equation of
the crack front and (b) an extreme dynamics algorithm (see text for details) for various
values of Δz. The two collapsing master curves obtained with ζ = 0.39 are found to be
Gaussian distributions p(x) = 1/

√
2πe−x2/2 represented in dashed line. The variation of

the 1D correlation functions, i.e. the second order moment of the distribution, is shown
in inset. The dashed lines are power-law fits characterized by their slope ζ = 0.39. The
coloring points correspond to values of Δz for which the distributions PΔz(Δh) have been
plotted in the main panel.

line moves forward by a unit length, the position of the moving point being given
by the weakest link on the line, defined as the point where the difference between
the elastic restoring force Fel and the pinning force η is minimum. This process
leads to line morphologies corresponding to a motion at the critical threshold
(F = Fc) [92].

The insets of Figure 4.11 display the height–height correlation function com-
puted on the profiles along the z-direction of the simulated fracture surfaces
generated by the direct resolution of the path equation (Fig. 4.11a) and the ex-
treme dynamics algorithm (Fig. 4.11b). In both cases, the measured roughness
exponent is found to be ζ = 0.39± 0.01 in agreement with the literature [82,83,93].
The normalized distributions 1/Δzζ P(Δh/Δzζ) collapse onto a single master curve
as expected for a self-affine geometry (Eq. (4.23)). The master curve is a Gaus-
sian distribution irrespective of the used numerical technique. Moreover, both
Gaussian and constant distributions of disorder were used with no effects on the
height variation distribution. This supports the robustness of this result26. This
is in agreement with the observation of Gaussian distributed variations of height
observed on the experimental fracture surfaces of porous materials.

26. This result must not be confused with the Gaussian geometry of elastic line driven in random
media observed numerically by Rosso et al. [94]: they showed that the geometry of elastic lines at the
depinning threshold is very well approximated by the one of a Gaussian signal. The latter is defined
so that all their Fourier modes are independent and Gaussian distributed. This property induces
necessarily the Gaussian distribution of height variation Δz. But the reciprocal is not true.
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Concluding remarks. The model of crack propagation in a brittle materials
proposed in Section 1 explains the three important features of the experimental
fracture surfaces of porous materials: the value of the scaling exponents, the
amplitude of the roughness and the Gaussian distribution of height variation.
In other words, one can reproduce quantitatively all the statistical properties of
fracture surfaces. Thus, one can conclude that the proposed model is able to
describe the fracture surfaces after brittle fracture in the case of glass ceramics.
The natural next step is to enlarge the investigated experimental systems: we
will focus now on other materials broken in a brittle manner for slow crack
propagation. The roughness of their fracture surfaces will be studied. Their
scaling properties will be then confronted to the predictions of the model.

3. Fracture surfaces of other brittle materials

The model of crack propagation discussed in Section 1 may explain the “universal”
features of the morphology of fracture surfaces observed on a broad range of
porous materials and described in Chapter 3. The main ingredients of this model
are a low crack growth velocity, a brittle fracture as well as a mechanical disorder
of the material so that the theoretical framework of the Linear Elastic Fracture
Mechanics in the context of disordered materials may be used. After explaining
quantitatively the crack morphology in the case of the glass ceramics chosen both
for its simple microstructure and because its properties can be adjusted, it is now
very tempting to study more complex disordered materials broken within the
same hypothesis (quasi-static and brittle fracture). Especially, do their fracture
surfaces exhibit similar properties? Can one explain them with the proposed
model? In the present paragraph, we will focus on two examples of brittle failure.
This part will present the questions that remain open about the study of fracture
surfaces resulting from a brittle failure. The complete study of the problem is left
for future work.

Silica glass at the micrometer scale. Experiments: fracture surfaces of silica
glass were investigated from the micrometer scale to the millimeter scale27. DCDC
samples broken in a tensile mode in the stress corrosion regime are used. The
experimental setup is described in detail in Section 1 in Chapter 2. The velocities
investigated are smaller than 1 μm s−1. A mechanical profilometer, with vertical
and lateral resolutions of the order of 0.5 nm and 1 μm respectively, is used to get
profiles perpendicular to the crack growth direction (z-axis). Surprisingly, at very
large length scales compared to the nanometric structure of the glass, the fracture
surface is observed to be rough as shown in Figure 4.12. The 1D correlation
function of the profiles is shown in insert of the same figure. Its power-law
behavior suggests that fracture surfaces of glass in a domain of length scales

27. The length scale of observation is crucial here. Fracture surface of silica glass has already been
investigated in Chapter 2. At scales smaller than ξ � 100 nm, it has been shown to be self-affine
characterized by a roughness exponent ζ � 0.75. We focus here on larger length scales.
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Figure 4.12. Profile extracted on a
fracture surface of silica glass broken
in the stress corrosion regime (vcrack <
10−6 m s−1).

around some tenths of millimeters are self-affine. The profiles perpendicular to
the crack growth direction are characterized by a roughness exponent on the order
of ζ � 0.3, slightly smaller than those observed for glass ceramics. Let us note that
similar observations were reported on more complex glasses [95] at length scales
between 100 nm and 10 μm.

Interpretation: since the scaling properties investigated here were observed at
length scales larger than the process zone size of silica glass (�PZ � 100 nm [14,
96]), it is natural to interpret them within the model of brittle failure developed
in Section 1. The theoretical investigation of the fracture surfaces within the
framework of Linear Elastic Fracture Mechanics leaded to the conclusion that,
in the quasi static limit, brittle failure in disordered materials leads to self-affine
fracture surfaces characterized by a “small” roughness exponent (ζ < ζdep = 0.39).
Moreover, it was shown — according to the phase diagram presented in Figure 4.3
— that three cases were possible: logarithmic correlations of height or power-law
correlations characterized either by ζeq = 1/3 or by ζdep = 0.39. The experimental
measurement of a “small” roughness exponent ζ � 0.3 on fracture surfaces of
silica glass in a domain of length scale much larger than the process zone size
seems compatible with the predictions of the model. However, it is difficult to
affirm whether these observations are reminiscent of the roughness exponent at
equilibrium or at the depinning threshold and further experimental investigations
would be required to decide.

Metallic alloy failure at low temperature. Experiments: in the previous para-
graph, fracture surfaces of silica glass has been shown to exhibit scaling properties
reminiscent of a brittle failure when observed at large length scales28. We will
focus now on the failure of a metallic alloy, archetype of ductile materials. But we
will study their fracture surfaces in a domain of length scales much larger than its
process zone size, so that we could define at these scales an equivalent material

28. Compared to its process zone size; see Section 4 for a quantitative analysis of this effect.
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Figure 4.13. (Color online) (a) Fracture surface of a metallic alloy broken at low temperature
T = 20 K. (b) Its correlation function computed along the z- and x-axis does not follow a
power-law. The corresponding curves plotted in semi-logarithmic scales suggest that the
correlations of height are logarithmic.

the behavior of which would be perfectly elastic. We will see that at these scales,
the geometry of fracture surfaces is reminiscent of a brittle mode of failure.

S. Chapuliot from CEA-Saclay kindly provided us with compact tension spec-
imen of 16MND5 steel broken at various temperatures ranging from T = 30 K
to T = 300 K 29. We will focus here only on the low temperature specimen. The
complete study is currently performed by Claudia Guerra and co-workers in the
“Fracture” Group. The height map (1024 × 1024 points corresponding to a field
5 mm × 5 mm2) of its fracture surface obtained after scanning by a mechani-
cal profilometer is represented in Figure 4.13a. The 1D height–height correlation
functions computed perpendicularly and parallel to the crack growth direction on
the surface is plotted in Figure 4.13b in semi-logarithmic scales. Surprisingly, the
correlations of height do not follow a power-law behavior, but rather a logarithmic
law in both directions

Δh(Δz) = Az log(Δz/�z) and Δh(Δx) = Ax log(Δx/�x). (4.24)

In that case, it is still possible to define a dynamic exponent as z = Az/Ax
30. Here,

the fracture surface is isotropic so that Ax � Az � 19 μm and �x = �z � 7.5 μm.
This leads to z = 1 ± 0.1.

Interpretation: at such a low temperature, metallic alloy does not break in a
ductile manner. From the measurement of its toughness KIc = 10 MPa m1/2 and
its intrinsic strength σ∗ = 1.3 GPa, one gets from equation (1.9) an estimate of the
process zone size �PZ � 20 μm in these materials at T = 30 K [97]. In other words,

29. The experimental setup is similar to the one described in Section 1 in Chapter 2 and used for
aluminum alloy samples. In particular, the crack growth velocity is rapid, but not dynamic. See
reference [97] for details.
30. The 2D correlation function of the surface follows a pseudo Family–Vicsek scaling where all power-
laws are changed by logarithms. In particular, the pseudo scaling function involved in equation (4.14)
is g(u) = log(u) with u = Δz/ΔxAx/Az that defines the dynamic exponent z = Az/Ax.

Ann. Phys. Fr. 32 • No 1 • 2007



4 Fracture surfaces for model linear elastic disordered materials 99

at scales much larger than the micrometer scale, failure in these materials is brittle.
Therefore, it is tempting to interpret the statistical properties of its fracture surface
with the model proposed in Section 1. Within the framework of the Linear Elastic
Fracture Mechanics, it was shown that for a given range of parameters (see the
phase diagram in Fig. 4.3), the fracture surface morphology could be set by the
geometry of a line at thermal equilibrium with long range elastic interactions. In
other words, the fracture surface can be characterized by the scaling exponents
ζth = 0 and zth = 1, i.e. by isotropic logarithmic correlations of height. Such a
prediction for brittle fracture surfaces was also made in references [40, 41]. These
predictions are in apparent agreement with the experimental measurements made
on fracture surface of brittle metallic alloy. However, the reasons for which height
correlations are logarithmic and not characterized by ζdep or ζeq remain unclear.
In other words, the position of the various brittle materials in the phase diagram
presented in Figure 4.3 is still an open question. Both experimental study of
various brittle materials on a great range of length scales and theoretical study of
equation (4.13) to improve our knowledge of the parameters that sets the limits
between the various phases are required.

Concluding remarks. The experimental study of various kinds of fracture
surfaces resulting from a brittle failure suggests that their scaling properties is
characterized in a general manner by “low” roughness exponents, ζdep = 0.39,
ζeq = 1/3 and ζth = 0. Theoretically, these three phases correspond to the three
possible geometries predicted by the model of crack propagation in brittle mate-
rials, although the parameters that delimit each phase remain yet to be identified.
On the other hand, the morphology of fracture surfaces studied in Chapter 2 and
characterized by the “universal” roughness exponent ζ � 0.75 is clearly incom-
patible with the model of brittle failure proposed in Section 1. The origin of this
apparently abnormal31 scaling property is discussed in next section.

4. Fracture surfaces of ductile materials:
interpretation

The experimental investigation of various fracture surfaces has shown that their
morphology satisfies a Family–Vicsek scaling, without exceptions. But the mea-
surement of the exponents involved in this scaling suggests the existence of two
classes for the morphology of fracture surfaces that are characterized by two differ-
ent roughness exponents. We investigate here the underlying physical processes
responsible for the scaling characterized by the roughness exponent ζ � 0.75.

Relevant length scales on fracture surfaces. At first, to identify the physical
mechanisms leading to this roughness exponent, let us investigate the following

31. The expression “abnormal” is used here because the normal case is considered to be the failure of
a brittle material that leads to low roughness exponent. However, from an historical point of view,
fracture surfaces with low roughness exponents could be considered as exceptions because they were
observed after fracture surfaces with ζ � 0.75 [25, 26].
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scenario: naively, one could imagine that some materials — silica glass, aluminum
alloy, mortar, wood (see Chap. 2) — leads to one class of fracture surfaces while
the other materials — sandstone, glass ceramics (see Chap. 3) — leads to fracture
surfaces characterized by ζ � 0.4. The experiments on fracture surfaces of silica
glass and metallic alloy over “unusual” domain of length scales, i.e. at length
scales large compared to the typical length scale of non-linear processes involved
in the failure of these materials, have cast doubts on this possibility because
both scalings are found on same materials. Indeed, at small (resp. large) length
scales, the fracture surface is characterized by a roughness exponent ζ � 0.75
(resp. ζ ≤ 0.4). This suggests that the roughness exponents characterise length
scales rather than materials. Therefore, to understand the origin of the small scale
regime, it is of interest to study the domain of length scales for which ζ � 0.75 is
observed.

To investigate the self-affine domain of fracture surfaces with ζ � 0.75, we have
focused on failure of silica glass32. For this material, the self-affine domain ranges
at least from the nanometer scale — for experimental reasons, it is unfortunately
impossible to investigate their fracture surfaces at smaller length scales — up to
an upper bound ξz (along z) of the order of one hundred of nanometers. The
latter is defined in Figure 4.14a as the abscissa of the intersection between the
power-law fit of the self-affine regime (with ζ � 0.75) and the plateau regime
(horizontal line). This length is measured on fracture surfaces corresponding
to various crack growth velocities vcrack (the experimental procedure to obtain
a fracture surface which has clearly separated zones corresponding to different
velocities is described in Sect. 1 in Chap. 2). The scaling exponents do not show
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Figure 4.14. (a) Variation of the correlation function computed along the z-axis on a fracture
surface of silica glass broken in the stress corrosion regime with vcrack = 6 × 10−11 m s−1.
(b) Variation of the crossover length ξz (measured along z) as a function of the crack growth
velocity v. The axes are semilogarithmic. The straight line corresponds to a fit ξ ∝ log(v).
Inset: variation of the size of the process zone Rc (measured along x) as a function of the
crack growth velocity v. The axes are semilogarithmic. The straight line corresponds to a
fit Rc ∝ log(v).

32. This experimental work has involved many co-workers in the “Fracture” Group that are also the
authors of reference [98].
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any noticeable dependence on vcrack. On the other hand, the cutoff length ξz

was observed to decrease slowly, as the logarithm of vcrack (Fig. 4.14b). For the
smallest value of vcrack, ranging from 10−12 to 10−9 m/s, we were able to observe
in real-time, at the nanometer scale, the crack propagation during the specimen
failure [15, 34]. At these scales, the crack was shown to grow through the growth
and coalescence of nanoscale damage cavities [15,34]. This cavitation process was
shown to set the size of the process zone, i.e. the zone in the vicinity of the crack
tip where linear elasticity stops being relevant [15]. The variation of the process
zone size �PZ with respect to the crack velocity vcrack is presented in the inset of
Figure 4.14b. First, �PZ is found to be larger, but of the same order of magnitude as
ξz. Second, �PZ, like ξz, is observed to decrease as the logarithm of v. This leads us
to the conjecture that the process zone size �PZ is the relevant length-scale that sets
the crossover length ξz. At length scales smaller than ξz, the material cannot be
identified with a coarse-grained equivalent linear elastic medium, which explains
the failure of the model of brittle crack.

Let us note that the upper bound ξx of the self affine domain with β = 0.6
observed along the x-axis of fracture surfaces is of the same order than ξz.
Therefore, the 2D length scales domain with Δx < ξx and Δz < ξz where
scaling regime of fracture surfaces of glass is characterized by the exponents
{ζ � 0.75, β � 0.6, z � 1.2}, is observed at length scales where failure occurs
through non-linear processes (such as damage or cavitation) that cannot be de-
scribed through the LEFM framework.

To investigate the generality of this result, let us return to the other materials
where such a scaling was observed. In Table 4.2, the upper cutoff length ξz that
limits (along the z-axis) the scaling regime with exponent ζ � 0.75 as well as
the expected process zone size �PZ — either estimated using equation (1.9) or
directly measured experimentally as for silica glass samples — are listed for each
material. The width Lsample of the sample is also listed. The comparison of these
three lengths suggests that two cases are possible: (i) �PZ � Lsample: the cut-off
length is smaller, but of the same order of magnitudes, than the process zone size
(ξz � �PZ/2). (ii) �PZ > Lsample: the cut-off length is of the order of a tenth of the
sample width (ξz � Lsample/10). The latter relation, that has also been observed for
sandstone samples (see Fig. 3.15), has been reported for mortar [72] and wood [29]

Table 4.2. Cut-off length ξz (measured along z) of the self-affine domain with ζ � 0.75 for
various materials. This length can be compared with both the sample width Lsample and the
estimated value of the process zone size of the materials. Note that when �PZ � Lsample,
the cut-off length is of the same order than the process zone size.

Material ξz �PZ Lsample
Silica glass33 80 nm ± 20 nm 150 nm ± 30 nm [98] 5 mm
Quasicrystal 2.1 nm ± 0.5 nm �4 nm [18] 10 mm

Aluminum alloy 80 μm ± 10 μm �200 μm 15 mm
Mortar 2.5 mm ± 0.5 mm > 20 mm 20 mm
Wood 1.0 mm ± 0.1 mm >11 mm 11 mm
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samples of various widths. In other words, when finite size effect due to finite
geometry of the sample do not occur, i.e. all length scales are smaller compared to
Lsample, the process zone size �PZ sets the upper bound ξz of the self-affine regime.

This result leads to the following picture: below the process zone size, i.e.
at length scales where the material cannot be identified with a coarse-grained
equivalent linear elastic medium, the model of brittle crack presented in Section 1
fails and fracture surface exhibits universal features (see Chap. 2) characterized
by the exponents {ζ = 0.75, β = 0.6, z = 1.2}. The identification of the underlying
physical process responsible for such as scaling is still lacking: how can non-linear
processes proper to each material let universal signature on the fracture surfaces?

A possible model of crack propagation in quasi-brittle and ductile materials.
We propose here a simple model that is able to reproduce the scaling properties
of fracture surfaces at the scale of the non-linear processes of rupture. It gives
the important physical mechanisms at the origin of its scaling properties. But the
heart of this problem, i.e. the complex interactions between damage, crack front
and microstructure, will not be analyzed quantitatively here and are let for future
works.

The theoretical investigation of fracture surfaces characterized by ζ � 0.75
would require to integrate the effects of damage to the model of crack propagation
in an ideal elastic brittle material of Section 1. This would require understanding
the complex interactions between a crack front and a microcrack/cavity. We
will avoid this difficulty by using here another approach. We will analyze the
theoretical implications of the very basic properties of these fracture surfaces, i.e.
their symmetry and their anisotropic scaling. The more general equation that
satisfies them will then be derived.

Ductile crack surfaces display a Family–Vicsek scaling (see Sect. 4, Chap. 2).
Such a scaling results from the competition between the disorder of the material
and the elasticity of the front — which displays long range elastic interactions.
These two ingredients will lead to the two competing terms Fel and Fdis in the in-
vestigated equation for ductile fracture surfaces. Family–Vicsek scaling of fracture
surfaces is the signature of the propagation of a line. Fracture surfaces resulting
from a damage coalescence process as proposed in [46] would not have such a
property. This suggests that an effective crack front can still be defined at all length
scales, even if damage processes can be very spread34. These microcracks/cavities
will be simply considered as external perturbations. In our very simplistic model,
they will contribute to enhance the disorder of the material. Within this hypothe-
sis, the term for the disorder Fdis = η(x, h, z) will be similar to the one involved in
our model of brittle failure.

On the other hand, the microcracks/cavities will affect the crack front trajectory.
This effect will be considered in average so that it is the same for all points of the

33. For vcrack = 10−9 m s−1.
34. At least in the experimental systems investigated in this work. For some fracture test geometries,
e.g. without notch, the definition of this effective crack front may be impossible.
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front35. This effect is modeled by changing the elastic term in the path equation
of the crack. In other words, we take in consideration the effect of the damage by
defining an effective crack front with new properties — especially a new elastic
energy — that are still to define.

Using symmetry arguments, let us now derive the properties of the elastic
term. As for brittle fracture surfaces, these surfaces are invariant by the trans-
formation x→ −x. The methodology described in Section 2 has been applied on
fracture surfaces of silica glass and aluminum alloy. No signature of the propa-
gation direction, i.e. crack growth along +x or along −x, can be observed. This
suggests also that the problem of crack propagation in ductile materials can be
divided into two problems: (i) the dynamics of the crack that will be given by a
motion equation applying on the in-plane perturbations of the effective crack front
— this equation is not time-symmetric; (ii) the path of this front leading to the
geometry of the fracture surface that is given by a time-symmetric equation ap-
plying on its out-of-plane perturbations. This simplifies greatly the investigated
equation: it depends on the sole out-of-plane perturbation h of the effective crack
front. Moreover, terms such as the “memory” term involved in equation (4.10)
that are not time-symmetric are excluded. In other words, the path followed by
the crack front in M(x0, h(x0, z0), z0) depends on the current geometry of the front
(on h(x = x0, z)) but not on the whole fracture surface (h(x < x0, z)). Therefore, we
expect the path equation to have the form36

∂h(x, z)
∂x

= Fel(h, z) + η(x, h, z)+ F0. (4.25)

Limiting our investigation to linear models with h, the only elastic force that sup-
plies all the previous requirements plus the various symmetric constraints linked
to the system geometry (see pages 46–48 of Ref. [65]), is

Fel(h, z) ∼
∫

h(z′) − h(z)
(z′ − z)α

dz′.

If α = 2, we recover the long-range elasticity of the crack front in an ideal elas-
tic brittle material. If α = 3, the elastic term is equivalent to a Laplacian term
∂2h/∂z2 [99] so that the elasticity of the effective crack front becomes purely local
and the restoring force depends only on the local curvature. Tanguy et al. [99]
have shown that the cases α < 2 and 3 < α, respectively, are equivalent to the
two previous cases, so that limiting our model to the range 2 ≤ α ≤ 3 is sufficient
to test all the possible equations. Finally, within the various assumptions made
here, the path equation for ductile fracture is

∂h(x, z)
∂x

= A
∫

h(z′) − h(z)
(z′ − z)α

dz′ + η(x, h, z)+ F0 (4.26)

35. The very simple model proposed here is a mean field like theory in the sense that the interaction
of each microcrack/cavity with the front is equivalent to one effect applying uniformly on the front.
36. Inevitable imperfections in the loading system or in crack alignment are taken in consideration so
that a small constant term F0 is expected (See Sect. 1 for details).
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where α is a free parameter to be fixed in the range 2 ≤ α ≤ 3. The noise η is
supposed to be uncorrelated. Its properties — the spatial correlation lengths rx

η, ry
η

and rz
η and its magnitudes σx, σy and σz — as well as the coefficient A depend both

on the material properties and the damage processes but are fixed and uniform
in the material.

As in Section 1, the noise η(x, h, z) is interpreted as a quenched noise so that
the scaling exponents characterizing the solution of equation (4.26) are ζdep and
zdep corresponding to the critical exponents at the depinning threshold. These
exponents have been shown to depend only on the range α of the elastic term
in equation (4.26) [99]. Renormalization group (RG) methods [39, 100] predict
ζdep = (2α − 3)/3 and zdep = (5α − 3)/9 to first order in ε = 2α − 3. Numerical
simulations have been shown to be very powerful to solve pinning/depinning
problems [92, 101]. The critical exponents ζdep(α) and zdep(α) has been measured
very precisely through these numerical techniques for two situations: (i) α = 2
leads to ζdep = 0.39 ± 0.005 [82, 93] and zdep = 0.78 ± 0.02 [83, 84] and (ii) α = 3
leads to ζdep = 1.26 ± 0.01 [39, 101] and zdep = 1.51 ± 0.03 [102]. To get a rough
estimation of ζdep(α) (resp. zdep(α)) in the range 2 < α < 3, one can make a linear
interpolation between these two values.

On the other hand, the experimental measurements made on ductile fracture
surfaces have led to the “universal” exponents ζexp = 0.76 ± 0.04 and zexp =
1.24± 0.06 (see Tab. 2.3) irrespective of the studied material. An “arbitrary” value
α � 2.6 used in our model would then allow to account for their values.

In other words, an effective crack front with non-local but rapidly decreasing
interactions — with an elastic kernel in 1/rα with α � 2.6 > 2 — reproduces
the Family–Vicsek scaling with the correct exponents observed on ductile crack
surfaces. This suggests that, in average, the microcracks/cavities shield the in-
teractions between two points of the crack. This is in agreement with the naive
picture of ductile fracture: damage ahead of the main crack concentrates the stress
and makes the propagation of the information through the stress field of the un-
broken material ahead the crack less efficient than in the ideal elastic case. In
simple words, the effective crack front for a ductile failure is less stiff than in the
brittle case. This results in a fracture surface with a higher roughness exponent.

Understanding the selected value α � 2.6 for this effective ductile crack front
is a significant challenge for future investigations. This approach remains insuf-
ficient: with this simple model, it is not possible to account for the deviation
to the Gaussian distribution of height fluctuations observed on the experimental
ductile crack surfaces (see Sect. 2, Chap. 2). This effect, which is not observed
on brittle crack surfaces, suggests that the complex interactions with one micro-
crack/cavity and the main front must be investigated. In other words, the local
disorder properties — taken constant everywhere in the material in our model —
should depend on the local front shape. Models based on a coupling between dis-
order and line geometry is certainly the next step in the theoretical investigation
of fracture surfaces resulting from damage processes.
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Conclusion

This study has related the morphology of fracture surfaces and the failure mecha-
nisms in disordered materials. In particular, we have shown how the microstruc-
tural disorder influences the path followed by a crack and how it sets the self-affine
geometry of fracture surfaces.

First, the relevant statistical properties of the roughness of experimental frac-
ture surfaces have been identified. Two questions have been more specifically
examined: are they anisotropic with respect to the direction of propagation? This
question is crucial because it may have very important applications: from the
post mortem analysis of broken structures, one could find the direction of crack
propagation and so the origin of the failure. On the other hand, to which extent
do the surface properties depend on the material? To address these questions,
five different materials have been studied: aluminum alloy, silica glass, mortar,
wood and quasicrystal. We have shown that the full description of fracture sur-
faces calls for the use of the 2D height–height correlation function, rather than
just an analysis of 1D surface profiles. This function has been shown to follow
a Family–Vicsek scaling that involves two independent scaling exponents: the
roughness exponent ζ = 0.76 ± 0.03 and the growth exponent β = 0.61 ± 0.04.
They were shown to correspond to the self-affine exponents along the directions
perpendicular and parallel to the crack propagation, respectively. Their value has
been found to be independent, within experimental errors, of the material (alu-
minum alloy, silica glass, mortar, wood and quasicrystal) and of the crack growth
velocity (within the range 10−12−102 m s−1). On the other hand, we showed that
the distributions of height variations collapse onto a single master curve. This
proves that the profiles along and perpendicular to the crack growth direction do
not display multi scaling.

Regarding the dependence of the surface properties on the material, we found
that materials made of cemented grains as sandstone displayed different scal-
ing properties involving lower exponents �0.4−0.5. To understand the physical
origin of their difference, we have studied an artificial material with a similar
microstructure to sandstone, glass ceramics made of sintered glass beads. The
characteristic size of their microstructure and the cohesion between grains can be
tuned experimentally by modifying the bead diameter and the sample porosity.
We showed that the fracture surfaces of these materials display a Family–Vicsek
scaling involving two exponents ζ = 0.40 ± 0.03 and β = 0.48 ± 0.04 independent
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of the structural parameters and of the crack growth velocity in the range inves-
tigated. These exponents are significantly lower than those observed on various
other disordered materials. This suggests the existence of a second “universality
class” for failure problems.

To understand these results, and particularly the existence of two a priori
different classes of fracture surfaces, we have then investigated theoretically their
roughness in ideal linear elastic disordered materials. At first, we analyzed the
stress field in the vicinity of a perturbed crack in a homogeneous elastic medium.
Integrating the effect of the disorder on the crack motion, we derived a path
equation for a crack in a disordered elastic material. This equation provides the
fracture surface morphology that is shown to result from the motion of an effective
elastic string that “creeps” within a 2D random quenched potential where the
spatial position along the direction of crack propagation plays the role of time.
The resolution of this equation leads to anisotropic fracture surfaces displaying
a Family–Vicsek scaling with exponents ζ = 0.39 and β = 0.49, irrespective of
the crack growth velocity. These predictions are in good agreement with the
experimental observations reported in glass ceramics and sandstone. Careful
measurements of their macroscopic mechanical properties showed indeed that
they behave as perfectly brittle materials, in coherence with the assumptions of
the model. In other words, if one integrates the effect of the material disorder to the
Linear Elastic Fracture Mechanics, one can explain quantitatively the morphology
of fracture surfaces of brittle materials. Finally, we conjecture that the geometry
of fracture surfaces of ductile materials may be captured if one takes into account
the effects of the damage that screens the elastic interactions along the crack front.

Our study has been mainly devoted to the fracture surfaces of 3D materi-
als. Other experiments have been performed in 2D geometries: interfacial cracks
propagating within the weak plane between two plates of Plexiglas [108, 109]
and crack propagating in thin sheets of paper [110, 111]. The resulting crack sur-
faces have been shown to display also self-affinity, but they are characterized by
roughness exponents different from those reported here for 3D fracture problems.
Their value ζduc

exp is listed in Table I and compared with the theoretical predictions
ζbr

th for a brittle failure in the same geometries. The experimental exponents are
systematically larger than those expected for a brittle failure. We interpreted this
abnormally high roughness exponent for 3D material as a signature of the dam-
age processes occurring during the crack propagation. We suggest that the same

Table I. Comparison between theoretical roughness exponent ζbr
th for brittle fracture and

measured roughness exponents ζduc
exp and ζbr

exp for ductile and brittle fracture, respectively.

Fracture geometry ζbr
th ζduc

exp ζbr
exp

Interfacial 0.39 [83] 0.63 ± 0.03 [21] ?

2D 0.50 [103] 0.65 ± 0.05 [58, 104] ?

3D 0.39 [98] 0.76 ± 0.04 [33, 105] 0.43 ± 0.05 [106, 107]
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interpretation is valid for interfacial crack and cracks in 2D media as previously
proposed in references [103, 112]. It should be noted that the present study of
fracture in brittle materials is, to our knowledge, a unique example of agreement
between the theoretical models and the experimental observations. Measure-
ments for brittle materials in 2D geometries are still lacking and represent an
important challenge for future experimental investigations.

Finally, the present study has focused on the geometrical properties of cracks.
The natural next step will certainly be the study of their dynamical properties.
One can imagine to compare the predictions of pinning/depinning models of
crack propagation with crack front dynamics experimentally observed in interfa-
cial failure [21]. This kind of models provides also some predictions on the relation
between mean crack growth velocity and stress intensity factor. It would be inter-
esting to test experimentally the relevance of these predictions. In this theoretical
framework, the distribution of strength is also predicted to obey some peculiar
scaling relations [90, 91] that would be interesting to investigate experimentally.
Works in these directions are currently under progress.
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A
Mechanical properties of glass ceramics

In this appendix, we will investigate the mechanical properties of glass ceramics.
More precisely, our goal is to examine their rupture mode. The scaling properties
of surfaces of fractured glass ceramics have been shown to be similar to those
expected for an ideal brittle elastic heterogeneous material. We will see in this
section that, at length scales larger than the grain size, glass ceramics can indeed
be considered as perfectly brittle materials.

In the first paragraph, the presence of damage/microcracks during failure of
glass ceramics in tension will be investigated. Then, macroscopic mechanical
properties of these materials will be measured as a function of their porosity. The
experimental results will be compared with the expected values for an ideal brittle
elastic porous material.

Microcracks in glass ceramics. Let’s investigate the presence of microcracks
during the failure of glass ceramics. We can use the argument presented in
Section 1 of Chapter 1 to assess the extent of the process zone — the zone in
front of the main crack where microcracks are localized — in the glass ceramics
samples. This leads to the following equation (see Eq. (1.9))

�pz � π8
(KIc

σ∗
)2
. (A.1)

Here, the quantities KIc and σ∗ are defined at the macroscopic scale and we can
measure it from the fracture tests performed on glass ceramics. In particular,
the TDCB geometry used to obtain a quasi-static crack propagation (see Sect. 1,
Chap. 3), is well adapted to measure the toughness of a material because the crack
is initiated from a notch. The curves load versus displacement obtained during
the tests for samples of glass ceramics with three different porosities are shown
in Figure A.1. After an elastic regime where the displacement δ between the two
points of force application is proportional to the applied tensile force F, the crack
initiates. Let us note that we cannot use this curve to assess the Young’s modulus of
the glass ceramics because the measured displacement is measured by the tensile
machine and not directly on the sample. The force applied to initiate the crack is
called Fc and coincides with the departure to this elastic regime. The toughness
is then estimated using the expression KIc = kIFc where kI is the stress intensity
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Figure A.1. (Color online) Typical
load versus displacement values ob-
tained from three TDCB samples of
glass ceramics with different porosities.

factor for an applied force of magnitude unity in the same geometry1. This factor
depends only on the geometry of the test and is found to be kI = 1250 m−3/2

through finite element calculation. Toughness values measured on glass ceramics
samples with porosities φ ranging from 3% to 26% are listed in Table A.1.

Table A.1. Mechanical properties of glass ceramics samples with various porosities φ and
the same mean glass bead diameter d = 116 μm; (KIc) toughness; (σ∗) yield stress (lower
bound); (�PZ) process zone size estimated using equation (A.1) (upper bound); (E) Young’s
modulus; (ν) Poisson’s ratio; (GIc) fracture energy.

φ = 3% φ = 6% φ = 15% φ = 25% φ = 26%
KIc 0.73 MPa m1/2 0.71 MPa m1/2 0.60 MPa m1/2 0.40 MPa m1/2 0.39 MPa m1/2

σ∗ 75 MPa 64 MPa 39 MPa 29 MPa 22 MPa
�pz 40 μm 50 μm 90 μm 120 μm 120 μm
E 20.6 GPa 18.7 GPa 15.3 GPa 10.9 GPa 10.9 GPa
ν 0.21 0.22 0.18 0.21 0.21
GIc 26 J m−2 27 J m−2 23 J m−2 15 J m−2 14 J m−2

To assess their intrinsic strength σ∗, one will use the experimental study of
Bonn et al. [113] performed on the same glass ceramics. In their work, they
performed three points bending tests on bars of various porosities φ ranging from
23% < φ < 47%. We will fit their experimental results on σ∗ with respect to φ on
this range and will use them to extrapolate the values of σ∗ on our range of interest,
i.e. 3% < φ < 26%. Imposing a stress σ to the bar, they measured the span before
failure tb(σ). This function is well fitted by tb � c1eUact/kBT with Uact = g(φ)/σ4

as shown in Figure A.2. The function g(φ) is itself well fitted2 by g(φ) � c2e−c3φ

as shown in the inset of Figure A.2. In their experiments, the stress at rupture

1. The notch used in the experiments is 1 mm width. Therefore, the stress concentration at the notch
tip is altered. As a consequence, this method is expected to slightly overestimate the value of the
toughness of the glass ceramics samples.
2. Let us note that Bonn et al. [113] used the following functions g(φ) � (1 − 2φ)5 to fit the same
experimental data.

Ann. Phys. Fr. 32 • No 1 • 2007



A Mechanical properties of glass ceramics 111

0 2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

1/σ4 (10−27Pa−4)

t b(s
)

0 25 50
10

6

10
8

10
10

φ (%)

g

φ = 39.6% 
φ = 47% 

φ = 36%

Figure A.2. (Color online) Variation
of the breaking time tb of a test bar
made of glass ceramics with the ap-
plied stress to the fourth power for
three different porosities (courtesy of
Bonn et al. [113]). The data can be
well fitted by tb � c1eg(φ)/σ4

. The
function g(φ) is plotted as a function
of φ in the inset (courtesy of Bonn
et al. [113]). It is found to be well fitted
by g(φ) � exp(−c3φ). From these ex-
pressions, one can assess the intrinsic
strength σ∗ of the glass ceramics cor-
responding to a given time scale t∗.

depends on the waiting time, the crack nucleation in these materials being a
thermally activated process. To estimate the process zone size, one requires
to assess the stress at rupture for a time t∗ � d/vcrack where d is the distance
between two successive solid bridges in the material and vcrack the crack growth
velocity. Taking d � 100 μm the bead glass diameter and vcrack = 50 μm s−1 as
the minimum crack speed observed during the various fracture tests — the crack
growth velocity of each fracture test is listed in Table 4.1 —, we get a lower bound
for σ∗ that corresponds to the time scale t∗ � 2 s. This lower bound is given by

σ∗ = e−c3/4φ

(
c2/kBT

ln(t∗/c1)

)1/4
= σ0 e−

φ
0.18 (A.2)

with σ0 � 90 MPa. The real value of the intrinsic strength is certainly under
estimates for small porosities — indeed, one would expect σ∗ � σglass � 3 GPa
when φ � 0 — but this point is not crucial because we are looking for a lower
bound of the intrinsic strength. The latter are listed in Table A.1 as a function of
the sample porosity φ.

Using equation (A.1), we can now estimate an upper bound of the size of
the process zone. The corresponding values are listed in Table A.1 for each
broken sample. They are of the order of 1−2 bead diameters for the largest
porosities and smaller than 1 bead diameter for the lowest porosities. This result
is in good agreement with the small R-curve effect3 observed on a crack length
propagation of 1−2 bead diameters during the fracture of samples with large

3. The R-curve effect is the observation of a transient regime in a fracture test where the crack is
initiated from a straight notch. In the first time of the fracture test, the process zone is growing and
it is possible to reveal its presence by looking at the load versus displacement curve and its deviation
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porosities (φ � 26%). The absence of R-curve effect for lower porosities confirms
also this result.

The previous analysis based on the estimation of the process zone size of glass
ceramics with equation (A.1) suggests that non-linear effects during the rupture
of these materials occur at a scale smaller than the bead size. In other words,
the roughness of fracture surfaces at larger scales than the bead size would be
reminiscent of a brittle fracture in these materials. To confirm this important
result, we propose a second argument based on the measurement of the fracture
energy in the glass ceramics samples.

Griffith criterion for glass ceramics samples. Non-linear effects occurring
during the failure of glass ceramics are very localized: (i) damage processes
induced by the high stress field at the tip of the (micro)cracks is essentially con-
centrated in a zone of 100 nm at their vicinity. (ii) Possible microcracks between
consolidated glass beads around the front of the main crack are confined in a zone
of the order of 1−2 grains ahead the tip. They probably do not exist during the
failure of glass ceramics with a low porosity. Therefore, one expects that a crack in
these materials propagates roughly by breaking the solid bridges between grains
one after the other. In other words, a single crack propagating in a glass ceram-
ics sample is essentially made of broken bridges. In addition, very few broken
bridges are present ahead of the main crack. To test this picture, we propose to
estimate experimentally the variations of the fracture energy GIc

4 with the poros-
ity φ of the glass ceramics samples. Comparing this energy with the one required
to break only the solid bridges present on the fracture surface, we will test the
relevance of the scenario of brittle fracture of glass ceramics.

The relation GIc = K2
Ic/E is used to obtain the fracture energy for the samples

used in the present study (Tab. A.1). We determine first the Young’s modulus E of
the samples: the velocity of sound in these materials as a function of their porosity5

is measured with the help of D. Salin, J. Martin and F. Célarié. The experimental
data plotted in Figure A.3a (see also Tab. A.1) are very well described by the
relation

E � E0(1 − 2φ) (A.3)

to the brittle behavior. The distance covered by the crack during this transient regime is of the same
order than the process zone size [56].
4. The fracture energy GIc is the energy required to create two new fracture surfaces of unit area. GIc
is always larger than the surface tension because the rupture involved dissipative and irreversible
processes: once broken, the material cannot be healed by simply bringing back the two pieces back
into contact.
5. Young’s modulus E and sound velocity vsound, i.e. propagation velocity of compressive waves,

are linked in an homogeneous material by the relation vsound =
√

E
ρ

√
1−ν

(1−2ν)(1+2ν) [114] where ν is the

Poisson’s ratio and ρ = ρglass(1 − φ) with ρglass = 2530 kg m−3 the density of the glass ceramics. The
frequency of the compressive waves is of the order of f � 500 kHz so that the material is homogeneous
at the scale of the corresponding wavelength λ = vsound/ f � 5 mm. To assess the Poisson’s ratio, we
have also measured the propagation velocity vshear of shear waves in the glass ceramics samples equal
to vshear =

√
E/ρ
√

[2(1 + ν)]−1.
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Figure A.3. Young’s modulus (a) and fracture energy (b) variation with the porosity φ of
the glass ceramics samples. The data presented in (a) and (b) are well described by the
relations E = E0(1 − 2φ) and GIc = G0

1
1−c2/3 (1 − ( c

1−φ )2/3) with E0 = 22 GPa, G0 = 32 J m−2

and c = 0.64 (represented in solid lines), respectively, in agreement with a brittle rupture
model for these materials. The variations of the toughness measured experimentally are
displayed in inset. The solid line displays the equation

√
E(φ)GIc(φ) using the relations

above.

with E0 = 22 GPa. This relation is in excellent agreement with both experimental
measurements performed on the same glass ceramics [113] and the predictions of
a micromechanical model for the linear elasticity of porous media [20] (see [113]
for details). The experimental procedure used to measure the toughness KIc of
the glass ceramics has been described in the previous paragraph. Its variation
with respect to the porosity is plotted in inset of Figure A.3b. Using the relation
GIc = K2

Ic/E, one obtains the fracture energy of glass ceramics plotted on the main
panel of the same figure as a function of their porosity.

We now examine the compatibility of these experimental measurements with
the brittle mode of failure proposed for these materials. According to this scenario,
the fracture energy GIc should be set by the total area of broken solid bridges
between grains on the fracture surface. The number of broken bridges is expected
to vary very weakly with the sample porosity — the number of grains by unit
volume is nearly constant. At the opposite, the area of one bridge depends
crucially on the porosity. Therefore, one expects

GIc ∼ Sbridge = πr2
b . (A.4)

A bead with one broken bridge is represented in Figure A.4. The radius rb of the
fracture surface is fixed by the geometry of the bead

r2
b = (d/2)2 − (d/2 − �)2. (A.5)

Here, d and � are the bead diameter and the distance a bead moves towards a
neighboring sphere during sintering, respectively. The latter are related to the
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Figure A.4. Scheme of a bead with one broken bridge.

porosity φ by the expression

(1 − φ)
(
1 − 2d

�

)
= c (A.6)

that is obeyed by any isotropically sintering body that preserves its solid mass [115].
c = 0.64 is the random close packing compacity. Using equations (A.4), (A.5)
and (A.6), one obtains

GIc ∼ 1 −
(

c
1 − φ

) 2
3

. (A.7)

The corresponding curve is plotted in Figure A.3b and compared to the experi-
mental measurements. The only adjustable parameter is the proportionality coef-
ficient in equation (A.7). The fracture energy of a compact glass ceramics (φ = 0%)
is adjusted to G0 = 32 J m−2 which is a reasonable value compared to the fracture
energy of the homogeneous glass Gglass � 10 J m−2. From equations (A.3) and (A.7)
giving the variations of the Young’s modulus and the fracture energy with respect
to the porosity, one also gets the variations of the toughness — shown in inset of
Figure A.3b. Variations of both fracture energy and toughness predicted within
the assumption of brittle fracture of glass ceramics are in correct agreement with
the experimental measurements. In other words, their macroscopic mechanical
behavior is compatible with the proposed microscopic scenario of rupture.

Concluding remark. Finally, from the previous analysis, we obtain a rather
simple picture of crack propagation in glass ceramics samples under tensile con-
dition: the crack is a well defined plane that propagates within the material by
breaking the solid bridges between the sintered grains one after the other. In
other words, the fracture of glass ceramics reproduces at the scale of the bead
diameter the “classical” view of a perfectly brittle rupture usually applied to the
cleavage of monocrystals at the atomic scale [8]. The choice of the glass ceramics
motivated originally to control the microstructure of the material investigated
was proved to be very relevant: in addition to the wide range of microstructures
and related mechanical properties (see Eqs. (A.3) and (A.7)), the fracture of glass
ceramics represents an ideal tool to test the models of crack propagation in brittle
disordered materials.
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