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We study the adhesion of thin films on rigid substrates in the presence of spatial hetero-

geneities. While adhesion is relatively well-understood in the context of homogeneous

systems, much remains open concerning the adhesion of heterogeneous systems. In this

paper, we focus on thin adhesive tape with heterogeneities in the elastic stiffness, and show

that these heterogeneities have a profound effect on adhesion raising the effective force

required to peel the film by an order of magnitude with no modification of the actual

adhesive interface. We show through theory and experiment that this apparent increase is

caused by fluctuations in the elastic bending energy. We also show that heterogeneities can

be used to create asymmetry in that the force required to peel the tape in one direction can

be different from that in the other. In short, this work shows that fluctuations in a small

component of the overall energy of the system can give rise to a significant macroscopic

consequence. We comment on the broader implications of this observation.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Virtually all engineering materials are heterogeneous on a fine scale: alloys and ceramics are polycrystalline, while
polymers and glasses often have fluctuations in density and composition. Composite materials are heterogeneous by
design, and heterogeneous materials are ubiquitous in nature. These heterogeneities affect the properties of the material
at the macroscopic scale, and understanding this link between heterogeneous microstructure and overall or effective
properties is a topic of vital importance. There is by now a well-developed theory that describes the overall or effective
properties of heterogeneous materials in the context of elasticity, electrostatics, magnetism and other properties that are
characterized by minimum energy principles (e.g., Milton, 2002; Nemat-Nasser and Hori, 1999). Some of these methods
have been extended to dissipative processes like plasticity, but these methods work best in the context of deformation
theory which one can formulate as a minimum energy principle.

However, the understanding of effective properties remains incomplete in the context of time or history-dependent
phenomena. This is especially so in the context of free-boundary and free-discontinuity problems like adhesion, fracture,
and phase transformations. The key difficulty is that bounds on the energy do not necessarily imply bounds on the
derivatives of the energy; a small bump in the energy landscape can become a very large bump in the forcing leading to a
significant effect on the overall properties.

In this work, we explore this issue in the context of the peeling of adhesive tape. This is a well-understood phenomenon
in homogeneous materials going back to the discerning work of Rivlin (1944) that related the force required to peel an
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adhesive film from a rigid substrate to the adhesive energy of the interface. We show that heterogeneity brings a number
of surprises. In this paper, we study the consequences of making the elastic properties of the tape heterogeneous; we
show that we can dramatically increase the ‘stickiness’ (effective adhesive energy or adhesion strength) of the tape by
introducing elastic heterogeneity even though we do not modify the actual adhesive surface in any way. This is closely
related to the insightful work of Kendall (1975a). We also show that elastic heterogeneity can be used to create asymmetry
where the adhesive force required to peel the tape in one direction is different from that in the other. In subsequent works,
we address the consequences of spatial heterogeneity in adhesive properties (Xia et al., 2012a; Ponson and Xia, 2012). A
summary of all these results was announced in Xia et al. (2012b).

Adhesion of thin films not only provides an idealized context to study broad questions, but is of inherent scientific and
technological interest. Thin-film structures are prevalent in many physical, engineering, and biological systems, such as
photovoltaic panels, integrated circuits, flexible electronics, packing tapes, gecko setae, to name just a few. In these
systems, strong interfacial bonding between films and their bases is often desirable to ensure system integrity and
reliability. The physical origin of interfacial bonding may include covalent and ionic atomic bonding, van der Walls
interaction, electrostatic forces, or any of these in combination. Irrespective of the actual mechanism, the bonding strength
or toughness of an interface can be quantified by adhesion energy, which is defined as the amount of energy required to
fracture a unit area of the interface.

A vast body of research has been conducted for increasing adhesion energies of various bi-material interfaces through
modification of interfacial chemical bonding (e.g., Hirsch and Varga, 1978; Fowkes, 1987; Liu et al., 1996; Hudaa et al.,
2008). Such intrinsic mechanisms of interfacial strengthening are usually material-specific, and rarely transferable to other
material systems. So more mechanistic approaches have been considered recognizing the fact that peeling involves the
nucleation and propagation of the peel front. In particular, the use of interfacial roughness to increase the fracture
toughness of bi-material interfaces (e.g., Evans and Hutchinson, 1989; Guduru, 2007; Guduru and Bull, 2007; Zavattieri
et al., 2007; Reedy, 2008; Li and Kim, 2009) has been extensively studied. This points to the role of heterogeneities.

The role of heterogeneities was highlighted in the insightful work of Kendall (1975a). He fabricated rubber tape with
alternating stiffness by either introducing reinforcement or changing thickness in alternating segments, adhered it to glass
and peeled it at a constant peeling force. He observed that the peel front slowed down as it approached a reinforced or
thicker segment. He developed a model that suggested these were a result of the abrupt change in bending stiffness and
this abrupt change would result in an enhancement of overall adhesive strength by a factor equal to the ratio of bending
stiffness.

In a variation of this work, Ghatak et al. (2004) studied the process of peeling of a flexible, but stiff, plate from a thin
patterned adhesive elastic layer. They found that the initiation of the crack on a patterned tape occurs at much higher
loads than that required on a smooth adhesive layer. Chung and Chaudhury (2005) made similar observations with
significant toughening and attributed it to sequential crack nucleation at tough local heterogeneities. Similar studies were
conducted by Ramrus and Berg (2006) and Chan et al. (2007), and an analysis emphasizing crack pinning was reported by
Dalmas et al. (2009). Chen et al. (2008, 2009) also investigated the apparent fracture/adhesion energy of an interface with
periodic cohesive interactions, and showed that this energy can be tailored between the average and the peak value of the
local cohesive energy by controlling the ratio of the period of cohesive energy to the cohesive zone size.

There is a related, and much larger literature, on fracture of heterogeneous solids. Many of these are motivated by
ceramics and composites, where microstructural features have been exploited to enhance the toughness (e.g., Bower
and Ortiz, 1991, 1993; Hutchinson and Suo, 1992; Xu et al., 1998; Cox and Yang, 2006, and references there). Others are
motivated by nature which has exploited microstructure to enhance toughness of nacre and other shells (e.g., Menig et al.,
2000; Barthelat and Espinosa, 2007, and references there). Recently, random variations of fracture energy at the microscale
have been considered and their effect on macroscopic failure properties, such as morphology of fracture surfaces and crack
kinetics, has been investigated. It was shown that these systems can be described by universal scaling laws (Bouchaud,
1997; Bonamy et al., 2008; Ponson and Bonamy, 2010).

In the current work, we revisit the work of Kendall (1975a). We study the process of peeling a tape with heterogeneous
bending stiffness but with uniform adhesive strength. Specifically, we make a tape with varying bending stiffness and peel
it at a fixed angle and at a constant velocity. We observe a significant increase both in the force and the work required to
peel a macroscopic length of tape. We analyze the problem theoretically by considering the tape to be an inextensible
Euler–Bernoulli beam with heterogeneous stiffness. We find good agreement between theory and experiment, and thereby
establish that the enhanced adhesive force and energy are indeed the result of the bending heterogeneity. In particular, as
the peel front goes from a compliant to a stiff segment, much of the work done by the applied force goes into bending the
suddenly stiff tape and a larger applied force is required to propagate the peel front. Our analysis provides concrete
predictions about the enhancement and how it depends on contrast, peeling angle, and length scales. Our analysis also
shows that the adhesion can be asymmetric, in the sense that the maximum peel force required to peel the tape from one
end can be different from that required to peel the same tape from the other.

In Section 2, we describe a theoretical model for predicting the peeling response of a discretely heterogeneous film via a
variational approach. Analytic solutions in a few special cases are presented first, followed by a numerical scheme for
handling the general case. Section 3 covers the experimental construction of a model material system and a peel-test
setup. Theoretical and experimental results from a systematic parametric study are presented in Section 4. Finally, we
discuss the implications and limitations of our findings in Sections 5.
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2. Theory

Fig. 1 is a schematic diagram of an elastically heterogeneous film or strip under consideration. The film is composed of
N segments, each of which is homogeneous, but has generally different bending rigidities, Di ¼ En

i Ii (1r irN). Here En

i is
the reduced elastic modulus (Ei=ð1�n2

i Þ) and Ii is the second moment of cross-sectional area. Heterogeneity in Di can arise
from differences in En

i , or Ii, or both. We assume that the film is inextensible, and this is known to be a good assumption at
moderate to large peel angle (Kendall, 1975b). The profile of the inextensible film is uniquely described by a function of
yðsÞ, where s is the arc-length along the film with respect to the origin O and y is the inclination angle between the film
tangent and the horizontal plane. The discontinuities of bending rigidity are located at s¼ si with inclination angles of yi.
The film is perfectly bonded to the rigid substrate up to some arc-length l, and is being peeled off at a peel angle under
a peel force, F

!
, which makes an angle yp with respect to the horizontal. Therefore, we have boundary conditions

yðlÞ ¼ 0, y0ðs�N Þ ¼ 0: ð1Þ

The second boundary condition reflects the fact that there is no applied moment at sN. For convenience of notation we
set s0 ¼ l.

The potential energy of the system is

E ¼
Z sN

l

1

2
DðsÞðy0ðsÞÞ2 ds� F

!
� u
!

p�

Z l

0
G ds, ð2Þ

where u
!

p is the displacement of the point of application of the force (s¼ sN), D(s) is the distribution of bending rigidity,
y0ðsÞ is the curvature of the film, and G is the constant adhesion energy (per unit length so that it is adhesion energy per
unit area times the width of the film) between the film and the substrate. We express the peel displacement in terms of the
distribution of inclination angle as

u
!

p ¼

Z sN

0

cos y�cos yp

sin y�sin yp

 !
ds: ð3Þ

This displacement is measured relative to a reference position at

sN cos yp

sN sin yp

 !
:

Note that the subtraction in the integrand ensures convergence of u
!

p when sN-1. Substitution of the expression of u
!

p,
together with

F
!
¼ F

cos yp

sin yp

 !

and DðsÞ ¼Di (si�1ososi), into Eq. (2) yields

E ¼
XN

i ¼ 1

Z si

si�1

1

2
Diðy

0
ðsÞÞ2 ds�

Z sN

0
Fðcosðy�ypÞ�1Þ ds�

Z l

0
G ds: ð4Þ
Fig. 1. Peeling of an elastically heterogeneous thin film from a rigid substrate.



S.M. Xia et al. / J. Mech. Phys. Solids 61 (2013) 838–851 841
To find the equilibrium profile and peel-front position, we take the first variation of the potential energy with respect to
the y subject to boundary conditions (1) and with respect to l. We obtain

dE ¼�1

2
D1ðy

09lþ Þ
2 dlþ

XN

i ¼ 1

Diðy
0 dyÞ si

si�1
�

Z si

si�1

Diy
00dy ds

����
� �

þ

Z sN

0
F sinðy�ypÞ dy ds�G dl: ð5Þ

By taking a variation of the first of the boundary conditions (1), we obtain the compatibility condition dðy9lþ Þ ¼ ðdyÞ9lþ þ

y09lþdl¼ 0. We insert this into Eq. (5) and rearrange terms to obtain

dE ¼�
XN

i ¼ 1

Z si

si�1

fDiy
00
�F sinðy�ypÞg dy dsþ

XN�1

i ¼ 1

Diy
09s�

i

�Diþ1y
09sþ

i

� �
ðdyÞ9si

þFy09s�
N
ðdyÞ9sN

þ
1

2
D1y029lþ�G

� �
dl: ð6Þ

For equilibrium and quasi-static processes, the first variation has to vanish for all possible dl and dy consistent with
boundary conditions. Therefore, we conclude

Diy
00
�F sinðy�ypÞ ¼ 0 for si�1ososi, 1r irN, ð7Þ

Diy
09s�

i

�Diþ1y
09sþ

i

¼ 0 for 1r irN�1, ð8Þ

y09s�
N
¼ 0, ð9Þ

1
2D1y029lþ�G¼ 0: ð10Þ

The physical meaning of the above equalities is obvious: Eq. (7) is the equilibrium equation for each segment of the film,
Eq. (8) indicates that the bending moment is continuous at s¼ si, Eq. (9) reproduces the natural boundary condition of zero
moment at the end, and Eq. (10) gives the crack nucleation criterion at the peel front. To these we append the boundary
and continuity conditions

yðlÞ ¼ 0, ð11Þ

yðs�i Þ ¼ yðsþi Þ, 1r irN�1: ð12Þ

Eq. (7) subject to Eqs. (8), (9), (11), and (12) determines the shape of the film while Eq. (10) may be regarded as the
criterion for the propagation of the peel front and gives the relation between G and F at equilibrium.

While solving the non-linear equation (7) is difficult, it is possible to integrate it once to obtain some interesting
insights. Multiplying Eq. (7) by Diy

0, and integrating from s0 to sN, we get

XN

i ¼ 1

1

2
D2

i ðy
09sþi�1Þ

2
�ðy09s�i Þ

2
� �

�FDi cosðyi�ypÞ�cosðyi�1�ypÞ
� �	 


¼ 0: ð13Þ

Multiplying the jump condition (8) with Diy
09s�

i

þDiþ1y
09sþ

i

, we conclude that ðDiy
09s�

i

Þ
2
¼ ðDiþ1y

09sþ
i

Þ
2. We can use this to

simplify the first term in the sum to obtain

1

2
D2

1ðy
09sþ0 Þ�

1

2
D2

Nðy
09s�N Þ�F

XN

i ¼ 1

Di cosðyi�ypÞ�cosðyi�1�ypÞ
� �

¼ 0: ð14Þ

Use the propagation equation (10) to rewrite the first term as D1G, note that the second term is zero due to the boundary
condition (9) and set f ða,bÞ ¼ cosða�ypÞ�cosðb�ypÞ. We obtain a relation between the peel force, the adhesion energy and
the angles at the interfaces

F ¼
D1GPN

i ¼ 1 Dif ðyi,yi�1Þ
: ð15Þ

Similarly, we again multiply Eq. (7) by Diy
0 but now integrate from s0 to s where sk�1rsrsk (1rkrN). We again use

the jump condition (8) and propagation equation (10) to conclude

1

2
D2

1ðy
09sþ0 Þ�

1

2
D2

k ðy
0
ðsÞÞ�F

Xk�1

i ¼ 1

Dif ðyi,yi�1Þ�FDkf ðy,yk�1Þ ¼ 0: ð16Þ

Invoking the propagation criterion (10) to rewrite the first term and solving from y0ðsÞ, we conclude

dy
ds
¼

ffiffiffi
2
p

Dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1G�F

Xk�1

i ¼ 1

Dif ðyi,yi�1ÞþDkf ðy,yk�1Þ

( )vuut : ð17Þ
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The right-hand side of Eq. (17) only involves the variable y. Further, it is non-negative. Therefore, we can integrate this
equation (formally move it to the left side and ds to the right side) to obtainZ yk

yk�1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1G�F

Pk�1
i ¼ 1 Dif ðyi,yi�1ÞþDkf ðy,yk�1Þ

n or ¼

ffiffiffi
2
p

Dk
ðsk�sk�1Þ: ð18Þ

Eqs. (15) and (18) are Nþ1 non-linear equations with Nþ1 unknowns of F and yk (1rkrN). Generally, these equations
have to be solved numerically to obtain the unknowns. However, analytical solutions are available under certain special
circumstances. In the rest of this section, we will gain some valuable insight into the problem by discussing a few special
cases, and finish by presenting an iterative numerical procedure which can be employed to handle the general case.

2.1. Homogeneous film

The film has uniform rigidity and therefore consists of only one segment with ends at s0 and s1. We first show that
as this strip becomes very long (s1-1), the end angle y1 approaches the angle yp of applied force. To this end, note that
Eqs. (18) and (15) become

F ¼
G

f ðy1,0Þ
,

Z y1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1G�Ff ðy,0Þ

p ¼

ffiffiffi
2
p

D1
ðs1�s0Þ: ð19Þ

Substituting the former in the latter and recalling the definition of f, we obtainZ y1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðy1�ypÞ�cosðy�ypÞ

p ¼

ffiffiffiffiffiffi
2F

D1

s
ðs1�s0Þ: ð20Þ

This is a equation for y1. We can show that the left-hand side is a monotonically increasing function of y1 with limits of 0
and 1 as y1 goes from 0 to yp, respectively. Therefore, there is a unique solution y1 as a function of the length ðs1�s0Þ.
Further, if the length of the strip is large compared to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=2F

p
, then it follows that y1-yp.

In any case, returning to our case of long homogeneous strip, we see on substituting y1 ¼ yp in Eq. (19)1 that

FHom ¼
G

1�cos yp
, ð21Þ

which is the well-known result of Rivlin (1944). Eq. (21) indicates that the peel force in the homogeneous case is only
dependent on the adhesion energy and the peel angle, and is irrelevant to other material and geometrical properties of
the film.

Note that the argument above (Eq. (20)) alerts us that an important length scale in the problem is
ffiffiffiffiffiffiffiffiffiffiffiffi
D=2F

p
: it is the

length of film of stiffness D that suffers bending under an applied load F. However, it is somewhat inconvenient to directly
use this length scale. In what follows, we consider the case where D varies and consequently F as we shall see. Further,
F is a part of the answer that we seek to compute. However, F is proportional to G (cf. Eq. (21)), and G is constant
by assumption in this work. So, from now on, we shall use l¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
as the characteristic length scale where De is a

representative rigidity.

2.2. Two-segment heterogeneous film

Consider a heterogeneous film comprising of two segments (N¼2) with different bending rigidities, D1 and D2. The
discontinuity of bending rigidity occurs at y¼ y1. We assume that the strip is long compared to l¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
so that y2 ¼ yp.

From Eq. (15), we find the peel force to be

FHet ¼
GD1

D2þ D2�D1ð Þ cosðy1�ypÞ�cosðypÞ
: ð22Þ

The peeling force depends on y1 which in turn depends on the position s1 of the interface. So the force required to peel this
tape depends on the maximum value of the peeling force. This occurs when D14D2, i.e., when the adhered portion of the
film has a higher bending rigidity, and for y1 ¼ 0:

F2seg
Het ¼

D1G

D2ð1�cosðypÞÞ
¼

D1

D2
FHom: ð23Þ

In other words, the force required to peel this two-segment film is higher than that of the homogeneous film, and the
enhancement ratio is D1=D2 independent of the peel angle and the intrinsic adhesion energy.

2.3. Periodically heterogeneous film

Consider a periodically heterogeneous film with period p where each period is made of M segments of bending rigidity
DðjÞ and length fraction wðjÞ, j¼ 1, . . . ,M. We use the superscript in parenthesis ðjÞ for local indexing within each period, and
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the superscript (k,j) to denote the j-th segment in k-th period (unit cell). We shall show that the overall behavior of the film
depends sensitively on the ratio between the period and the length scale of bending (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
where we take De as a

representative rigidity). We treat the two asymptotic cases, the period very small compared to this length scale and the
period very large compared to this length scale analytically and show using numerics that the general case bridges these
two limits.

2.3.1. Small period ðp5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
Þ

Recall from the general setting that the angle between two adjoining interfaces is given by Eq. (18). We observe that the
integrand is bounded away from zero independent of k, and it follows that ðyk�yk�1Þ-0 and ðsk�sk�1Þ-0 uniformly in k.
In our periodic setting, we have Dy¼maxk,jDy

ðk,jÞ
¼maxk,jy

ðk,jÞ
�yðk,j�1Þ

¼ OðpÞ. It is shown in the appendix that, as p

approaches zero, the formula (15) relating the adhesive strength to applied force becomes

F ¼
XM

m ¼ 1

wðmÞ

DðmÞ

 !
D1G

1�cosðypÞ
: ð24Þ

We conclude that the maximum peel force is given at the instant that the stiffest segment is at the peel front and

FHet ¼max
j
fDðjÞg

XM
m ¼ 1

wðmÞ

DðmÞ

 !
G

1�cosðypÞ
¼max

j
fDðjÞg

XM
m ¼ 1

wðmÞ

DðmÞ

 !
Fhom: ð25Þ

We recognize

De ¼
XM

m ¼ 1

wðmÞ

DðmÞ

 !�1

,

the harmonic mean of the rigidities, to be the effective bending rigidity of the heterogeneous film. Therefore, the above
result states that the effective peeling force required to peel a periodic tape with small period is the same as the force
required to peel a two-segment film consisting of a stiff portion with rigidity D1 ¼maxj fD

ðjÞ
g and a compliant portion of

rigidity D2 ¼De. Since the period is small compared to the region that is bent, one sees only the effective bending energy.
Since the largest rigidity is greater than the harmonic mean of the various rigidities, the prefactor above is larger than

unity. So, we do indeed have an enhancement over the homogeneous case.
Finally, for a two-segment unit cell with Dð1ÞZDð2Þ, the result Eq. (25) above reduces to

Fsp
Het ¼ wð1Þ þwð2Þ D

ð1Þ

Dð2Þ

" #
G

1�cosðypÞ
� wð2Þ D

ð1Þ

Dð2Þ
Fhom ð26Þ

for large concentration of compliant constitute (wð2Þbwð1Þ) or high level of heterogeneity (Dð1ÞbDð2Þ).

2.3.2. Large period ðpb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
Þ

Note that as the period p goes to infinity, the length of the segments do the same. Consider a situation where the first
interface s1 is just emerging from the peeled region. We can use an argument similar to that in Section 2.2 to show that
y2-yp as p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
-1. In other words, this case reduces to the two-segment film with D1 and D2 to be the rigidities of

the segments closest to the peel front. We conclude that the maximum peel force is given by

FHet ¼max
j

Dj

Djþ1

� �
G

1�cosðypÞ
¼max

j

Dj

Djþ1

� �
Fhom, ð27Þ

where the formula is interpreted cyclically. When the period becomes large, the bending zone is limited to two adjacent
segments, and thus the film behaves like a two-segment film. Further the ratio of rigidities is clearly greater than unity and
thus we have an enhancement relative to the homogeneous case.

For a two-segment unit cell with Dð1ÞZDð2Þ, the result Eq. (27) above reduces to

Flp
Het ¼

Dð1Þ

Dð2Þ
Fhom: ð28Þ

This agrees with the two-segment tape Eq. (23). Further, comparing to the case of the small period, Eq. (26), we see that
the enhancement in the case of large period is independent of volume fraction and is larger.

The result (27) also shows an interesting possibility for multi-segment tape. Suppose we peel the same multi-segment
tape analyzed above from the other end. Then the peel front approaches the various segments in the opposite sequence,
and thus the maximum peel force is given by

FHet ¼max
j

Dj

Dj�1

� �
G

1�cosðypÞ
¼max

j

Dj

Dj�1

� �
Fhom: ð29Þ

Since it is possible that maxjðDj=Djþ1ÞamaxjðDj=Dj�1Þ (e.g., a three-segment tape with Di ¼ 1,2,3, maxjðDj=Djþ1Þ ¼ 3 while
maxjðDj=Dj�1Þ ¼ 2), the maximum peel force peeling one way can be different from that peeling the other way. In other
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words, heterogeneity can give rise to asymmetry in the peeling force. We will explore asymmetry in the context of
patterning the adhesive surface in the subsequent work (Xia et al., 2012a).

2.4. General case

For a general situation where the position s1, . . . ,sN is given, we employ the following numerical method to solve the
non-linear equations (15) and (18):
1.
 Make an initial guess fyig ¼ fy1,y2, . . . ,yNg.

2.
 Estimate F from the current set of fyig using Eq. (15).

3.
 Starting from k¼1 and going till k¼N, we obtain yk from y1,y2, . . . ,yk�1 using Eq. (18).

4.
 Re-calculate F with the new set of yk. Check the relative error between the previous and current values of F. If the error

is smaller than a user-defined threshold, terminate the iteration. Otherwise, go to step 2.

After a final set of yi ð1r irNÞ is obtained, we numerically evaluate the displacement at the end of the film using Eq. (3).
On occasion, we will seek to understand the history of the peel force and displacement as the peel progresses. We do so

starting with an initial set of positions fsig and then incrementing them while computing the peel force and displacement
at each step.

3. Experiment

3.1. Model material system

A series of experiments have been performed and compared with the theoretical predictions. For direct comparison
between the theoretical and experimental results, an ideal experimental model system should possess constant film/
substrate adhesion energy as well as well-controlled heterogeneity in film bending stiffness. This consideration led to the
design of a simple composite film structure, as illustrated in Fig. 2(a). The base of the composite film was a thin polyester
(PET) sheet. To introduce heterogeneity in bending stiffness, an array of PET stiffeners of uniform thickness was bonded
onto the base using UV curable glue. The level of the heterogeneity could be manipulated over a wide range by varying the
thickness of the stiffeners. The flat side of the film was applied to a thick epoxy layer (Devon, 2Tons clear epoxy) rigidly
supported on a plastic substrate, while the epoxy was still wet. The epoxy was then allowed to fully cure for 16 h at
ambient conditions, before a peel test was carried out to peel off the composite film from the epoxy layer. The elastic
modulus and Poisson’s ratio of polyester were determined to be 3.8 GPa and 0.42, respectively, by performing uniaxial tensile
tests. The reduced modulus of the UV curable glue was evaluated by instrumented nanoindentation to be about 4 MPa, which
was three orders of magnitude lower than that of polyester, and was therefore neglected in the calculation of composite
bending stiffness. The intrinsic adhesion energy of the polyester–epoxy interface was measured by 90-degree peel testing to be
5.1 J=m2. The geometric parameters of the composite film were: width of the composite film w¼38.0 mm, thickness of the
base film t1¼0.161 mm, thickness of the UV curable glue t2¼0.010–0.030 mm, thickness of the stiffeners t3¼0.025–0.161 mm,
length of the stiffeners l¼6–10 mm, and center-to-center spacing of the stiffeners p¼12–20 mm. This set of parameters gave a
range of bending rigidity ratio of stiff (with stiffeners) to compliant (without stiffeners) regions from 2.0 to 8.8.
Fig. 2. (a) Schematic image of the experimental setup showing the composite film and loading geometry. (b) Photograph of the peel test setup.
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3.2. Peel test setup

The commonly used peel test configuration was employed to measure peel forces required to peel off a composite film
at various peel angles. As shown in Fig. 2(b), the free end of the composite film was peeled off at a constant speed, vp, and a
peel angle, yp, from the flat epoxy layer. For ease of experimental implementation, the film was always peeled upwards
with a vertically aligned motorized linear translation stage, and the plastic substrate was rotated about its hinge to obtain
any desired peel angle. Further, the peel angle was kept constant by translating the substrate in the horizontal direction at
a speed of vh ¼ vp sin yp=ð1�cos ypÞ with a second motorized translation stage. The corresponding peel force is measured
by a load cell with 500 g load capacity.

4. Results

4.1. Representative peeling response

Fig. 3 shows the experimentally measured steady-state peeling force as a function of the displacement at a peel angle of 901
for a heterogeneous film consisting of alternating stiff and complaint segments and compares it with that of two homogeneous
films, one uniformly stiff and another uniformly compliant. The measured response of the two homogeneous films overlap with
each other in agreement with Eq. (21), the well-known result of Rivlin (1944). However, the response of the heterogeneous film
is extremely different. The figure starts when the peel front is in the compliant region. It increases dramatically as the stiff
region approaches the peel front and rises to a peak as the peel front coincides with the interface between the peeled compliant
region and unpeeled stiff region. The force drops suddenly as the peel front passes the stiff region, and the cycle repeats with
each period. The force required to peel a macroscopic length of the film is equal to the peak force, and this is significantly higher
compared to that of the homogeneous films. This is as anticipated by the theory presented earlier. Henceforth, we normalize
the peeling force using that of the homogeneous films.

Fig. 4(a) and (b) shows the transient response of two films with different heterogeneity ratios (Ds=Dc¼2.0 and 8.8)
being peeled starting from a compliant region and proceeding to alternating stiff and compliant regions. Notice that for
both films the peaks are initially larger approaching that of the case of a two-segment film and then gradually level off to a
steady state value. Fig. 4(a) and (b) also compares the experimental measurement with the predicted theoretical response
computed with the general algorithm described in Section 2.4. The theoretical curves are parametrized by the position of
the peel front. As the peel front traverses the compliant region, the peel force increases reaching a peak at the compliant to
stiff interface. Note that the rising portion of the theoretical and experimental curves as well as the trends of the peaks
compare well with the experiment. The experimental peaks are slightly lower than the theoretical peaks for Ds=Dc¼8.8
and this is to be expected due to the occurrence of plastic deformation as well as shearing between the base film and
stiffeners at very large peel force.

The theoretical curves show a snap-back phenomenon: as the peel front passes the stiff-to-compliant interface (for
both films) or the compliant-to-stiff interface (for Ds=Dc¼8.8), the peeling displacement decreases. In other words, there
Fig. 3. Experimental steady-state peel force vs. displacement curves of a heterogeneous film consisting of alternating stiff and complaint segments as

well as two homogeneous films, one uniformly stiff and one uniformly compliant. The measured response of the two homogeneous films overlaps with

each other.



Fig. 4. (a), (b) Comparison between theoretical and experimental peel force–displacement curves for Ds=Dc¼2.0, p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
¼0.89 and Ds=Dc¼8.8,

p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
¼0.77. (c), (d) Theoretical peel force and peel displacement as a function of peel front position corresponding to (a) and (b). (e), (f) Theoretical

peel force under peel-front control and displacement control corresponding to (a) and (b). The other parameters are ws ¼ 0:5 and yp ¼ 901.
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are two equilibrium forces compatible for a given peel displacement and vice-versa. This snap-back is illustrated in
Fig. 4(c) and (d) which plots both the peel force and peel displacement as a function of the peel front position. This snap-
back is not observed in the experiment because these are carried out at prescribed displacement. Fig. 4(e) and (f) compares
the peel force for both displacement control and peel-front position control. The hatched area is the difference between the
two, and may be regarded as the energy that is dissipated due to the snap-back instability. The applied force has to supply
this work in addition to the work of adhesion. Therefore, we define a quasi-static (q.s.) work of peeling

Gqs
het ¼ Gþ

energy dissipated due to snap�back in one period

period
: ð30Þ

4.2. Effect of contrast in heterogeneity

The calculated values of the normalized steady-state (s.s) peak peel force for one set of geometrical parameters are
shown in Fig. 5(a) against the ratio of Ds to Dc. Also shown is a linear curve with slope one (dashed line), which represents
the theoretical enhancement of either a tape with two segments (and hence equal to that of the first peak) or a tape with
infinite period, F2seg

het =Fhom ¼ Flp
het=Fhom ¼Ds=Dc. The steady-state peel strength is lower than the initial strength, due to

stiffening of the peeled-off region. However, an approximately linear relationship appears to hold for large contrast.
The steady-state enhancement in the quasi-static work of peeling is an order of magnitude lower than that in peel

strength, but nevertheless still quite considerable, as shown in Fig. 5(b). As the level of heterogeneity increases, the



Fig. 5. Effect of contrast. Calculated values of the steady-state: (a) Normalized peak peel force, Fhet=Fhom. (b) Normalized quasi-static work of peeling Gqs
het=G as

a function of level of heterogeneity, Ds/Dc. The other parameters are p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
¼0.8, ws¼0.5, and yp ¼ 901. The symbols are the computed values and the

solids lines are a guide to the eye. The dashed line in (a) is the value for a two-segment tape or an infinite period tape, F2seg
het =Fhom ¼ F lp

het=Fhom ¼Ds=Dc.

Fig. 6. Effect of length scale. Calculated values of the steady-state: (a) Normalized peak peel force, Fhet=Fhom. (b) Normalized quasi-static work of peeling

Gqs
het=G as a function of normalized period p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
for three length fractions. The other parameters are Ds/Dc¼2 and yp¼901. The symbols are the

computed values and the solids lines are a guide to the eye. The asymptotic value for large period F lp
het=Fhom is indicated by a dashed line, and the

asymptotic values for small period Fsp
het=Fhom are indicated by dash-dotted lines.
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enhancement factor of the quasi-static work of peeling continues to increase without an apparent limit, with a slower
increasing rate at higher level of heterogeneity.

4.3. Effect of length scale of heterogeneity

Fig. 6(a) shows the calculated values of the steady-state normalized peak peel force as a function of the normalized period
for three different length fractions of stiff material. Note that for each length fraction, the curves interpolate between the
limiting values Fsp

het=Fhom (which depends on length fraction) at small period and F lp
het=Fhom (which is independent of length

fraction) at large period.
The enhancement in the quasi-static work of peeling has an opposite dependence on the period of heterogeneity, as

shown in Fig. 6(b). In particular, the quasi-static work of peeling goes to zero at a rate of 1=p with large period. This
is because the energy dissipated due to snap-back in one period saturates and thus goes to zero at a rate of 1=p when
normalized with period (cf. Eq. (30)).

4.4. Effect of peel angle

In the Section 2.3, we have shown that the normalized peel force required to peel off a two-component heterogeneous
film is independent of peel angle for both small and large periods. This is confirmed by the computed values shown in
Fig. 7(a). The latter is also confirmed by a comparison of theory and experiment in Fig. 8. However, Fig. 7(a) also shows that
the normalized peel force does indeed depend on the peel angle for intermediate periods. The effect of peel angle on the



Fig. 7. Effect of peel angle. Calculated values of the steady state: (a) Normalized peak peel force, Fhet=Fhom. (b) Normalized quasi-static work of peeling

Gqs
het=G as a function of peel angle for three different periods. The other parameters are Ds/Dc¼2 and ws¼0.5. The symbols are the computed values and

the solids lines are a guide to the eye. The asymptotic value for large period F lp
het=Fhom is indicated by a dashed line, and the asymptotic value for small

period Fsp
het=Fhom is indicated by a dash-dotted line.

Fig. 8. Comparison of effect of peel angle between theory and experiment. Here, Ds/Dc¼5.8, p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
De=2G

p
¼1.6, and ws¼0.5.
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quasi-static work of peeling is examined in Fig. 7(b). This is essentially angle dependent for all cases, with diminishing
enhancement at low peel angles.

5. Discussion

We have demonstrated that the adhesion strength of a thin film can be substantially improved through the introduction of
heterogeneity in its elastic bending rigidity with absolutely no change in the actual adhesive interface. The physical origin of
adhesion enhancement is clear from both the experiment and the model. The peel force enhancement is due to rapid variation
in stored elastic energy as the peel front crosses from a compliant to a stiff region. A significant portion of the work done by the
peel force goes into bending of the suddenly stiffer region, thereby giving rise to a drop in the total driving force and a peak in
the peel force when a constant peel velocity is imposed. On the other hand, the enhancement in work of peeling is a
consequence of energy dissipation associated with the snap-back instability in peel force–displacement curves.

A variety of ways can be employed to create the desired heterogeneity. Since the bending rigidity depends on the third
power of the film thickness, it is most effective to modulate the thickness. In this study, we have worked on a model
system that has a patterned, laminated composite structure. Other possible methods to introduce heterogeneity include,
but not limited to, modulating spatial distribution of film thickness, and patterning elastic modulus by masked irradiation
if the film material is irradiation-sensitive. There is no upper limit of enhancement with increasing degree of
heterogeneity. However, the actual level of enhancement may be bounded by various practical factors, such as plasticity
and strength of the film material.

The level of enhancement depends sensitively on the length scale of heterogeneity. The enhancement in the force required
to peel the adhesive is largest when the length scale of heterogeneity is extremely large compared to the characteristic length
of bending of the film. The enhancement decreases with decreasing length scale, but does not completely vanish even in this
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limit. In other words, one always sees the heterogeneity no matter how small it is. We note that this observation has to be
tempered with the observation that in this work the adhesive process is assumed to be completely ‘brittle’ with an infinitesimal
process zone. In some material systems like the common pressure sensitive systems (e.g., the Scotchs adhesive tape), the size
of process zone is not negligible compared to the characteristic length of bending. In such situations, our results would be
limited to scales which are large compared to the size of the process zone. Thus, our small-scale asymptotic limit may not be
attainable.

In this work, we largely framed the discussion in terms of the force required to peel a macroscopic length of film.
However, it is common to describe adhesion in terms of energy density based on the work required to peel an adhesive
film. This would be equal to the area under the force–displacement curve shown in Fig. 3, for example. Clearly, this
enhancement is smaller than the enhancement in the peeling force (they would be equal if the force were uniformly at the
peak). Thus, in a heterogeneous system, the relation between force and energy does not directly hold. However, notice that
the actual force–displacement curve would likely be rate-dependent (even if the material were rate-independent) due to
the waves that would emanate as the peel front traverses the stiff/compliant interface. Thus we expect the effective work
of peeling to be significantly rate-dependent, and to increase monotonically with peeling rate. Thus, a lower bound is
the quasi-static work of peeling defined in Eq. (30). We see from Fig. 6, for example, that Gqs

het=GoFhet=Fhom as expected.
However, notice from this figure that Gqs

het=G-Fhet=Fhom as the length scale becomes very small.
We have limited ourselves to a one-dimensional situation by considering the striped geometry. This allowed us to

analyze the problem using a (modified) Euler–Bernoulli beam theory. However, the striped geometry gives rise to a highly
anisotropic situation. When tested along the parallel direction, the film is not expected to exhibit any adhesion
enhancement. The process of peeling in this case is uniform, and can be therefore described by the Rivlin model as for
a homogeneous film. To achieve enhancement in all directions, it is necessary to incorporate two-dimensional patterns,
arranged in a deterministic or random way. A theoretical analysis would require plate theory, and evolution equations for
the peel front line. We investigate this in the context of adhesive heterogeneity in subsequent parts of this work (Xia et al.,
2012a; Ponson and Xia, 2012).

We have assumed the film is inextensible and only considered its bending. For thin films made of soft materials that are
peeled at very low angles, the effect of extensibility may be important (Kendall, 1975b). We address this in the context of
adhesive heterogeneity in subsequent parts of this work (Ponson and Xia, 2012).

While we consider adhesion of a thin film, the significance of our results extends beyond, since we may regard adhesion
fronts as a prototypical problem in condensed matter physics. We anticipate similar effects of heterogeneity on brittle
fracture (Rice, 1985; Legrand et al., 2011), dislocations (Hirth and Lothe, 1992), phase boundaries (Dondl and Bhattacharya,
2010), and wetting fronts (Joanny and de Gennes, 1984). Most of the research effort on heterogeneities has focused on the
disordered case where G is described by a quenched noise, resulting in universal features through intermittent dynamics
and scale-invariant roughening (Bonamy and Bouchaud, 2011; Sethna et al., 2001). Our work shows that there is much to
gain in terms of overall properties by studying the deterministic and periodic cases. Specifically we anticipate that in many
of these phenomena, patterning the elastic modulus would produce strong drops of the driving force resulting in largely
enhanced resistance. This can potentially open the door to engineering new materials where the toughness, strength, etc.,
can be tuned through designed defects.
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Appendix A

To find the limiting form of Eq. (15) for a periodically heterogeneous film as the period p tends to zero, we notice that
the denominator

X1
i ¼ 1

Dif ðyi,yi�1Þ ¼
X1
k ¼ 0

XM
j ¼ 1

DðjÞ½cosðyðk,jÞ
�ypÞ�cosðyðk,j�1Þ

�ypÞ� ¼
X1
k ¼ 0

XM
j ¼ 1

DðjÞ sinðyp�y
ðk,0Þ
ÞDyðk,jÞ

þOðp2Þ, ðA:1Þ

where we used Taylor expansion to get from the first line to the second. To proceed further, we seek to relate the change of
angle in the different segments of the unit cell to the overall change of angle within one unit cell and to the volume
fraction of the segment. To that end, we recall the moment continuity condition (8) and approximate the derivatives of
inclination angle with finite difference formulas. This leads to

Dðjþ1Þy09sðk,jÞ þ �DðjÞy09sðk,jÞ� ¼
Dðjþ1ÞDyðk,jþ1Þ

pwðjþ1Þ
�

DðjÞDyðk,jÞ

pwðjÞ
þOðpÞ ¼ 0: ðA:2Þ
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The above equation implies

DðmÞDyðk,mÞ

wðmÞ
¼

DðjÞDyðk,jÞ

wðjÞ
þOðp2Þ for any m,j 2 ½1,M�

and therefore

Dyðk,mÞ
¼

DðjÞDyðk,jÞwðmÞ

wðjÞDðmÞ
þOðp2Þ: ðA:3Þ

Summing over m from 1 to M, we get

XM
m ¼ 1

Dyðk,mÞ
¼ yðk,MÞ

�yðk,0Þ
¼DyðkÞ ¼

DðjÞDyðk,jÞ

wðjÞ
XM

m ¼ 1

wðmÞ

DðmÞ
þOðp2Þ ðA:4Þ

or

DðjÞDyðk,jÞ
¼DyðkÞwðjÞ

XM
m ¼ 1

wðmÞ

DðmÞ

 !�1

þOðp2Þ: ðA:5Þ

Substituting this back into Eq. (A.1), we obtain

X1
i ¼ 1

Dif ðyi,yi�1Þ ¼
XM

m ¼ 1

wðmÞ

DðmÞ

 !�1 X1
k ¼ 1

sinðyp�y
ðk,0Þ
ÞDyðkÞ þOðp2Þ: ðA:6Þ

We now let p-0 and notice that since Dy-0, the sum becomes an integral. We conclude that

X1
i ¼ 1

Dif ðyi,yi�1Þ-
XM

m ¼ 1

wðmÞ

DðmÞ

 !�1 Z yp

0
sinðyp�yÞ dy¼

XM
m ¼ 1

wðmÞ

DðmÞ

 !�1

ð1�cos ypÞ: ðA:7Þ

We can now obtain the instantaneous peel force by substituting this into Eq. (15)

F ¼
XM

m ¼ 1

wðmÞ

DðmÞ

 !
D1G

1�cosðypÞ
: ðA:8Þ
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