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Three dimensional calculations of ductile crack growth under mode I plane strain, small scale
yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a progres-
sively cavitating plastic solid with two populations of void nucleating second phase particles. Full
field solutions are obtained for three dimensional material microstructures characterized by ran-
dom distributions of void nucleating particles. Crack growth resistance curves and fracture surface
roughness statistics are calculated using standard procedures. The range of void nucleating particle
volume fractions considered give rise to values of toughness, JIC , that vary by a factor of four. For
all volume fractions considered, the computed fracture surfaces are self-affine over a size range of
about two orders of magnitude with a roughness exponent of 0.54± 0.03. For small void nucleating
particle volume fractions, the mean large particle spacing serves as a single dominant length scale.
In this regime, the correlation length of the fracture surface corresponding to the cut-off of the
self-affine behavior is found to be linearly related to JIC thus quantitatively correlating toughness
and fracture surface roughness.

Thirty years ago, Mandelbrot and coworkers revealed
the self-affine nature of fracture surfaces [1]. Their hope
was to relate the roughness of fracture surfaces via the
exponents characterizing their scale invariance proper-
ties to the material’s crack growth resistance. This hope
has remained unfulfilled. Indeed, later studies showed
that the value of the roughness exponent was not only
independent of the material toughness but also of the
material considered, as long as the failure mechanism re-
mained the same [2, 3]. Indeed, the scaling exponent
measured along the propagation direction was observed
to take a value βbrittle ' 0.5 rather independent of the
considered material for brittle failure while another value
around βdamage ' 0.6 was observed for damage accom-
panying failure [4, 5].

The universality of fracture surface roughness expo-
nents limits the applicability of quantitative fractography
based on statistical analyses for the characterization of
microscopic failure mechanisms and toughness. On the
other hand, it has paved the way for a unified theoreti-
cal framework based on critical transition theory to de-
scribe the failure properties of disordered materials. By
interpreting the onset of material failure as a dynamic
phase transition, many aspects of the behavior of cracks
in disordered materials has thus been rationalized, such
as the intermittent dynamics of cracks [6, 7], their scale
invariant roughness [8, 9], their average dynamics [10, 11]
and their effective toughness [12, 13]. Most of these suc-
cesses have been achieved in the context of brittle failure,
but our understanding of the scaling properties of ductile
fracture surfaces is still limited.

The process that governs the ductile fracture of struc-
tural materials at room temperature is one of nucleation,
growth and coalescence of micron scale voids, and in-
volves large plastic deformations. Quantitative models

of crack growth by the progressive coalescence of voids
with a crack have been available since the 1970s [14–
17], and calculations have provided reasonable agreement
with experimental toughness measurements [18]. How-
ever, only recently has the capability been developed to
calculate sufficient amounts of three dimensional ductile
crack growth in heterogeneous microstructures to obtain
a statistical characterization of the predicted fracture
surfaces [19, 20]. This enables us to explore the micro-
scopic mechanisms governing the fracture surface rough-
ness as well as the relation, if any, to a material’s crack
growth resistance.

In this study, we capitalize on these new developments
and show that the scaling properties of ductile cracks can
correlate with the material’s toughness. However, the re-
lation is not with the value of the roughness exponent,
but with the cut-off length of the scale invariant regime.
In particular, we show that the cut-off length scale of
the self-affine behavior of ductile cracks can be quantita-
tively related to a measure of fracture toughness. This
correlation is shown in our simulations by varying one
parameter of the material microstructure resulting in a
family of ductile materials with a broad range of tough-
ness.
Model formulation – The connection between the rough-
ness of ductile cracks and the material’s toughness is in-
vestigated through the finite element analysis of transient
three dimensional boundary value problems. A mode I
small scale yielding boundary value problem is analyzed
with symmetry conditions corresponding to an overall
plane strain constraint. Remote displacement bound-
ary conditions corresponding to the quasi-static linear
isotropic elastic mode I crack tip stress intensity factor
KI are prescribed. A finite deformation continuum me-
chanics formulation for a progressively cavitating solid is
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used. The constitutive framework is a modified Gurson
constitutive relation for a progressively cavitating solid
(often termed the GTN relation, see [21]) with slight ma-
terial rate dependence and with the plastic flow potential
Φ given by

Φ =
σ2
e

σ̄2
+ 2q1f

∗ cosh

(
3q2σh

2σ̄

)
− 1− (q1f

∗)
2

= 0 (1)

where σe is the Mises effective stress, σh is the hydro-
static stress (positive in tension), σ̄ is the material flow
strength, f∗ is a measure of the void volume fraction and
q1 = 1.25 and q2 = 1.0. A key feature of the constitu-
tive relation is that the material’s stress carrying capac-
ity increases due to strain and strain rate hardening, but
eventually decreases due to the nucleation and growth
of micro-voids, and can vanish leading to the creation of
new free surface.

The second phase particles present in conventional
structural metals are the primary source of internal cavi-
tation at least at low temperatures. Hence we charac-
terize the material microstructure by two populations
of void nucleating second phase particles: (i) homo-
geneously distributed small particles and (ii) discretely
modeled randomly distributed large particles. For ho-
mogeneously distributed small particles, a critical strain
level following a normal distribution controlled void nu-
cleation. Void nucleation from large particles in general
depends on deformation and hydrostatic stress history.
Hence, nucleations occur when σ̄ + σh reaches a critical
value taken here also from a normal distribution. Follow-
ing this stress based criteria, the large particles nucleate
voids at an early stage of the deformation history.

The large particles are randomly located, and the max-
imum stress based void nucleation criteria is applied in
a sphere of radius r0 around their center. The elastic
and plastic properties of the particles and the matrix
material are identical. Only the void nucleation charac-
teristics differ. A uniform 208× 64× 10 mesh of 20 node
brick finite elements is used in front of the initial crack.
The in-plane (x− y plane) element dimension is denoted
by ex which serves as a normalization length. The size
and spacing of the large particles introduce characteris-
tic lengths into the formulation. The particles radius,
r0 = 1.5 ex, is fixed and calculations are carried out for
eight volume fractions, n, of the large particles. For each
large particle volume fraction, calculations were carried
out for seven random spatial distributions. A more de-
tailed description of the problem formulation with addi-
tional references is given in [19, 20].

Toughness characterization – The volume fraction of
large particles is varied from n = 0.012 to n = 0.19,
corresponding to mean large particle spacings of 10.6 ex
and 4.21 ex, respectively. Under plane strain conditions,
the J-integral [22], a measure of the driving force for
crack propagation, is related to the applied mode I stress
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FIG. 1: Toughness characterization: Effect of the volume frac-
tion n of large particles on the fracture toughness JIC. Inset:
J-R curves showing the material’s crack growth resistance as
a function of the crack extension ∆a for two large particle
volume fractions.

intensity factor, KI , by

J = KI
2

(
1− ν2

E

)
(2)

where E = 70 GPa, and ν = 0.3 are Young’s modulus and
Poisson’s ratio, respectively. Figure 1 shows the vari-
ation of JIC, normalized by the reference flow strength
σ0 = 300 MPa and ex, with large particle volume frac-
tion n. The error bars are calculated from realizations of
large particle distributions having the same n. The value
of JIC characterizes the crack growth resistance and is
computed using a widely used ASTM standard procedure
[23]. A power law J = C1∆aC2 is used to fit the initial
portion of the J-R curve (shown in the inset of Fig. 1 for
two values of n) and the value of JIc is defined as the in-
tersection of this curve with the line J = 2σ0 (∆a−∆a0),
where we take ∆a0/ex = 2. Another choice in the value
of ∆a0 would change the value of JIC but the dependence
of JIC on n would remain approximately the same up to
some multiplicative constant. The increase in the value
of J with the crack extension ∆a seen in the inset of
Fig. 1 is characteristic of ductile crack growth.

From dimensional considerations alone, prediction of
the J(∆a) curve requires that the formulation contain
a characteristic length. The value of JIC increases by
a factor of almost four as the volume fraction of large
particles decreases or, equivalently, with an increasing
mean particle spacing. Indeed, in the calculations here,
the mean particle spacing serves as a microstructurally
based characteristic length for the entire J(∆a) curve as
well as for JIC.
Fracture surface characterization – For each value of large
particle volume fraction, n, fourteen statistically equiv-
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FIG. 2: Height-height correlation functions of the fracture
surface showing the effect of the volume fraction n of the
large particles. Inset: Snapshot of the porosity field for a
material with n = 0.048 showing a propagating ductile crack.
The white region corresponds to a porosity larger than the
threshold value 0.1 used to define the fracture surface.
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FIG. 3: Roughness characterization: Variation of the cut-off
length ξ as a function of the volume fraction n of the large
particles. Inset: Variation of the roughness exponent β with
n.

alent fracture surfaces (top and bottom surfaces) were
produced, except for n = 0.012 where ten surfaces were
used. The height maps h(x, y) were obtained from the
calculated porosity field using a threshold value of void
volume fraction of 0.1, as illustrated in the inset of Fig. 2
(see [20] for the detailed procedure). All calculations in-
volve crack propagation over ∆a ' 180 ex, i.e. at least an
order of magnitude greater than the mean large particle

spacing.
The roughness is characterized using the height-height

correlation function defined as

∆h(δx) =
√
< [h(x+ δx, y)− h(x, y)]2 >x, y (3)

and computed on the statistically equivalent surfaces.
We focus here on the correlations of height variations
in the propagation direction x. The effect of the particle
volume fraction n on the fracture surface scaling is shown
in Fig. 2. Regardless of the value of n, the correlation
function follows a power law behavior at small scales and
then saturates at a larger scale, indicating a self-affine be-
havior of the roughness up to some cut-off length ξ. The
latter is defined at the abscissa between the power law
fit of the self-affine regime and the plateau behavior at
the larger scale. The first regime is characterized by the
roughness exponent β ' 0.54±0.03 corresponding to the
slope of a straight line fit in the logarithm representation
of Fig. 2. This value is not affected by the large change
in the particle spacing, as observed in the inset of Fig. 3
where the value of β is shown as a function of the parti-
cle volume fraction n. This observation is in agreement
with previous results obtained from similar simulations
[19, 20], and captures rather well the universal self-affine
nature of ductile fracture surfaces with β ' 0.6 observed
experimentally [24]. As can be seen in Fig. 2, both the
roughness amplitude in the self-affine regime, exemplified
by the vertical shift of the correlation function, and the
plateau level do vary with n. This dependence is reflected
in the cut-off length scale ξ that represents the upper
bound of the self-affine domain. As shown in Fig. 3, ξ
decreases with increasing large particle volume fraction,
i.e. with decreasing mean large particle spacing. Also,
the analysis of the full statistics of the crack roughness
obtained from this calculation and presented in Ref. [20]
shows strong deviations from the Gaussian distribution,
in agreement with experimental observations [25].
Toughness/roughness relationship – The variation of ξ
with JIC presented in Fig. 4 shows a clear correlation
between a measure of the ductile fracture surface rough-
ness, ξ, and a measure of the material’s resistance to
crack growth, JIC. For brittle solids, a relation between
the critical stress intensity factor KIC and a cutoff length
is discussed in Ref. [26]. The length ξ can be interpreted
as the typical size of the largest roughness features along
the mean fracture plane. As a result, within the family
of ductile solids investigated, with the exception of the
two largest particle densities, the tougher the material,
the rougher its fracture surface.
Discussion – To understand the ξ versus JIC correla-
tion, we first examine the mechanisms that set the length
scale ξ. Previous experimental studies on glass and mor-
tar fracture surfaces have reported two scaling regimes
∆h ∼ δxβ , with βdamage ' 0.6 at small length scales
δx < ξ and βbrittle ' 0.5 at larger length scales δx > ξ
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FIG. 4: Correlation between toughness and roughness: Varia-
tions of the cut-off length extracted from the fracture surface
as a function of the normalized crack growth resistance. The
straight line ξ/ex = αJIC/(σ0ex) going through the origin
with slope 2.6 is shown to illustrate the trend.

[27, 28]. In phase-separated glass samples, two regimes
were also reported, but the second regime was character-
ized by logarithmic correlations of height fluctuations, co-
inciding with βbrittle ' 0 [29]. These large scale behaviors
could be captured quantitatively by linear elastic fracture
mechanics based models of crack propagation within dis-
ordered brittle solids [27, 30], indicating that beyond the
scale ξ, these fracturing solids behave as a coarse-grained
equivalent linear elastic medium. For brittle and quasi-
brittle solids, this suggests an interpretation of the length
ξ in terms of process zone size, or extension of the zone in
the crack tip vicinity where linear elasticity breaks down.

For ductile cracks, this zone corresponds to the plas-
tic zone where plastic dissipation takes place, and can be
much larger than the fracture process zone, where the ac-
tual failure processes and microcracking take place. As
a consequence, the crossover length ξ measured in this
study between the self-affine and the plateau regimes
calls for an alternative interpretation. For a homoge-
neous elastic-plastic continuum in small scale yielding,
the plastic zone size is linearly related to J/σ0. When
a single dominant length scale characterizes the micro-
scale fracture processes, dimensional considerations re-
quire that length scale to be also linearly related to J/σ0.
For example, in models presuming an initial void near
the crack tip [14, 15], the critical value JIc of the driving
force for crack initiation is set by the distance of the void
from the crack tip, leading to a linear relation between a
micro-scale length characteristic of the local failure pro-
cesses, the distance of the void from the crack tip, and
a macro-scale length JIc/σ0, defining the macroscopic
failure properties. Also, in the model of Ref. [17] that
considers a void by void ductile failure process, the dis-

tance from the crack tip at which void nucleation occurs
is found to be proportional to J/σ0.

Figure 4 shows the relation between JIC, a measure of
the resistance to crack propagation and ξ, the correla-
tion length of the geometrical perturbations of the frac-
ture surface. However, both are related to the volume
fraction n of large particles or equivalently to the mean
large particle spacing `0 ∝ 1/n1/3 as seen in Figs. 1 and
3. In the limit of low volume fractions n of large particles
(corresponding to large values of JIC/(σ0ex)), a void by
void crack propagation regime, with mean large particle
spacing `0, may be the dominant mechanism. On the
one hand, this would set the fracture zone size, and con-
sequently the roughness correlation length ξ to scale with
`0. On the other hand, this length scale may govern the
value of the toughness, JIC, as shown in Ref. [16] for such
a ductile crack growth mechanism in a simpler 2D geom-
etry. Hence, as long as `0 governs the fracture processes
in the vicinity of the crack tip, both the fracture surface
roughness and the overall crack growth resistance would
be dominated by the single microstructural length scale
`0, leading to a linear relation between ξ and JIC/σ0 as
seen in Fig. 4. In addition, since the plastic zone size
scales with J/σ0, ξ is also linearly related to the plastic
zone size.

The idealized calculation of Ref. [16] introduces the
dimensionless parameter C = JIC/ (σ0`0) that reveals
which of these ductile failure mechanisms dominates. In
our calculations, C ' 1.0 for n = 0.012 and saturates
to a value of C ≈ 0.68 for n ≥ 0.071 (a saturation in
the value of JIC and ξ for n ≥ 0.071 can also be seen
in Figs. 1 and 3). A rough comparison with the values
of C obtained in Ref. [16] suggests that the void by void
crack growth is the dominant mechanism for n < 0.071,
in agreement with the scenario proposed previously to ex-
plain the linear relation between ξ and JIC/(σ0ex). For
n ≥ 0.071, the value of C is consistent with another com-
peting mechanism where crack growth is dominated by
multiple voids (or more generally defects) interaction, ac-
counting for the deviation from a linear relation seen at
smaller values of ξ in Fig. 4 for greater volume fractions
of large particles (or smaller mean particle spacings). A
more detailed analysis of these competing mechanisms
is underway. When multiple defect interactions become
more prevalent, the mean particle spacing `0 is no longer
the only relevant roughness length scale and the linear
relation between ξ and JIC/(σ0ex) breaks down.

Conclusion –Our calculations show that: (i) with a ran-
dom distribution of void nucleating particles and fixed
material properties, the mean particle spacing is the dom-
inant length scale; (ii) the roughness correlation length
ξ, corresponding to the cut-off of the self-affine behavior,
reflects this length scale; (iii) ξ is linearly related to JIC
as long as one length scale characterizes the microscale
fracture process. These results provide an important step
toward fulfilling the hope that the statistical characteri-
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zation of ductile fracture surface roughness may be used
for a post-mortem estimate of fracture toughness.
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