Crack growth in brittle heter ogeneous materials

D. Bonamy, S. Santucéj L. Ponsof, K.-J. Malgy
'CEA, IRAMIS, SPCS, Grp. Complex Systems & Fracture, F-91191 Gif sur
Yvette France; “Physics of Geological Processes, Universitetet i Oslo, P.O. Boks
104 Blindern, N-0316 Oslo 3, Norway; Division of Engineering and Applied
Science, California Institute of Technology, Pasadena, CA 91125, USA; “Fysisk
Institutt, Universitetet i Oslo, Blindern, Oslo, Norway

1. Introduction

The effect of materials heterogeneities onto tif@ure properties remains far
from being understood (see [1] for a review of reqarogresses in this field). In
particular, in heterogeneous materials under sbawreal loading, cracks growth
often displays a jerky dynamics, with sudden jurepanning over a broad range
of length-scales. Such a complex dynamics — altoresl to ascrackling noise
[2] was also suggested from the acoustic emissamorapanying the failure of
various materials [3,4,5] and - at much larger escalthe seismic activity
associated to earthquakes [6]. This intermittemtatlyics can be qualitatively
reproduced in simple numerical models such as Bbeadle Models (FBM) (see
e.g. [7] for a review) or Random Fuse Models (RHbBe e.g. [8] for a review)
that schematize the material as a set of britberfi/network of electrical fuses
with randomly distributed breakdown points. Howeubese descriptions remain
phenomenological and fail to reprodugentitatively the intermittent dynamics.

Another approach - pioneered by Gao and Rice [9] Etter extended by

Schmittbuhl el al [10] and Ramanathan et al. [1-onsists in extending the
standard Linear Elastic Fracture Mechanics (LEFM)amogeneous materials to
the case of heterogeneous media by consideringdomna field of toughness. In

this class of models, the competition between #stabilizing effect of toughness
disorder and the smoothing effect of the cracktfedasticity makes the onset of
crack propagation to appear as a critical depinritnagsition. This approach
succeeded to account for the effective toughnessitmition in brittle disordered

materials [12] or the large scale morphologicallisgafeatures of post-mortem
fracture surfaces [13].

We will show here how this approach can be extertdedproduce the crackling
dynamics observed during slow stable crack growthbiittle heterogeneous
materials. In this model, the slow failure appeassaself-organized critical
dynamic phase transition and, as such, exhibitarsal — and to some extend
predictable — statistics and scaling laws. Thicdpson succeeds in reproducing
guantitatively the intermittent crackling dynamaisserved experimentally during
the slow propagation of a crack along a weak hgweous plane of a
transparent Plexiglas block [14].



2. Derivation of a linear elastgtochastic model

Let us consider the situation depicted in Figurkeff)( of a crack front that
propagates within a 3D elastic solid. Provided thatmotion is slow enough, the
local velocity of a pointM (z,x = f(zt),y =h(z,x= f(z1t))) is proportional to
the excess energy locally relea&&®1) - (M). Material heterogeneities are
then modeled by introducing a random component thi fracture energy:

(M) =T°(1+n(z x)) wherer is a short range correlated random term with zero

mean and constant variance. This induces distartadrthe front, which in turn
generates perturbation @®(M). To first order, the variations @&(M) depends on
the in-plane distortionz.t) only [9,15]:
G(M) :G0(1+i I Lf(zz)dz') 1)
27T_ (z - z')

whereG® denotes the reference mechanical energy releais wiould result
from the same loading with a straight front at g@me mean position. The
equation of motion then reduces to the one of &arfacial front propagating
within a 2D random media [9,10,11]:
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Where u is the effective mobility of the crack front. Thesjuation has been
extensively studied in the past. It was shown tscdbe systems as diverse as
interfaces in disordered magnets [16,17] or conkaets of liquid menisci on
rough substrates [18,19]. In particular, it was vemoto exhibit a so called
depinning transition controlled by the "forcé =G° -r%. WhenF is smaller
than a given threshol&., the front is trapped by the heterogeneities & th
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Figure 1. Sketch and notations of a crack frontppgating in a 3D
heterogeneous material (Left). To first order, gggiation of motion involves
the in-plane componefifzt) of the crack front and can be reduced to the dne o
a planar crack front propagating within a 2D maiteRight).



material and its velocity is null everywhere. Hérlarger thanF,, the line is
depinned from the last metastable state, and muoxts an average velocity
v =(of /at).

Let us now imagine the situation of a stable crgabwth under displacement-
imposed loading condition. This situation is thes @ncountered in earthquakes
problems where a fault is loaded because of the stntinental drift, or in the
experiments described in [14,20] where a cracktfromade propagate along the
weak heterogeneous interface between two Plexiglask by lowering the
bottom part at constant velocity. The®f is not constant anymore, but increases

slowly with time and decreases with the mean ctacjgth ( f >Zsincethe system
compliance decreases wi(h‘)Z [22]. As a result, provided that the mean crack

growth velocity is slow enough and the mean cracigth is large enough, one
can write G° = constant-ct —k(f) ~wherec and k are constant depending on

the precise geometry. Finally, Eq. 2 writes [22]:
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The overall force F(t,{f})=ct-k(f) acting on the frontis not constant
anymore: WherF (t,{ f}) < F., the front remains pinned arfe(t,{f}) increases
with time. As soon a# (t,{ f}) > F., the front propagatesf) increases, and, as

a consequenceF (t,{f}) is reduced until the front is pinned again. This
retroaction process keeps(t,{f}) always close to the depinning transitibp

and the system remains at the critical point duthregwhole propagation, as for
self-organized-critical systems [21].

3. Morphology of the crack front

Eq. 3 is solved using a fourth order Runge-Kuttaesgte for a front propagating
in a 1024x1024 uncorrelated 2D random gaussianwitapzero average and unit

variance. The parametgs ° was set to unity while the two parameterand k

were varied from10™ to 10, and10™° to 107", respectively. Figure 2(left)

presents a typical motion of the resulting crackfr The crack propagation is
predicted [22] to exhibit an intermittent cracklirdynamics and progresses
through scale-free avalanches, both in space amg tharacterized by universal
distributions or scaling laws. In particular, thenphology of the crack front is

found to exhibit self-affine scaling features [1€Hjaracterized by a roughness
exponent ¢ = 039[23,24]. In other words, the structure function

G(Az)=<(f(z+Az)—f(z))2> scales asG(Az) =Az% with ¢=039 (Fig.

2(right)). This observation is in good agreemerthwecent observations reported
on the large scale roughness of an interfacialkcfaant propagating along the
weak heterogeneous interface between two Plexiuaks [20].
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Figure 2. Left: Five successive snapshots of taekcfront equally distributed
in time in the solution of Eq. (3). Right: StruauiunctionG(4z) as a function
of Az (symbol 0) together with a power-law fit (straigie) G(4z) ~ AZ¢
with {~0.39.

4. Crackling dynamics of the mean crack front
As for other critical systems, some features of distributions and the scaling
laws can be predicted. In this context, we anallgseglobal crack front dynamics

by computing the velocity of the crack interfa€g) = (v(z,t)) , spatially averaged

along the front direction z (Fig. 3(a)). This sigisextremely jerky, with sudden
bursts, signature of an intermittent “crackling seji dynamics [2]. In order to
characterize the statistics of these bursts, weldpwvthe following procedure: (i)

we impose a given reference lewgl =Cv wherev :<v(z,t)> ; (i) we define

zt
bursts as zones whexgt) is abovev, and (iii) we compute the duration and
the sizeS of the bursts as the interval between two suceedsiersections of
v(t) with v,, and the integral of(t) between the same points, respectively. The

distribution of S and the scaling betweeS and T have been analytically
derived for the motion of domains walls in disoeterferromagnets, in the
context of Barkhausen effect [16,17]. This analykads to a power-law

distribution P(S) 0 S [17], and a power-law relatio [0 S?, with critical

exponents that can be predicted using functional renormalisation group
calculations [18] leading tor = 125 and a= 058. We show on Fig. 3b and ¢
that these predictions are in good agreement withamical simulations of Eq. 3
with various values of the parameterk andC. This demonstrates how one can
make use of the universality associated with thaclc growth self-organized
dynamic phase transition to use previous calculations performed for différe
systems belonging to the same universality clam® the motion of domain walls
in disordered ferromagnets, to derive predictiveslfor the failure of materials.

5. Spatiotemporal avalanches dynamics of the draci.



We then characterized thacal dynamics of the crack front as predicted from Eq.
4, and compared it to the experimental data pedrm university of Oslo on the
interfacial crack growth along the weak heterogeseplane between two
Plexiglas blocks [14,20]. We then adopted the aislprocedure proposed in
[14] and computed at each poigjxj of the recorded region the timgzx) spent

by the crack front within a smallx1pixel’region as it passes through this

position. A typical gray-scale image of this soledl waiting time map is

presented in Fig. 4a. The numerous and variousmegif gray levels reflect the
intermittent dynamics, and look very similar to skoobserved experimentally
(Fig. 1b of [14]). From the inverse value of wagitime map, we compute a
spatial map of the local normal speed veloaitgx)=1M(zX). Avalanches are

then defined as clusters of velocitiedarger than a given threshold = Cv

wherev denotes the crack velocity averaged over both &nwspace within the
steady regime. For all these avalanches, we comphtsr sizeA —defined as
their area — and their duratidh - defined as the difference between the times
when the crack front leaves and arrives to the idensd avalanche cluster. A
typical map of these avalanches is representedgind€. The area is found to be
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Figure 3. (a): An example of the spatially averagedck front velocity
v(t)=<v(t,z)>,. Bursts are then defined as zone wh#teis larger than a given
thresholdC<v> (horizontal dash line) (b) Distribution of thernmlized burst
size <S>, and (c) scaling between the burst durafiéel> and S<S>. The
symbols correspond to various valuesigfco andC. In these two graphs, the
straight lines correspond to power-ladS)~S" and T~S* with the critical
exponentg=1.25, and=0.58 predicted by RG approach.



power-law distributed with an exponent, = 165 (Fig. 4d), and the mean

avalanche duratio® is found to go as a power law wify) characterized by an
exponenty = 04 (Fig. 4e). Both results are found to be in verpdj@agreement

with experimental observations performed in theugrof Oslo.
6. Concluding discussion

We have derived a description for planar crack gnoim a disordered brittle
material which succeeds to capture the statistfcth® intermittent crackling
dynamics recently observed experimentally [14,BDparticular, we have shown
that material failure appears as a critical syswwhere the crack front progresses
through scale-free avalanches signature of a dymdepinning phase transition.
As for other critical systems, microscopic and rmacopic details do not matter
at large length and time scales and this simpleednnElastic Stochastic
description contains all the ingredients neededapture the scaling statistical
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Figure 4. (a) Typical activity map(zx) obtained by solving Eq. 4. the gray
intensity is proportional to the time spent by tinack front in a given location.

(b) Corresponding map of avalanches (in white) rafi as clusters where
1M(zX) is larger than a given threshold. (c) Correspogdnap of avalanches
coloured according to the colorscale given in ing&} Distribution P(A) of
avalanche areas together with a power-law fit igita line) with an
exponentr, = —-165+ 005. (e) Scaling between avalanche area and duration

together with a power-law fitD [0 A” (straight line) with an exponent
y =04+ 005.



properties of more complex failure situations. Tonpare the predictions of this
model with the statistics of earthquakes represeas interesting challenges for
future investigations. Work in this direction isdem progress.
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