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The effect of strong toughness heterogeneities on the macroscopic failure properties of
brittle solids is investigated in the context of planar crack propagation. The basic me-
chanism at play is that the crack is locally slowed down or even trapped when en-
countering tougher material. The induced front deformation results in a selection of local
toughness values that reflect at larger scale on the material resistance. To unravel this
complexity and bridge micro to macroscale in failure of strongly heterogeneous media, we
propose a homogenization procedure based on the introduction of two complementary
macroscopic properties: An apparent toughness defined from the loading required to make
the crack propagate and an effective fracture energy defined from the rate of energy re-
leased by unit area of crack advance. The relationship between these homogenized
properties and the features of the local toughness map is computed using an iterative
perturbation method. This approach is applied to a circular crack pinned by a periodic
array of obstacles invariant in the radial direction, which gives rise to two distinct pro-
pagation regimes: A weak pinning regime where the crack maintains a stationary shape
after reaching an equilibrium position and a fingering regime characterized by the con-
tinuous growth of localized regions of the fronts while the other parts remain trapped.
Our approach successfully bridges micro to macroscopic failure properties in both cases
and illustrates how small scale heterogeneities can drastically affect the overall failure
response of brittle solids. On a broader perspective, we believe that our approach can be
used as a powerful tool for the rational design of heterogeneous brittle solids and inter-
faces with tailored failure properties.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting the role played by small scale heterogeneities on the macroscopic fracture toughness of materials is an im-
portant challenge in mechanical engineering. Besides obvious benefits in terms of reliability, it also aims at assisting the
design of multi-material components with controlled mechanical toughness combined with other controlled properties
(weight, permeability, thermal or electrical conductivity, etc.). The central question is: How can we predict the fracture
properties at the macroscopic scale from the knowledge of the toughness at the microscopic one? This requires the defi-
nition of effective fracture properties and a method to calculate them. An inherent difficulty of this problem is the scale and
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spatial dimension separations between (i) the bulk elastic energy involving the structure continuum scale and (ii) the surface
fracture energy associated with the local dissipation at the microscopic scale in the crack tip vicinity. This renders the use of
classical homogenization methods based on a volume-average of bulk material inappropriate.

The role played by heterogeneities and defects on the fracture resistance are various. When crack initiation dominates
the fracture process, the failure strength of a solid is not ruled by an average of its local properties, but rather by the
response of a little part of it that acts as a “weak link” and is responsible for the failure of the whole solid (Weibull, 1939).
When material failure involves the propagation of a crack, heterogeneities may influence the macroscopic toughness by
several ways. For instance, micro-cracks may play a complex role on the crack propagation: Depending on their position and
orientation, they result in enhancement or decrease of toughness (Kachanov, 1994); elastic heterogeneities have a strong
influence on crack behavior and have shown potential to increase significantly fracture resistance (Gao, 1991; Dimas et al.,
2014; Hossain et al., 2014); energy dissipation at the interface between elementary constituents (Barthelat and Rabiei, 2011)
and crack bridging by unbroken fibers (Bower and Ortiz, 1991) are other efficient toughening mechanisms, largely present in
nature (Barthelat et al., 2007; Ritchie, 2011). Crack front deformation induced by pinning of the crack on tougher zones has
also a significant impact on the macroscopic toughness (Gao and Rice, 1989; Bower and Ortiz, 1991; Xia et al., 2015).

In this paper, we focus on this last effect in the context of brittle fracture, and make the assumption of planar propagation
that amounts to exclude the crossing of obstacles through out-of-plane crack excursions. This situation prevails for cracks
propagating within a textured interface, as encountered in multifunction double glazing or in electronic chips. It is also
representative of crack pinning phenomena at play in many materials at the scale of their microstructure and represents an
important step toward the description of the more complex situation of a brittle crack propagating through a three-di-
mensional heterogeneous medium. The basic mechanism is that the crack front advance is slowed down in tougher regions,
so that the geometry of the crack line evolves during propagation. These deformations themselves change the local loading
along the front that controls the zones of the toughness map visited by the front, hence the macroscopic toughness. This
coupled problem involving geometry and loading changes, belongs to the realm of free-discontinuity problems. Another
difficulty inherent to that situation is that it cannot be understood within the frame of 2D fracture mechanics, contrary to
most of the previously mentioned toughening mechanisms, since it necessarily implies the description of the failure process
through the evolution of the crack front and not one crack tip alone.

Perturbation approach proposed by Rice (1989), based on Bueckner (1987)'s weight functions, is an efficient way to
address such problems. This approach provides the first-order expression of the variation of the stress intensity factor (SIF)
induced by some small, but otherwise arbitrary coplanar perturbation of the front. The expression corresponding to the half-
plane crack geometry established by Rice (1985) has been extensively used, thanks to its relative simplicity. A length scale is
however lacking for this simple geometry restricting its usefulness to qualitative purposes. To fill this gap, the approach has
been extended to finite size cracks, especially circular (Gao and Rice, 1987; Gao, 1988) and tunnel-cracks (Leblond et al.,
1996; Lazarus and Leblond, 2002; Pindra et al., 2010) (see also Lazarus, 2011 for a review). More recently, it has been
extended to the case of a half-plane crack lying on the mid-plane of a semi-infinite plate (Legrand et al., 2011), leading to
quantitative agreement (Patinet et al., 2011, 2013a) with Dalmas et al. (2009)'s clivage experiments in which a crack is
pinned by a stripe of tougher material.

For weakly heterogeneous materials, those expressions have been used to obtain first-order estimations of the effective
fracture toughness. Gao and Rice (1989) considered periodic arrays of weak obstacles and studied their effect on the remote
loading: After a transient phase where the load has to be increased to allow the penetration of the crack in between the
obstacles, the propagation becomes unstable in the sense that it occurs at a lower loading. They estimated the critical load
corresponding to the onset of instability for several geometries of obstacles. Roux et al. (2003) followed by Patinet et al.
(2013b) and Demery et al. (2014) considered the case of disordered arrangements of toughness heterogeneities. They
showed that (i) in the absence of dynamical phases during the propagation (weak pinning regime), the effective toughness
is equal to its spatial average value while (ii) in the presence of micro-instabilities (strong pinning regime) following col-
lective depinning of the front from impurities, the effective toughness is increased. Here we aim to study how in the first
case, that is in the absence of any micro-instability, large front deformations can actually affect the macroscopic resistance to
failure. In particular, we aim to answer to the following question: How does the effective toughness depart from the mean
one for increasing strength of heterogeneities?

Whether of the first or second order (Leblond et al., 2012; Vasoya et al., 2013; Willis, 2013; Vasoya et al., 2016),
asymptotic studies remain essentially restricted to small front perturbations. For larger perturbations arising from higher
toughness contrasts, the use of numerical methods becomes mandatory. The finite perturbation method, proposed by Rice
(1989) and developed numerically by Bower and Ortiz (1990), Lazarus (2003) and Favier et al. (2006) is based on multiple
numerical iterations of the previously introduced first-order formula. Some examples presented in Bower and Ortiz (1990),
(1991), Lai et al. (2002) and Lazarus (2003), have shown its ability to track the crack front when strolling through some
heterogeneous media, hence to deal with our problem.

Here this method is used to address the problem of a circular crack pinned by a periodic array of obstacles with radial
symmetry, i.e. invariant along the propagation direction. The apparent toughness defined from the loading required to make
the crack propagate and the effective fracture energy defined from the rate of energy released by unit area of crack advance
are computed as a function of the obstacles strength and width. Surprisingly, the macroscopic fracture properties do not
vary continuously with the microscopic ones. Instead, our calculation brings out two separate branches: For weak and small
obstacles, effective properties remain close to the material average toughness while strong obstacles of large size result in a
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dramatic drop of the resistance that is then essentially governed by the toughness of the weakest material.
To unravel these observations, we investigate the crack behavior at the local scale and study the geometry of the front as

it penetrates into the obstacles. We evidence two distinct propagation regimes that correspond to the two regimes evi-
denced at the global scale on the effective fracture properties. At small obstacle strength and width, in the so-called weak
pinning regime, the whole crack front advances by maintaining a stationary shape. At larger strength and width, we observe
a fingering regime characterized by the continuous growth of localized regions of the fronts in between obstacles while the
rest of the front remains trapped. The way the global effective properties emerge from these specific local growth me-
chanisms is discussed in both regimes.

The paper is organized as follows. In Section 2, we introduce the homogenization procedure from which the effective
fracture properties are defined, namely the apparent toughness and the effective fracture energy. The iterative perturbation
approach used to compute these quantities from the features of the local toughness map is described in Section 3. This
approach is first applied in Section 4 in the limit of weak obstacles, and compared with first-order analytical predictions for
validation. Variations of the effective failure properties for larger toughness contrasts are presented in Section 5 as a
function of the obstacle strength and width. In Section 6, the weak pinning and fingering crack propagation regimes are
described at the local scale. In Section 7, the observations made at the local scale are used to explain the behavior of the
macroscopic fracture properties. Finally, the conclusions and implications of the present study, and directions for future
work are presented in Section 8.
2. Homogenization procedure

2.1. Heterogeneous problem at the microscale

Consider a solid body containing a circular planar crack and made of a linear elastic material with homogeneous elastic
constants E and ν, but heterogeneous fracture toughness κ ( )Mc or, equivalently, fracture energy γ ( )Mc . The crack is supposed
to be sufficiently far from the body's boundary so that one can safely assume that (i) the body is infinite and (ii) the tensile
loading s is applied at infinity (Fig. 1). We assume pure mode I tensile loading and denote κ ( )M the mode I Stress Intensity
Factor (FIC) and γ ( )M the energy release rate, both defined locally at point M. The crack advance satisfies locally, at each
instant, Irwin's criterion

κ κ
κ κ

( ) < ( ) ⇒
( ) = ( ) ⇒ ( )

⎧⎨⎩
M M

M M

no crack advance
crack propagation 1

c

c

or Griffith's one

γ γ
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( ) = ( ) ⇒ ( )
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c

In the following, the external loading s is adjusted so that the local driving κ ( )M (resp. γ ( )M ) never exceeds the material
toughness κ ( )Mc (resp. γ ( )Mc ). This ensures that the propagation remains quasistatic and discards any dynamical dissipation.

Criteria of Eqs. (2) and (1) are equivalent, γ and γc being linked to κ and κc by Irwin (1957)'s relation:

γ ν κ γ ν κ= − = −
( )E E

1
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1
3c c

2
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2
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Fig. 1. Circular crack submitted to a remote tensile loading growing in a plane that contains k¼4 obstacles of strength Δ =
κ κ

κ κ

−

+
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propagation direction.
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2.2. Homogeneous problem at the macroscale

Homogenization consists in replacing the problem at the microscale by an equivalent homogeneous problem at the
macroscale. For this, we propose

(i) To replace the deformed crack front by a circular one of the same area, that is

π
=

( )
a

S
4

where S is the area of the deformed crack and a the radius of the equivalent circular crack.
(ii) To replace Irwin's local criterion by a global one ≤K Kc

a, where the macroscopic SIF, denoted K , is defined by the one of
the equivalent circular crack

π
σ≡

( )
K a

2
.

5

(iii) To replace Griffith's local criterion by ≤G Gc
a, the macroscopic energy release rate G being given by

∫
∫
γ δ

δ
=

( ) ( ) ( )

( ) ( ) ( )
G

M M s M

M s M

d

d
,

6

where δ ( )M is the normal distance between and an infinitesimally close subsequent position of the crack front.

The introduction of two a priori independent homogenized quantities Kc
a and Gc

a calls for a few comments. The in-
stantaneous toughness Kc

a is defined from the loading required to make propagate an equivalent circular crack, as proposed
by Gao and Rice (1989). This approach prevails in most experimental situations where a loading is imposed to a fractured
sample and the average crack length is measured e.g. through optical means. A large toughness reveals an enhanced re-
sistance in terms of critical loading at failure that is of direct relevance for material and structure design. We also introduce
the instantaneous fracture energy Gc

a defined from the evolution of the macroscopic energy release rate G with the crack size,
as proposed by Hossain et al. (2014) in the context of 2D heterogeneous media. This derives from the application at the
global scale of Griffith's energy conservation law that describes the transfer of mechanical energy into fracture energy,
ensuring =G Gc

a during failure.
By construction, both Kc

a and Gc
a depend on the crack size a and correspond to the instantaneous values of the propa-

gation thresholds. For the microstructure studied hereafter, invariant along the propagation direction, they both reach a
stationary value after an initial transient regime. We use this limit to define the macroscopic failure properties

= = ( )→∞ →∞
K K G Glim and lim 7c

a
c
a

c
a

c
a

that we call apparent toughness and effective fracture energy, respectively.
For a homogeneous distribution of fracture properties, the crack remains circular and the problem at the global scale is

equivalent to the one at the local scale, hence κ=K and γ=G , that remains true at the propagation threshold. Therefore,
Irwin's relation γ κ= ν−

c E c
1 22

between local material properties remains valid for the homogenized quantities = ν−G Kc E c
1 22

too.
The survival of this equivalence between a loading and an energy based criterion at the global scale for heterogeneous media
is one of the central points of this study. We return to this issue in Section 7.
2.3. From the micro to the macroscale

The macroscopic SIF K and elastic energy release rate G are equal to Kc
a and Gc

a only if a grows. At the microscale, it means
that at least some part of the crack front advances that is κ κ= c is reached at least at one point, which is equivalent to

κ
κ

( )
( )

=
( )∈

M
M

max 1.
8M c

In practice, the steps required to link the micro to the macroscale are as follows:

(i) The quasistatic propagation problem is solved at the microscale following the propagation law of Section 2.1. More
precisely, for each subsequent crack position, the onset loading σc is determined from Eq. (8) as well as the
corresponding front shape and the local values of κ ( )M and γ ( )M .

(ii) K and G are computed using their definitions (5) and (6), respectively.
(iii) the instantaneous failure properties Kc

a and Gc
a are obtained by identification with K and G.

(iv) Kc and Gc are then determined from the asymptotic values of Kc
a and Gc

a in the long crack growth limit.
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3. Numerical procedure

The homogenization method proposed above is quite general and may be easily transposed to other geometries, as e.g.
cracks with a straight front on average. The only practical hurdle may be the numerical resolution of the quasistatic pro-
pagation problem at the microscale. For the planar crack problem considered here, perturbation approaches (Rice, 1989;
Bower and Ortiz, 1990; Lazarus, 2011) are an efficient way to solve it. In practice, we extended the numerical code of Lazarus
(2003) in the following way. We start from an initial circular crack of radius a0 for which

κ
π

σ( ) =
( )

M a
2

.
90

We introduce the following dimensionless SIF κ defined by

κ
π

σ κ( ) = ( )
( )

̂M a M
2

.
100

κ depends on the crack shape and size, but is independent of the applied loading due to linearity of the elasticity problem.
The crack evolution is then solved iteratively by successive small normal perturbations δa of the front. We detail below how
to update the crack shape and the local SIF κ , on the one hand, and the macroscopic quantities σc , Kc

a, Gc
a, on the other hand.

3.1. Determination of the crack advance δa

Irwin's propagation law of Eq. (1) is regularized by Paris'law (Lazarus, 2003)

δ δ κ
κ

( ) = ( )
( ) ( )

β⎛
⎝⎜

⎞
⎠⎟a M a

M
M 11c

max

using a large exponent β⪢1.
This procedure is analogous to the viscoplastic regularization in plasticity. It retrieves Irwin's threshold behavior (1),

since:

δ κ κ
δ δ κ κ

( ) ∼ ( ) < ( )
( ) ∼ ( ) = ( ) ( )

⎧⎨⎩
a M M M

a M a M M

0 if
if 12

c

cmax

and hence, ensures quasistatic crack propagation.
Advantage of using Paris' law is that the crack advance at all steps is provided explicitly. Disadvantage is that some

numerical instability may occur for some values of the spatial (number of nodes N) and temporal discretization (given by
δamax), as when Eulerian explicit scheme is used to solve classical partial differential equations. This point has been studied
in detail in Vasoya (2014) and a map of the numerical stability is provided in Fig. A1 of Appendix A.
3.2. Update of the stress intensity factor κ

The dimensionless SIF κ is updated by using Rice (1989)'s first-order perturbation formula

∫δκ
π

κ δ δ( ) = ( )
( )

( )[ ( ) − ( )] ( )
( )

̂ ̂ ⁎M PV
w M M
d M M

M a M a M s M
1

2
,
,

d .
130

0
2

0

In this equation, s denotes the curvilinear abscissa, ( )d M M, 0 is the distance between two points, δ ( )⁎a M corresponds to a
translation of the crack front and is introduced to ensure the existence of the Principal Value ( )PV integral. Its contribution to
δκ ( )M0 is zero here, since it leaves the elasticity problem unchanged thanks to the hypothesis of infinite solid. The non-local
behavior of the SIF with respect to the front geometry emerges from the long-range interactions between different zones of
the front that are mediated through the bulk elasticity. This confers a long-range elasticity to the crack front which is
described by the dimensionless kernel ( )w M M, 0 updated using a similar formula

∫δ
π

δ δ( ) = ( ) ( )
( )

( )
( )

[ ( ) − ( )] ( )
( )⁎⁎w M M

d M M
PV

w M M
d M M

w M M
d M M

a M a M s M,
,

2
,
,

,
,

d .
141 0

2
1 0 1

2
1

0
2

0

Here, δ ( )⁎⁎a M corresponds to the composition of translation, rotation and homothety which ensures the existence of PV
while leaving the kernel unchanged, again since the solid is supposed here to be infinite.
3.3. Determination of the macroscopic properties

The critical loading is then obtained by introducing (10) in (8)
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and from it, the macroscopic fracture properties Kc
a and Gc

a following the methods described in Section 2.2. More precisely,
Kc

a is given by Eq. (5) with σ σ= c, the equivalent radius a being itself obtained by updating the crack area S using the first-
order formula ∫δ δ= ( ) ( )S a M s Md . The effective fracture energy Gc

a is obtained from Eq. (6) and reads

∫
∫π

ν σ
κ δ

δ
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2
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Besides the knowledge of κ , another dimensionless useful SIF κ∼ defined by

κ κ=
( )

∼ ̂a
a 17
0

is computed. Both κ and κ∼ depend only on the geometry of the crack front (and not on the loading). Whereas κ depends on
the crack shape and size, κ∼ is only shape dependent. The total SIF κ is derived from the definitions (10) and (15). κ , κ∼ and κ
are used in the sequel depending on the needs.
4. Application to a circular crack pinned by a periodic array of obstacles

In the following, we consider the case of a circular crack propagating in the toughness field

κ κ θ κ θ( ) = ( ) = [ + Δ ( )] ( )M k1 cos 18c c c

of mean value κc that contains k obstacles, as schematized in Fig. 1 for k¼4. This local toughness is invariant in the radial
direction depicting obstacles infinitely elongated along the crack propagation, but varies sinusoidally along the crack front
direction. As a result, the fracture plane displays a k-fold rotational symmetry characterized by two parameters:

(i) the dimensionless obstacle strength or toughness contrast Δ = κ κ

κ κ

−

+
c c

c c

max min

max min . To ensure positive toughness everywhere in

the fracture plane, the contrast is comprised in between Δ≤ ≤0 1;
(ii) the number k of obstacles or equivalently, the dimensionless obstacle width k1/ that gives the fraction of the crack front

covered by one obstacle, its actual width being given by ξ π= a k2 / . To ensure continuity of the toughness field in θ = 0,
one considers only integer values of ≥k 1.

Using Irwin's relation (3), one gets the fracture energy field

γ θ
γ

θ Δ θ( ) =
+

[ + Δ ( ) + ( )]
( )

Δ
k k

1
1 2 cos cos

19
c

c

2

2 2
2

where the mean fracture energy is given by

∫γ
π
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d
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20c c c
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2 2
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For this problem, if Δ = 0, that is the material is homogeneous (κ κ =/ 1c c
min max ), the crack remains circular since it is stable

toward any geometrical perturbation (Gao and Rice, 1987). If Δ ≠ 0, that is κ ( )Mc is heterogeneous, the crack advance is
affected by the local toughness field and the circular shape deforms. The limiting case Δ = 1 corresponds to infinitely strong
obstacles or, equivalently, to infinitely weak regions between obstacles (κ κ =/ 0c c

min max ).

4.1. Analytical first-order resolution for small toughness contrast

Suppose now that the heterogeneity contrast is small, that is Δ⪡1. Using Gao and Rice (1987)'s expression for κ θ( ) valid
for slightly perturbed circular cracks, one shows that, in polar coordinates, θ θ( ) = + Δ ( )a a a k/2 cos with

ΔΔ = −
− ( )

a
a k

4
1 21

satisfies the equilibrium condition κ κ( ) = ( )M Mc along the whole front for σc given by σ κ=
π

ac c
2 . Fig. 2 compares the

numerical results for k¼4 and Δ = 0.2 with the first-order analytical solution: an agreement within 1% is found.
From the front geometry and the definitions (5) and (6), one calculates the homogenized properties
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κ γ= = ∀ > ( )K G k/ / 1 1. 22c
a
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valid at the linear order in Δ (see Appendix D). It shall be noticed that an equilibrium position satisfying κ κ( ) = ( )M Mc along
the front cannot be found in the particular case k¼1 as clear from Eq. (21). Indeed, this particular toughness field would
produce front perturbations that correspond to a translation of the initial circular crack. And this perturbation mode is
neutrally stable under the uniform loading conditions considered here as noticed by Gao and Rice (1987), which means that
the SIF stays uniform hence cannot match with an heterogeneous toughness field.

4.2. Higher order numerical resolution for arbitrary large contrast

Numerical simulations with different wavenumbers k and toughness contrasts Δ are performed. In the following, the
Paris' law exponent β = 25 is chosen which has been verified to give converging results. The spatial discretization step along
the front is chosen to be substantially smaller than the obstacle width. In practice, the number of nodes is increased as the
front deforms up to a maximum value of 60 nodes per period. The temporal discretization is chosen to ensure the stability of
the numerical scheme (see Appendix A).

In the following, we assume that the front shape remains periodic during propagation, in agreement with the periodicity
of the toughness map. This assumption is used to decrease the computational cost of the simulations: Even though the
kernel w is not fully periodic,2 it allows to limit the calculation of κ and δa to one period.
5. Homogenized fracture properties

5.1. Apparent toughness

The evolution of the critical loading σc and of Kc
a is explored in Fig. 3. We first discuss their values for =a a0. Prior to

initiation, the crack is circular so the value of κ is uniform along the front and equal to the macroscopic SIF K . As a result, the
dimensionless SIF introduced in Eq. (10) is κ = =a a/ 10 . Using Eq. (8), the critical loading at initiation =a a0 verifies

π
σ

κ
Δ= −

a2
1 .c

c

0

from which follows the toughness at initiation κ Δ= −K / 1c
a

c . Here, the crack starts to grow when at least one point of the

front fulfills κ κ= c. This is satisfied first in θ = π( + )
A

n
k

1 2 for ≤ ≤ −n k0 1, i.e. for points A located between obstacles in the
weakest part of the interface (see Fig. 1).

During the propagation phase, two regimes can be distinguished:

(i) An initial transient regime during which Kc
a increases. The loading is here essentially fixed by the value of the SIF in A

where the condition κ κ= c is first reached, that is σ κ κ( ) =∼
π

a Ac c
2 min. Since κ( )∼ A decreases as the crack advances and

deforms (Gao and Rice, 1987), the loading σc and therefore Kc
a increase.

(ii) A stationary regime reached soon after peak load where σc varies inversely proportionally to a1/ and so Kc
a remains

asymptotically constant. This limit corresponds to the apparent toughness Kc .
2 It is somehow periodic since ( + ′ + ) = ( ′)w s T s T w s s, , , but not fully since ( + ′) ≠ ( ′)w s T s w s s, , .



Fig. 4. Effect of the microscale fracture properties, the obstacle strength Δ and their number k, on the apparent toughness. The straight dotted green line
corresponds to the minimum value κ κ Δ= −/ 1c c

min of the toughness field. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 3. Evolution of (a) the critical loading σc and (b) the instantaneous toughness Kc
a during crack propagation for k¼4 obstacles.
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This behavior reminds the so-called R-curves characteristic of quasi-brittle and ductile failure that are reminiscent of the
transient increase of the damage activity at the crack tip close to initiation. Remarkably, the transient increase of the SIF
takes place here in a perfectly brittle material. This behavior is actually general and results from the heterogeneous nature of
the toughness field: The crack explores first the weakest region of the fracture plane where the Griffith's condition is first
reached. The front deformation thus generated, redistributes the local driving force along the crack line allowing the
progression in tougher and tougher regions, but at the price of a larger applied loading, and so an increase of the in-
stantaneous toughness Kc

a. A stationary regime may eventually be reached when Irwin's criterion (1) is satisfied everywhere
along the front.

The apparent material toughness Kc is now represented as a function of the microscopic parameters on Fig. 4. Two
regimes are evidenced:

(i) For weak obstacles, Δ Δ< ( )kc , the apparent toughness cannot be distinguished from the average value κc of the
toughness field.

(ii) For strong obstacles, Δ Δ> ( )kc , the apparent toughness clearly deviates from κc . It decays similarly to κc
min, indicating

that the crack growth is essentially governed by the weakest regions of the fracture plane.



Fig. 5. Evolution of the instantaneous fracture energy Gc
a for k¼4 obstacles.

Fig. 6. Effect of the obstacle strength Δ and their number k on the effective fracture energy. The green dotted line corresponds to the minimum value
γ γ Δ Δ= ( − ) ( + )/ 1 / 1 /2c c

min 2 2 of the fracture energy field, the other dotted lines are guides to the eyes. The inset is a zoom of the curves showing the
agreement, in the limit Δ⪡1, between the second order prediction (solid lines) of Eq. (24), and the numerical values. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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5.2. Effective fracture energy

We now turn to the study of the effective fracture energy. The evolution of its instantaneous value Gc
a is shown in Fig. 5

for k¼4 and display a behavior qualitatively similar to the toughness Kc
a: Its initial value is set by the minimum

γ γ = Δ( − )

+ Δ
/c c

min 1

1

2

2

2

of the fracture energy field given in Eq. (19). Its further evolution shows a R-curve like behavior characterized

by an initial transient regime followed by a plateau that defines the effective fracture energy Gc. However, this initial
transient regime does not show a monotonical increase for all obstacle strengths: For Δ Δ< ( )kc , Gc

a increases monotonically
while for Δ Δ> ( )kc , it increases and then decreases before reaching a stationary value.

This difference also reflects on the value of the effective fracture energy Gc shown in Fig. 6 as a function of the local failure
parameters: For weak obstacles Δ Δ< ( )kc , the effective toughness slightly decays with Δ, but remains close to the average
value γc of the fracture energy field. While above some critical contrast value Δ ( )kc , the effective fracture energy suddenly
drops to follow another branch corresponding to the minimal value γc

min of the fracture energy field.
The discontinuous evolution of the effective fracture energy with the obstacle strength Δ illustrates a characteristic

feature of crack propagation problems in heterogeneous media: Since the effective fracture properties reflect the long-time
state reached by the crack after its evolution through the heterogeneous fracture plane, a small variation in the material
features at the local scale may result in a large variation in the effective resistance at the large scale. The observation of a



Fig. 7. Evolution of the relative front deformation during crack propagation for k¼4 obstacles.

Fig. 8. Propagation regimes of a circular crack through an array of k obstacles of strength Δ. In this diagram, the upper region of the Δ( )k, space corresponds
to a weak pinning regime where the crack reaches a stationary shape after an initial transient, while the lower region corresponds to a fingering regime
characterized by infinitely growing petals.
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transition between a fracture energy Gc close to the average value γc , to a branch close to the weakest value γc
min, indicates a

drastic change of the crack propagation mode that is now investigated.
6. Crack propagation regimes: From weak pinning to fingering

6.1. Evolution of the crack front deformation

The observation of two distinct failure behaviors at the macroscale brings us to the study of the crack growth me-
chanisms at the microscale. Figure 7 shows the evolution for =k 4 of the front deformation amplitude ≡Δ ( ) − ( )a

a
a A a B

a
(see

Fig. 1 for definition of A and B). For weak obstacles Δ Δ< ≃ 0.4c , the relative front deformation rapidly saturates underlining
that the crack reaches a stationary configuration. On the contrary, the front deformation for strong obstacles Δ Δ> c shows a
steady increase, revealing that the crack configuration constantly evolves during crack growth.

6.2. Identification of the propagation regimes in the parameter space of the toughness field

The systematic study of the evolution of the crack front deformation as a function of the number k of obstacles and their
strength Δ allows us to define two separated regions in the (k, Δ) parameters space of Fig. 8, that associate with two distinct
growth regimes:

� A weak pinning regime taking place for small obstacle strengths Δ Δ< ( )kc where, after an initial transient, the front



Fig. 9. Successive crack front positions and SIF along the crack front during propagation in the weak pinning regime for Δ = 0.3 and k¼4. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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reaches a stationary shape characterized by a finite petal size.
� A fingering strong pinning regime taking place for large obstacle strengths Δ Δ> ( )kc where localized regions of the front

remain trapped by the obstacles while the other ones propagate in-between forming elongated fingers. In that regime,
the crack shape never becomes stationary and looks like a flower with infinitely growing petals. Despite different un-
derlying mechanisms, this morphology is not without reminding the digital instability emerging in soft elastic films when
used as joints between relatively rigid bodies (Ghatak et al., 2000; Saintyves et al., 2013) or the fingers destabilizing the
interface between two immiscible fluids of different viscosity (Saffman and Taylor, 1958).

From Fig. 8, we see that, as the number k of obstacles increases, the range of toughness contrast Δ for which crack
propagation reaches a stationary state increases. The border between both regimes is well described by Δ = ( − ) ( + )k k1 / 3.65c

represented by the dotted line in Fig. 8. This allows us to extrapolate the critical contrast Δ ( ) =→∞ klim 1k c in the limit of an
infinite number of obstacles. Since = π

ξ
k a2 , this implies that the fingering domain shrinks to zero when the heterogeneity size ξ

becomes negligible in comparison with the crack radius a. On the contrary, in the other limit k¼1, Δc shrinks to 0, which
means that a weak pinning regime can never be reached as already noticed in Section 4.1.

6.3. Local propagation mechanisms

We now explore the typical features of the crack growth in each of these regimes by focusing on the particular case k¼4
for which the critical transition strength Δ ≃ 0.4c (see Fig. 8). We choose Δ = 0.3 for the weak pinning regime and Δ = 0.6 for
the fingering one. Other values of k give similar results that are given for sake of completeness in Appendix B in the range

= −k 1 6.
The successive positions of the crack front and the corresponding local values of the SIF κ θ( ) along one-half of a petal are

shown in Fig. 9 for the weak pinning regime. Those are compared with the local toughness κc given by the dashed line. At
initiation, the crack represented in red is initially circular, and the SIF is uniformly distributed. The propagation threshold is
reached around A, so that only the region of the crack line close to A advance whereas the other part of the front is pinned.
As a result, the front deforms and the SIF increases around B (green and blue front positions) until reaching a configuration
around ∼a a1.4 0 for which κ θ κ θ( ) ∼ ( )c everywhere (purple, cyan and black positions). The local equilibrium conditions are
then preserved all along the front as the crack continues to grow and maintain then the same stationary shape.

The fingering propagation regime is investigated through similar plots in Fig. 10. Like the other regime, the SIF is uni-
formly distributed at initiation (red front position), and then increases around point B (green and blue positions). However,
its value starts to decrease around ∼a a1.6 0 before the largest toughness value κ ( )Bc has been reached (purple, turquoise and
gray positions). As a consequence, the point B never reaches the propagation threshold and remains trapped while region A
advances by forming increasingly long fingers. Contrary to the previous regime, the front configuration is constantly
changing, even though the shape of the finger tips actually remains stationary.

To summarize, the existence of a weak pinning regime relates to the increase of the SIF at point B located in the toughest
region of the fracture plane until the propagation threshold κ κ( ) =B c

max is reached. After that transient, the equilibrium
condition κ κ= c is satisfied all along the front. The corresponding equilibrium crack shape is then kept unchanged during its



Fig. 10. Successive crack front positions and SIF along the crack front during propagation in the fingering regime for Δ = 0.6 and k¼4. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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stationary growth. This scenario is similar to the one depicted from the first-order analysis of Section 4.1 valid in the limit
Δ⪡1. The fingering regime arises from the unexpected change of behavior of the driving force in B that starts to decrease
when the petal size extends beyond some critical value. For sufficiently strong obstacles, the petals reach this critical size so
that the equilibrium condition is never met in B while the crack continues to grow in A.
7. Discussion

7.1. From local growth mechanism to effective fracture properties

We now come back on the relation between micro and macroscale fracture properties and provide explanation for the
two distinct branches evidenced on the variations of the effective properties with the obstacle strength in Figs. 4 and 6.

We first discuss the variations of the apparent toughness with the obstacle strength in both regimes.

� For weak obstacles Δ Δ< ( )kc , the apparent toughness Kc is equal, within the numerical precision, to the average
toughness κc . As shown previously, this regime corresponds to a weak pinning of the crack that maintains an equilibrium
shape satisfying κ κ= c everywhere.
To understand why κ≃Kc c , it is fruitful to consider the evolution of the normalized SIF κ at the point I on the front
located at θ π= k/2 (see Fig. 1). At point I, the local toughness is equal to the average toughness κc , and balances the local
SIF so that κ κ σ π κ= ( ) = ( )∼I a I2 /c c . Using Eq. (5), this gives κ κ= ( )∼K I/c c so that Kc depends on the value of the
dimensionless SIF κ∼ at point I. For small contrasts, when the first order approximation applies, the front is sinusoidal
and κ( ) =∼ I 1 (Section 4.1). As the contrast increases and non-linear effects take place, we observe that the computed value
of κ( )∼ I is still equal to one (see C.2), which means that for our flower shape cracks, the mean value of the SIF is found to be
equal to the one of a circular crack of the same area. This implies κ=Kc c . This property, although striking, is specific to
circular cracks since for the case of a semi-infinite crack perturbed by a sinusoidal toughness field, the apparent
toughness is smaller than the average toughness (Vasoya, 2014).

� In the fingering regime, the apparent toughness is significantly smaller than the average one, and decays with the
contrast. To explain this effect, we remind that the threshold is only reached around the points A so that

σ κ κ Δ κ( ) = = ( − )∼
π

a A 1c c c
2 min . Now, we found numerically (see Appendix C) that in the fingering regime, the SIF κ at
point A is disconnected from its value at point B and corresponds approximately to the one of a circular crack of radius R
(A), R(A) being the local radius of curvature at the end of the petals. This provides the following variations of the apparent
toughness

κ
Δ∼ −

( ) ( )

K

R A a

1
/ 23

c
a

c

that captures qualitatively well the numerical results of Fig. 4.
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We now discuss the value of the effective fracture energy.

� In the weak pinning regime, the front shape is known at the first order in Δ, as shown in Section 4.1. This can be used to
calculate the effective fracture energy at the second order in Δ,

γ
Δ= −

− ( )
G

k
1

4
1 24

c

c

2

as shown in Appendix D, since the second order term of the front shape cancels out. This prediction, represented in Fig. 6
for different values of k, captures well the numerical results as long as the contrast is below the critical value Δc.
Qualitatively speaking, the inequality γ<Gc c reflects that the arc length of the crack front located between the obstacles
where γ γ<c c is longer than the one within the obstacle for which γ γ>c c . Furthermore, the deformation of the front
enhances this effect. Since the deformation amplitude Δ( )∞a a/ increases with Δ or k1/ (Appendix E), Gc is a decaying
function of Δ and k1/ .

� In the fingering regime, Gc is close to the minimum value γc
min of the local field γ ( )Mc of fracture energy. This behavior

results from the highly heterogeneous growth of the crack that propagates only between obstacles where γc is minimum.
Interestingly, the effective fracture response in this regime is entirely governed by the weakest material points of the
fracture plane due to the emergence of fingers. This contrasts with another regime of crack growth referred to as strong
pinning for which the effective fracture properties are dominated by the strongest material points. In that regime that can
take place when γ ( )Mc varies along the crack propagation direction, crack depinning from obstacles gives rise to micro-
instabilities during which γ γ> c. This process results in a toughening γ≥Gc c of the material and the effective fracture
energy can be as large as γc

max (Patinet et al., 2013b; Deméry et al., 2014). The characterization of these two crack
propagation regimes illustrates how the spatial arrangement of obstacles plays a central role in determining the fracture
properties of heterogeneous media that can give rise to a wide range of effective behaviors within γ γ≤ ≤Gc c c

min max.

We now discuss the validity of Irwin's relation at the global scale. In the weak pinning regime, we have found κ≃Kc c and
γ<Gc c implying >ν− K G

E c c
1 22

. This inequality also remains true in the fingering regime where κ>Kc c
min and γ≃Gc c

min. This
means that the equivalence between a loading and an energy based criterion valid at the microscale thanks to Irwin's
relation (3) does not survive at the macroscopic scale.

7.2. Case ⪢k 1

An interesting limit is → ∞k that corresponds to a semi-infinite straight crack pinned by a periodic array of obstacles as
it amounts to consider very small obstacles ξ →a/ 0 compared to the crack radius of curvature. By extrapolating the phase-
diagram of Fig. 8, one observes that the fingering domain shrinks to zero since Δ ⟶

→∞
1

k
c . This observation agrees with the

variations of the effective fracture properties with k (Figs. 4 and 6) that show behaviors κ⟶
→∞

Kc
k

c and γ⟶
→∞

Gc
k c consistent with

a weak pinning of the crack without fingering.
The sole length scale remaining in this limit is the obstacle width ξ, since the medium is assumed to be infinite and the

loading to be applied remotely. On the contrary, the fingering observed for circular cracks of finite size seems to appear
when the obstacle size and the front deformation emerging from it are of the same order than the crack itself. Therefore, the
departure of the effective properties from their mean value may occur when the obstacle size competes with another length
scale like the crack length as the situation explored by Leblond et al. (1996), the distance of the loading to the crack front as
in Patinet et al. (2013a) or the thickness of the body as in Ghatak et al. (2000) and Adda-Bedia and Mahadevan (2006).
8. Conclusion

When a crack propagates in a highly heterogeneous brittle interface, the front is locally slowed down or even trapped
when encountering tougher material. The induced front deformation results in a selection of local toughness values that
reflects at larger scale on the material resistance. The effects of this deformation on the macroscopic fracture properties
were here quantified in the quasi-static limit by introducing two complementary macroscopic properties: an apparent
toughness Kc defined from the loading required to make the crack propagate and an effective fracture energy Gc defined
from the rate of energy released by unit area of crack advance. The relationship between these homogenized properties and
the features of the local toughness map were computed using an iterative perturbation method.

Several lessons were learnt from the application of this approach to a circular crack pinned by a periodic array of defects
invariant in the propagation direction.

� Irwin's relation, although valid at the microscale between κc and γc , does not survive at the macroscale between Kc and Gc ,
so loading and energy based approaches are no more equivalent.
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� Depending on the heterogeneities size and strength, two different regimes of propagation may exist: a weak pinning
regime where the propagation threshold is reached all along the front so that the whole front advances or a strong
pinning regime characterized by the continuous growth of localized regions of the fronts while the other parts remain
trapped.

� Correlatively, the evolution of the macroscopic fracture properties with the obstacle strength Δ may be discontinuous.
While the effective properties remain close to the material average values in the weak pinning regime, they dramatically
drop to the weakest value in the strong pinning regime.

This study proves the efficiency of the methodology followed to bridge the micro to the macroscale fracture properties that is
applicable to various crack geometries and any toughness field. On a broader perspective, we believe that this approach can be
used as a powerful tool for the rational design of heterogeneous brittle solids and interfaces with tailored failure properties.
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Appendix A. Stability of the numerical scheme

Since our numerical resolution is explicit, some numerical instabilities may occur for some values of the spatial (number
of nodes N) and temporal discretization (given by δamax), as when Eulerian explicit scheme is used to solve classical partial
differential equations. But physically, in the case of a homogeneous toughness field, the circular crack shape is stable to-
wards any small perturbations of the crack shape (Gao and Rice, 1987). Also, to test the stability of our numerical scheme, we
introduce artificially some small perturbation of the crack front and study under what condition on N and δamax, this small
perturbation disappears during propagation. The numerical stability map obtained depends on the value of β and is given in
Fig. A1. In practice, for a given value of β, the number of nodes N and the δamax have to be chosen below those curves to
ensure the stability of the numerical scheme.
Appendix B. Crack shape and SIF evolutions for k¼1 to 6

In Section 6.3, we present all the results by discussing the k¼4 case. For the sake of completeness, we give in this
appendix, the results for other values of k. Figure B1 corresponds to the stable regime (Δ Δ< ( )kc ): in each case, a stationary
regime for which κ κ= c all along the front is reached. Figures B3 corresponds to the fingering one (Δ Δ> ( )kc ), in which some
parts of the front remain pinned forever, whereas the other parts develop in infinitely growing petals. The k¼1 case is
particular (Fig. B2), since no stable regime can then be reached if Δ ≠ 0.
Fig. A1. Stability diagram of the numerical integration scheme.



Fig. B1. Successive crack front positions and SIF along the crack front during propagation in the stable regime, for several values of k and Δ.
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Fig. B2. Successive crack front positions and SIF along the crack front during propagation in the fingering regime for k¼1 and Δ = 0.1.
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Appendix C. SIF along flower-shape crack fronts

In addition to the propagation of a crack knowing the advance law, the code provides also for each flower crack shape we
encountered, the values of the SIF along the crack front. They are useful to interpret some results concerning the study of the
propagation of the present paper. But they may also serve as benchmarks for other numerical SIF calculation methods. We
now discuss these values in correspondence with these shapes independently from any advance law.

For this, we remove by linearity, the loading from the SIF and concentrate on the, geometry dependent, functions κ∼ and κ
defined by:

κ θ
π

σ κ θ
π

σ κ θ( ) = ( ) = ( )
( )

∼ ̂a a
2 2

,
C.10

in agreement with previous notations (10) and (17). With these notations, we have κ =∼ 1 for a circular crack of radius a and
κ = 1 for a circular crack of radius a0. Both κ∼ and κ depend on θ and the crack shape, which themselves depend on k and Δ
through the advance law. Whereas κ depends on the shape and size of the crack, κ∼ depends only on its shape.

In the stable regime, a stationary shape for which κ κ= c along the whole front is reached. For this shape, κ∼ has the
following form:

κ θ κ
Δ

θ( ) − = ( )
∼ ∼

k
1
2

cos ,m

where κ∼m denotes the mean value of κ∼ along the front. The value of κ∼m, like κ∼, depends only on the shape of the front, and has
been calculated numerically. We found surprisingly κ =∼ 1m for all the stationary flower shapes encountered, so that:

κ Δ θ= + ( ) ( )
∼ k1

2
cos C.2

In the fingering regime, the shape evolves constantly. As illustration, we consider the cases of Fig. 10 and now plot the
evolution of functions κ∼ and κ (Fig. C1). It can be observed that after a transitory phase, κ( )∼ A and κ ( )B become nearly
invariant during the propagation (red and gray curves). This means that when the fingers become long enough, the SIF
around points A and B are disconnected: around point A, its value depends on the stationary shape of the end of the petals,
and around point B, it depends on the initial radius a0. More precisely, looking at their values for different k and Δ, we found
that approximate values can be provided by:

κ α
π

σ( ) ≃ ( )
( )

A R A
2

C.3A

κ α
π

σ( ) ≃
( )

B a
2

C.4B 0

where R(A) is the local radius of curvature at point A, α ∈ [ ]1; 1.2A and α ∈ [ ]1; 2B for the different values of ≤k 8 and Δ ≤ 0.9
tested here.



Fig. B3. Successive crack front positions and SIF along the crack front during propagation in the fingering regime, for several values of k and Δ.
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Fig. C1. Distribution of dimensionless SIF (a) κ∼ and (b) κ along the crack front corresponding to different successive equilibrium positions of Fig. 10
( Δ= =k 4, 0.6).
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Appendix D. Asymptotic expansion of
γ
Gc

c
to the second order in Δ

To each value of k and Δ in the weak pinning regime corresponds an equilibrium crack shape characterized by its polar
equation that we denote θ( )aeq . Elementary geometric considerations about polar curves gives

∫
∫γ

θ θ

θ θ
=

( )

( ) ( )

π

π γ θ
γ

π

π
−

( )

−

G a

a

d

d D.1

c

c

eq
2

eq
2

c

c

where the equilibrium condition γ γ= c all along the front and the definition (6) of G have been used.
Now, thanks to (21), we know that for Δ⪡1, θ θ Δ θ Δ( ) = − ( ) + ( ) + ( )Δ

−a a k a O/ 1 cos
keq
2

1
2

2
3 , where we denote θ( )a2 the

second order term. Using this expression and Eq. (19)) for γc , we find that a2 cancels out in the asymptotic expansion of (D.1),
so that finally:

γ
Δ Δ= −

−
+ ( )

( )
G

k
O1

4
1

.
D.2

c

c

2 3

Appendix E. Stationary amplitude of front deformation in the weak pinning regime

Fig. E1 shows the asymptotic value of the normalized petal amplitude Δ( ) = Δ∞
→∞

( )a a/ lima
a a
a

measured during the sta-
tionary part of the crack growth (see Fig. 7). Δ( )∞a a/ is defined in the weak pinning regime only, so for Δ Δ< ( )kc , and
corresponds to the petal size of the front at equilibrium. These numerical predictions are verified to be in agreement with
the first order theory of Eq. (21). It can be noticed that this amplitude increases, without surprise, with the obstacle strength
Δ. Less obvious is its increase with k1/ , that is with the heterogeneity size, which basically results from the fact that the
crack front has more space to develop.
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