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Abstract The effect of material parameters on the
statistics of fracture surfaces is analyzed under small
scale yielding conditions. Three dimensional calcu-
lations of ductile crack growth under mode I plane
strain, small scale yielding conditions are carried out
using an elastic-viscoplastic constitutive relation for a
progressively cavitating plastic solid with two popula-
tions of void nucleating second phase particles repre-
sented. Large particles that result in void nucleation at
an early stage are modeled discretely while small par-
ticles that require large strains to nucleate are homo-
geneously distributed. The three dimensional analy-
sis permits modeling of a three dimensional material
microstructure and of the resulting three dimensional
stress and deformation states that develop in the frac-
ture process region. Material parameters characteriz-
ing void nucleation are varied and the statistics of the
resulting fracture surfaces is investigated. All the frac-
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ture surfaces are found to be self-affine over a size range
of about two orders of magnitude with a very similar
roughness exponent of 0.56 ± 0.03. In contrast, the full
statistics of the fracture surfaces is found to be more
sensitive to the material microscopic fracture proper-
ties: height fluctuations are shown to crossover from
a Student’s distribution with power law tails at small
scales to a Gaussian behavior at large scales, but this
transition occurs at a material dependent length scale.
Using the family of Student’s distributions, this transi-
tion can be described introducing an additional expo-
nent μ = 0.15 ± 0.02, the value of which compares
well with recent experimental findings. The description
of the roughness distribution used here gives a more
complete quantitative characterization of the fracture
surface morphology which allows a better compari-
son with experimental data and an easier interpretation
of the roughness properties in terms of microscopic
failure mechanisms.

Keywords Fracture surfaces · Roughness statistics ·
Ductile fracture · Crack growth · Scaling behavior ·
Finite elements

1 Introduction

Mandelbrot et al. (1984) first characterized the self-
affine scaling properties of fracture surfaces. A hope
in this study was to provide a quantitative correla-
tion between fracture surface roughness and a mate-
rial’s crack growth resistance. This hope has yet to be
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138 L. Ponson et al.

realized. Nevertheless, Mandelbrot et al. (1984) stimu-
lated a large body of experimental and theoretical work
aimed at characterizing the scaling properties of frac-
ture surfaces. Experimentally, the self-affine nature of
the roughness of fracture surfaces has been observed in
a wide variety of materials (metals, ceramics, glasses,
rocks…) under a wide variety of loading conditions
(quasi-static, dynamic, fatigue) and is typically char-
acterized by two exponents: one measured parallel to
the crack front, denoted by ζ , and one measured along
the crack propagation direction, denoted by β, see Pon-
son (2007), Alava et al. (2006), Bonamy and Bouchaud
(2011) for overviews. In some studies, e.g. Bouchaud
et al. (1990), Måløy et al. (1992), it was suggested that
the values of these exponents are universal.

Others have maintained that the characterization of
the roughness of fracture surfaces is more complex. For
example, in Bonamy and Bouchaud (2011), Bonamy
et al. (2006) it is argued that there are two roughness
regimes: one pertaining to length scales smaller than
the fracture process zone and the other to length scales
larger than the fracture process zone, with each regime
characterized by different values of the fracture sur-
face roughness exponents. Alternatively, a multifractal
characterization of fracture surface roughness has been
suggested as discussed in Cherepanov et al. (1995).
The extent to which the appropriate characterization
of fracture surface roughness depends on the material
microstructure and/or the fracture mechanism remains
an open question.

A variety of theoretical analyses of fracture surface
roughness have been carried out using a linear elastic
fracture mechanics framework, e.g. Ramanathan et al.
1997, or a molecular dynamics framework, e.g. Nakano
et al. (1995). For ductile fracture of structural metals
at room temperature the governing mechanism is the
nucleation, growth and coalescence of micron scale
voids, which involves large plastic deformations, and
occurs over size and time scales much larger than cur-
rently accessible by molecular dynamics. This process
governs the evolution of ductile fracture surface rough-
ness. The importance of accounting for porosity evo-
lution and the accompanying plastic deformation in
modeling fracture surface roughness is emphasized in
Bouchaud (2003), Bouchbinder et al. (2004).

Calculations of fracture surface roughness using a
finite deformation continuum mechanics formulation
for a progressively cavitating solid were carried out
in Needleman et al. (2012). The analyses in

Needleman et al. (2012) were based on a modified Gur-
son (1975) constitutive relation for a porous viscoplas-
tic solid with two types of void nucleating particles
modeled: large particles that nucleate voids at an early
stage and smaller particles that nucleate voids at a later
stage. The larger particles were represented as uniform
sized discrete ”islands” of void nucleation, thus intro-
ducing a material length scale, while the smaller par-
ticles were uniformly distributed. This framework nat-
urally accounts for the effects of damage evolution on
the stress and deformation state in the fracture process
zone.

In Needleman et al. (2012), the calculations were
carried out for fixed material properties but for four
random distributions of the larger particles. Here, we
employ the same theoretical framework as in Needle-
man et al. (2012) and solve the same small scale yield-
ing problem. We focus attention on one of the four
spatial distributions of the larger particles in Needle-
man et al. (2012) and vary two material parameters that
characterize void nucleation. We also use a more robust
procedure to define the fracture surface geometry from
the output of our simulations and investigate the rough-
ness statistical properties for the cases calculated in
Needleman et al. (2012) as well as for the simulations
presented here. We go beyond the characterization of
fracture surfaces by their correlation function and the
value of the roughness exponent, and investigate the
scaling of the full distribution of roughness. This scal-
ing can be described by a second exponent character-
izing the transition from power law tail at small scales
to Gaussian roughness statistics at large scales. This
quantitative characterization of fracture surface geom-
etry allows a better comparison with experimental data
and an easier interpretation of the roughness properties
in terms of microscopic failure mechanisms.

2 Problem formulation

The boundary value problem analyzed is identical to
that in Needleman et al. (2012). Only parameters char-
acterizing void nucleation differ. For completeness, the
formulation and constitutive relation are briefly stated
here.

The focus is on quasi-static crack growth but
dynamic analyses are carried out for numerical reasons.
The calculations are carried out using a Lagrangian,
convected coordinate formulation and the dynamic
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principle of virtual work written as
∫

V

τ i jδEi j dV =
∫

S

T iδui d S−
∫

V

ρ
∂2ui

∂t2 δui dV (1)

All field quantities are taken to be functions of the
convected coordinates, yi , and time, t ; Ei j are the
covariant components of the Lagrangian strain ten-
sor, T i are the contravariant components of the trac-
tion vector, τ i j are the contravariant components of
Kirchhoff stress on the deformed convected coordinate
net (τ = Jσ , with σ being the Cauchy or true stress
and J the ratio of current to reference volume), ν j and
u j are the covariant components of the reference sur-
face normal and displacement vectors, respectively, ρ

is the mass density, V and S are the volume and sur-
face of the body in the reference configuration, and
( ),i denotes covariant differentiation in the reference
(y1, y2, y3) Cartesian frame. In presenting the results
we will use the notations x , y and z for y1, y2 and y3,
respectively.

A slice of material orthogonal to the initial crack
plane is analyzed and the quasi-static mode I isotropic
elastic singular displacement field is imposed on the
remote boundaries. Also imposed are symmetry con-
ditions corresponding to an overall plane strain con-
straint.

As in Needleman et al. (2012), the in-plane block
dimensions are hx = hy = 0.4 m with an initial
crack tip with an opening of b0 = 1.875 × 10−4 m.
The finite element mesh consists of 428, 256 twenty
node brick elements giving 1, 868, 230 nodes and
5, 604, 690 degrees of freedom. Ten uniformly spaced
elements are used through the thickness hz of 0.005 m,
with 10 elements through the thickness, and a uniform
208 × 64 in-plane mesh is used in a 0.02 m × 0.006 m
region immediately in front of the initial crack tip
giving an in-plane element size of 9.62 × 10−5 m by
9.38 × 10−5 m.

2.1 Constitutive relation

The constitutive framework is the modified Gurson
constitutive relation with

d = de + dΘ + dp (2)

and

de = L−1 : σ̂ (3)

dΘ = αΘ̇I (4)

dp =
[

(1 − f )σ̄ ˙̄ε
σ : ∂

∂σ

]
∂

∂σ
(5)

Small elastic strains are assumed, L is the tensor of
isotropic elastic moduli, σ̂ is the Jaumann rate of
Cauchy stress and Θ is the temperature.

Adiabatic conditions are assumed so that

ρcp
∂Θ

∂t
= χτ : dp (6)

with ρ = 7, 600 kg/m3 = 7.6×10−3 MPa/(m/sec)2,

cp = 465 J/(kg ◦K), χ = 0.9 and α in Eq. (4) is 1 ×
10−5/K.

The flow potential is ( Gurson 1975),

 = σ 2
e

σ̄ 2 +2q1 f ∗ cosh

(
3q2σh

2σ̄

)
−1−(

q1 f ∗)2 =0

(7)

where q1 = 1.25, q2 = 1.0 are parameters introduced
in Tvergaard (1981), Tvergaard (1982a), f is the void
volume fraction, σ̄ is the matrix flow strength, and

σ 2
e = 3

2
σ ′ : σ ′, σh = 1

3
σ : I, σ ′ = σ − σhI (8)

The function f ∗, introduced in Tvergaard and
Needleman (1984), is given by

f ∗ =
{

f f < fc

fc+(1/q1− fc)( f − fc)/( f f − fc) f ≥ f

(9)

where the values fc = 0.12 and f f = 0.25 are used.
The matrix plastic strain rate, ˙̄ε, is taken as

˙̄ε = ε̇0

[
σ̄

g(ε̄, Θ)

]1/m

,

g(ε̄, Θ) = σ0G(Θ) [1 + ε̄/ε0]N (10)

with ε̄ = ∫ ˙̄εdt , E = 70 GPa, ν = 0.3, σ0 = 300 MPa
(ε0 = σ0/E = 0.00429), N = 0.1, m = 0.01 and
ε̇0 = 103/s.

The function defining the temperature-dependence
of the flow strength is

G(Θ) = 1 + bG exp(−c[Θ0 − 273])
× [

exp(−c[Θ − Θ0]) − 1
]

(11)

with bG = 0.1406 and c = 0.00793/K. In (11), Θ

and Θ0 are in K and Θ0 = 293K. Also, the initial
temperature is taken to be uniform and 293K.
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The initial void volume fraction is taken to be zero
and the evolution of the void volume fraction is gov-
erned by

ḟ = (1 − f )dp : I + ḟnucl (12)

where the first term on the right hand side of Eq. (12)
accounts for void growth and the second term for void
nucleation.

Eight point Gaussian integration is used in each
twenty node element for integrating the internal force
contributions. Lumped masses are used and twenty-
seven point Gaussian integration is used for the ele-
ment mass matrix. The discretized equations are inte-
grated using the explicit Newmark β-method (β = 0),
Belytschko et al. (1976). The constitutive updating is
based on the rate tangent modulus method of Peirce
et al. (1984) while material failure is implemented via
the element vanish technique in Tvergaard (1982b).

2.2 Inclusions and fracture properties

The calculations model a material with two popula-
tions of void nucleating second phase particles: (1) uni-
formly distributed small particles that are modeled by
plastic strain controlled nucleation and (2) large, low
strength inclusions that are modeled as “islands” of
stress controlled nucleation. In each case, void nucle-
ation is assumed to be described by a normal distribu-
tion as in Chu and Needleman (1980).

For plastic strain nucleation,

ḟnucl = D ˙̄ε, D = fN

sN
√

2π
exp

[
−1

2

( ε̄ − εN

sN

)2]

(13)

The parameters fN = 0.04 and sN = 0.1 are fixed.
For stress controlled nucleation

ḟnucl = A
[ ˙̄σ + σ̇h

]
(14)

with

A = fN

sN
√

2π
exp

[
−1

2

( σ̄ + σh − σN

sN

)2]
(15)

if (σ̄ + σh) is at its maximum over the deformation
history. Otherwise A = 0.

We confine attention to a single inclusion distrib-
ution that is the distribution labeled 411 in Needle-
man et al. (2012). There are 2016 possible inclusions
(mean spacing about 6.7×10−4 m) in the uniform mesh
region. Each inclusion radius is r0 = 1.5×10−4 m. For

an inclusion governed by stress nucleation centered at
(y1

0 , y2
0 , y3

0), the value of fN in Eq. (15) at the point
(y1, y2, y3) is

fN =
⎧⎨
⎩

f̄N for
√

(y1 − y1
0 )2 + (y2 − y2

0 )2 + (y3 − y3
0 )2 ≤ r0;

0 for
√

(y1 − y1
0 )2 + (y2 − y2

0 )2 + (y3 − y3
0 )2 > r0

(16)

The values f̄N = 0.04 and sN /σ0 = 0.2 are fixed.
In the following, materials having various values of

parameters characterizing void nucleation are investi-
gated (Fig. 1). For all materials analyzed the inclusion
distribution is that termed case411 in Needleman et al.
(2012):

– Material # 1 has the parameter values analyzed in
Needleman et al. (2012) which are εN = 0.3 and
σN /σ0 = 1.5. The fracture surfaces for this case are
calculated using the procedure introduced here for
defining the roughness geometry and the statistical
geometry of this case is investigated in more detail
than in Needleman et al. (2012).

– Material # 2 has the nucleation strain of the small
particles changed from the reference value to εN =
0.4 with the nucleation stress of the inclusions fixed
at σN /σ0 = 1.5.

– Material #2x has the nucleation strain of the small
particles changed from the reference value to εN =
0.2 with the nucleation stress of the inclusions fixed
at σN /σ0 = 1.5. This calculation terminated after
an amount of crack growth that was too small to
provide a fracture surface that could be character-
ized statistically in the same manner as for the other
cases.

– Material # 3 has the nucleation stress of the inclu-
sions changed from the reference value to σN /σ0 =
2.0 with the nucleation strain of the small particles
fixed at εN = 0.3.

The results of the calculations are regarded as mod-
eling quasi-static response via dynamic relaxation. The
results are reported as for a quasi-static solution; for
example, the absolute magnitude of geometric dimen-
sions do not matter; only geometric ratios matter. In the
following, the results are presented as for a quasi-static
solution.
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Statistics of ductile fracture surfaces 141

Fig. 1 Initial inclusion
distribution. a On z = 0.
b On z = hz. Note that the
positive y−axis is in
opposite directions in a
and b

Fig. 2 Void volume
fraction distribution
showing the mode of crack
growth for Material#2
(εN = 0.4, σN /σ0 = 1.5).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

Fig. 3 Void volume
fraction distribution
showing the mode of crack
growth for Material #2x
(εN = 0.2, σN /σ0 = 1.5).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

3 Results

3.1 Crack growth

Figures 2, 3 and 4 show distributions of void volume
fraction f that indicate the crack growth path on the
planes z = 0 and z = hz for Material #2, Material #2x

and Material #3, respectively. In each case, the stage of
loading corresponds to the last stage of loading com-
puted for that case. Note that in (a) for all three figures
the y−axis is positive to the left whereas in (b) for all
three figures the y−axis is positive to the right. The dark
gray regions show where f ≥ 0.1 so that the mater-
ial within those regions has essentially lost all stress
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142 L. Ponson et al.

Fig. 4 Void volume
fraction distribution
showing the mode of crack
growth for Material #3
(εN = 0.3, σN /σ0 = 2.0).
a On z = 0. b On z = hz.
Note that the positive
y−axis is in opposite
directions in a and b

Fig. 5 Distributions of void volume fraction f in a plane z =
constant for material # 3 illustrating the definition of fracture
surfaces based on void volume fraction threshold values of ft =
0.03, 0.04 and 0.10

carrying capacity. The lighter gray regions which cor-
respond to 0.1 ≥ f ≥ 0.01 show the inclusions on the
two planes that have nucleated voids. Shear localiza-
tion can play a significant role in linking voids to the
main crack. For Material #2x with εN = 0.2, the cal-
culation was terminated after a relatively small amount
of crack growth because intense localized deformation
led to the stable time step becoming very small.

3.2 Fracture surface definition

The first step in defining the fracture surface is to
plot the void volume fraction f distribution on a cross

section z = constant. Next a threshold value ft is cho-
sen so that f ≥ ft corresponds to a connected crack
with ft being the largest value that gives a connected
crack over a predefined region. Figure 5 shows a typical
cross section with contour values of f = 0.03, 0.04
and 0.10. The fracture surfaces for these three con-
tour values are rather close. Changing the size of the
cracked region modifies the value of ft needed for a
connected crack. Interestingly, the scaling behavior,
and especially the value of the roughness exponent,
was found to be largely independent of this value. On
the contrary, the roughness amplitude was observed to
slightly increase while the value of ft was decreased.

For the fracture surfaces analyzed in the follow-
ing, ft is taken close to 0.10 but sufficiently small to
avoid any uncracked ligaments behind the main crack.
Regions with f ≥ ft , but that are not connected to the
main crack, were found—these are not shown in Fig. 5.
They do not contribute to the roughness of the fracture
surfaces.

The roughness is computed for the two fracture sur-
faces produced by each calculation. One fracture sur-
face, termed as the lower fracture surface, is obtained
from the smallest value of z, for a given position (x , y)
in the mean fracture plane, for which f ≥ ft on the con-
nected crack while the other fracture surface, termed
the upper fracture surface, corresponds to the largest
value of z, for a given position (x , y) in the mean frac-
ture plane, for which f ≥ ft on the connected crack.
The crack profiles obtained from the lower and upper
fracture surfaces are denoted by hbot(x) and htop(x),
respectively. These are shown on Fig. 6 for the void
volume fraction distribution of Fig. 5. The jumps in the
profiles reflect the overhangs in the connected crack
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Fig. 6 Fracture profiles extracted along the crack propagation
direction x obtained from the void volume fraction distribution
of Fig. 5 using ft = 0.04 for material # 3

as seen in the porosity distribution. Our definition of
the crack profiles mimics a profilometer that measures
only the highest point on the fracture surface and so pre-
vents the presence of overhang on the crack surfaces
analyzed subsequently.

4 Statistical analysis of fracture surfaces

4.1 Correlation functions of fracture surfaces and
roughness exponent

We first characterize the fluctuations of heights of
the fracture surface using the correlation function, �h,
defined as

�h(δx) =
√〈[h(x + δx, y) − h(x, y)]2

〉
x, y (17)

Here, 〈 〉x denotes the average over x and y. The quan-
tity �h(δx) can be interpreted as the typical difference
of height between two points separated by a distance
δx along the mean fracture plane. We focus on the cor-
relation of heights in the direction of propagation only
(x-axis), the width of the specimen in the perpendic-
ular direction z being too small to allow a statistical
analysis of the roughness in that direction.

The correlation function is computed for both the
upper and lower fracture surfaces. The final correla-
tion function is then obtained by averaging over these
statistically equivalent surfaces. Indeed, from symme-
try arguments, we expect the upper and lower fracture
surfaces in each calculation to share similar statistical
properties. The correlation function �h(δx) is shown
in Fig. 7 on a logarithmic scale, after normalization of
the axis by the element spacing ex along the x-axis in
the fine mesh region. Figure 7a shows plots for the four
inclusion distributions analyzed in Needleman et al.

(2012) corresponding to material #1 (εN = 0.3 and
σN /σ0 = 1.5) using the same notation as in Needle-
man et al. (2012) to identify the inclusion distributions.
The correlation functions exhibit a power law behavior

�h(δx) ∝ δxβ (18)

over more than two decades, characterized by the
roughness exponent β. In this logarithmic represen-
tation, β is the slope of the solid straight lines, power
law fits of the correlation functions computed from the
fracture surfaces. Although the roughness amplitude—
the position of the lines along the ordinates—may vary
from one sample to another, the slope remains rather
independent of the inclusion spatial distribution, as
illustrated by the values of β given in the legend of
the figure and obtained from a power law fit of these
curves. These results give an average roughness expo-
nent β = 0.55 ± 0.02, independent of the inclusion
distribution.

Our calculations capture the self-affine nature of
ductile fracture surfaces, as observed experimentally
in Bonamy and Bouchaud (2011), and as also found
numerically in Needleman et al. (2012), but here over
a larger range of length scales than in Needleman et al.
(2012). Since quadratic elements are used the mesh
spacing is ex/2 but the scaling in Fig. 7 holds for even
smaller δx values. This indicates that the interpolation
procedure between mesh points when defining the frac-
ture surface geometry still preserves the roughness scal-
ing. In Needleman et al. (2012) values 0.4 < β < 0.6
were reported for the simulations in Fig. 7a. The pro-
cedure used in this study to define the fracture surfaces
from the porosity field gives a more precise character-
ization of the crack roughness, a more uniform value
of the roughness exponent and the value of the rough-
ness exponent β exhibits a smaller variation with the
inclusion distribution than in Needleman et al. (2012).
There are variations in the amplitude of the roughness
that reflect variations in the threshold value ft of the
porosity used to define the fracture surfaces. Neverthe-
less, despite these fluctuations, the value of the rough-
ness exponent is very robust, and changes very weakly
from one inclusion distribution to another. We have also
checked that the value of the roughness exponent does
not depend much on the value of the threshold ft used
to define the fracture surfaces using both ft = 0.04 and
ft = 0.10, supporting the value β � 0.55 reported in
this study.
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Fig. 7 Correlation function of the roughness of simulated frac-
ture surfaces. a Material # 1: scaling behavior of the crack rough-
ness observed for four different spatial distributions of the inclu-
sions (see Needleman et al. 2012) characterized by a similar
roughness exponentsβ = 0.55 ± 0.02. b Comparisons of materi-

als #1, #2 and #3: Scaling behavior of the crack roughness for the
same spatial distribution of inclusions, but with different material
properties. regardless of the value of the nucleation threshold, the
roughness follows power law behavior with a roughness expo-
nent β = 0.56 ± 0.01

Figure 7b shows the effect of varying a material para-
meter for a fixed spatial distribution of inclusions. The
inclusion distribution chosen here is case411 (Needle-
man et al. 2012). In one calculation, the void nucleation
strain is taken to be εN = 0.4 (material #2) while in the
other calculation σN /σ0 = 2.0 (material #3). All other
material and void nucleation parameters remain fixed.
Also, for comparison purposes, the data for case411
with the reference void nucleation parameters (material
# 1) is also plotted. The simulated fracture surfaces here
show a power law behavior, with a roughness exponent,
β � 0.56, rather independent of the material proper-
ties in the range investigated. This result is consistent
with a large body of experimental work that reports a
universal value of the roughness exponent, independent
to a large extent of the microstructure of the material
studied, its mechanical properties or the loading condi-
tions used during the fracture test as seen in Bonamy
and Bouchaud (2011), Bouchaud et al. (1990), Ponson
et al. (2006).

4.2 Non-Gaussian statistics of height fluctuations

As seen in Fig. 7, the Hurst exponents calculated for the
various inclusion distributions and material parameter
variations considered here and in Needleman et al.

(2012) are nearly the same. In Vernède et al. (2013)
the full statistics of fracture surface height fluctuations
were obtained for cracks in a variety of materials. It was
found that the height fluctuations could be described by
a distribution that differed from a Gaussian by having
power law tails. The deviation from Gaussian statistics
was found to be material dependent. Therefore, in order
to explore possible effects of material characteristics on
the predicted fracture surface morphology, we inves-
tigate the full statistics of height variations δh(x, y)

defined by

δh(x, y) = h(x + δx, y) − h(x, y) (19)

Following Ponson (2007), Santucci et al. (2007), the
procedure used to compute the histogram P(δh) at a
given scale δx is the following.

1. We fix first a value of δx .
2. For each location (x, y) on both the upper and

lower fracture surface, the corresponding height
variations δh are computed. This procedure results
in a large set {δh}δx of height variations at a given
scale δx .

3. The histogram of this set of values is computed.
The histogram of δh is calculated by placing into
‘boxes’ [bminb2], [b2b3],…, [bn−1bmax] the values
of δh where the side b1, b2 of the boxes are distrib-
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Fig. 8 Histograms P(δh|δx) of height variations δh (see Eq.
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The solid lines are fits based on the Student’s distribution of Eq.
(20) using various values of the parameters k and δhc.The inset
represents the correlation function of the surface. The points (or
second moment) corresponding to the distributions represented
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uted homogeneously between bmin = min[δh] and
bmax = max[δh].

4. The histogram or probability density

Pi

(
δhi = bi + bi+1

2
|δx

)

is calculated as the fraction of values of δh con-
tained in the i th box.

In order to study the scaling behavior of the frac-
ture surface roughness, this procedure is repeated for
various scales δx , leading to a family of histograms
P(δh|δx). An important property is that the standard
deviation of the distributions P(δh|δx) corresponds to
the correlation function �h(δx) of the fracture sur-
faces, as can be observed from its definition in Eq. (17).

The distribution P(δh|δx) is shown in Fig. 8 for
four values of δx for the simulation labeled case421 in
Needleman et al. (2012). The larger the value of δx , the
broader the distribution, as expected from the scaling of
the correlation function �h(δx) ∝ δxβ . The standard
deviation of these histograms is plotted in the inset as a
function of δx using the same color code as in the main
panel. As expected, the standard deviation evolves as a
power law with exponent β = 0.56, in agreement with
the plot of �h(δx) shown in Fig. 7.

The distribution of height variations computed on
numerical fracture surfaces are not Gaussian, but
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Fig. 9 Variations of the parameters
√

k/(k − 2) and δhc/ex
obtained from the fit of the roughness distributions P(δh) shown
in Fig. 8 for case 421 in Needleman et al. (2012) using Student’s
distribution (see Eq. (20)). The transition from power law tails
(
√

k/(k − 2) � 1) to Gaussian (
√

k/(k − 2) � 1) statistics as
the length scale δx increases is characterized by the exponent
μ = 0.15. The typical value of δhc of the roughness extracted
using fits by Student’s distribution also evolves as a power law
of the length scale δx with exponent γ = 0.71

exhibit fat tails with power law behavior P(δh) ∝
δh(k+1)/2 for large values of δh. This means that large
height fluctuations are not exponentially rare on duc-
tile fracture surfaces as is the case for brittle fracture
surfaces (Ponson et al. 2007). Indeed, the crack profiles
in the calculations here display a non-negligible num-
ber of abnormally large fluctuations δh, as qualitatively
seen in Fig. 6.

To describe this effect more quantitatively, the distri-
butions P(δh) are described using a family of probabil-
ity distributions referred to as Student’s t distributions

tk,δhc(δh) ∝ 1

δhc

(
1 + 1

k

(
δh

δhc

)2
)−(k+1)/2

(20)

with parameters k and δhc, and represented by solid
lines in Fig. 8. For reasons discussed in the next sec-
tion, it is more appropriate to consider the parameter√

k/(k − 2) instead of k.
These parameters, obtained from the fit of the distri-

butions P(δh|δx), are represented in Fig. 9 as a function
of the scale δx . The first parameter that characterizes
the shape of the distribution decreases as a power law
with the scale δx√

k

k − 2
∝ δx−μ (21)

with μ = 0.15 as illustrated by the straight line varia-
tions in the logarithmic representation of Fig. 9.
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The second fitting parameter used to describe the
roughness distributions P(δh|δx) is also represented
in Fig. 9 as a function of the scale δx . It here increases
as a power law

δhc ∝ δxγ (22)

with exponent γ = 0.71.

The ductile crack profiles studied here exhibit a more
complex behavior than brittle fracture surfaces. Indeed,
in brittle materials, distributions of height variations
follow a Gaussian behavior at all scales (Ponson 2007;
Ponson et al. 2007). In our description based on Stu-
dent’s t distribution, this corresponds to k → ∞, or
equivalently, to

√
k/(k − 2) = 1, for any value of δx .

In other words, only one exponent is needed to describe
the scaling of the roughness distribution, since μ = 0.
For ductile fracture surfaces, not one, but three scal-
ing exponents β, μ and γ are required. However, this
can be reduced to two independent exponents based
on a simple relationship. Using the definition (20) of
Student’s t distribution, one can show that its second
moment, and so the correlation function, varies as

�h(δx) ∝ δhc

√
k/(k − 2) (23)

As a result, from the scaling relations in Eqs. (18), (21)

and (22), one obtains

β = γ − μ. (24)

This relation is satisfied by the exponents extracted
here for which β = 0.56 (case421) was measured (see
Fig. 7). This supports our description of the roughness
statistics based on Student’s t distribution.

The relation between exponents suggests an inter-
pretation of the roughness exponent β that character-
izes the scaling behavior of the correlation function
with the scale δx as the combined effect of the varia-
tions of the typical roughness δhc with the scale δx and
the variations in the actual shape of the distribution of
height fluctuations. It also suggests that the universal
value of the roughness exponent β relies on the value of
μ that describes the change in the shape of roughness
distribution. Experimental results in Vernède et al.
(2013) are consistent with these findings: the statistical
analysis of both aluminum alloy and mortar fracture
surfaces indicates a similar behavior, with a measured
value μexp � 0.15. However, the experimental value
of the second exponent, γ exp � 0.9, is larger than the
value obtained for the calculated fracture surfaces here.

In the following, we use the above analysis of the
distribution of height variations to compare the fracture
surfaces obtained for materials #1, #2 and #3.

4.3 Roughness statistics: comparison between the
materials

The analysis in Sect. 4.2 revealed that the scaling of
the roughness distribution of ductile fracture surfaces
could be described using Student’s tk,δhc distribution
introduced in Eq. (20), with the adjustable parameters√

k/(k − 2) and δhc that follow power laws with the
scale δx . We focus in this section on the parameter√

k(k − 2) that characterizes the distribution shape. For
a finite value of the parameter k, Student’s t distribution
displays fat tails with

tk,δhc(δh) ∝ δh(k+1)/2 for δh � δhc

while tk,δhc(δh) approaches a Gaussian distribution
when k tends to infinity. As a result, this family of distri-
butions is suited to describe a transition from power law
tails to Gaussian statistics. In particular

√
k/(k − 2) =

1 for a Gaussian distribution and
√

k/(k − 2) > 1 oth-
erwise. We expect the value of

√
k/(k − 2) to indicate

the distance from Gaussian behavior.
The analysis of the fracture surface of material

#1 has revealed that
√

k/(k − 2) remains larger than
one, indicating fat tails statistics and deviation from
a Gaussian distribution at the length scales investi-
gated (see Fig. 9). However, extrapolating the power
law behavior

√
k/(k − 2) ∼ δx−μ towards larger val-

ues of δx , predicts that it will reach
√

k/(k − 2)(δx =
ξ) = 1 at the crossover length δx = ξ . Interestingly,
it means that for δx > ξ , the fracture surface might
recover Gaussian statistics. Such an extrapolation leads
to ξ = 100ex for material #1.

The transition from fat tail statistics for δx < ξ to
Gaussian behavior for δx > ξ calls for an interpreta-
tion in terms of fracture mechanisms. In the scenario
proposed in Vernède et al. (2013), Gaussian statistics
of the roughness would be reminiscent of brittle frac-
ture surfaces while distributions with fat tails would
be signature of damage mechanisms. This behavior is
fairly consistent with the scaling behavior of the cor-
relation function that gives roughness exponents of the
order of β = 0.5 for brittle failure and larger val-
ues around β = 0.6 at a smaller scale when fail-
ure is accompanied by damage mechanisms ( Bonamy
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Fig. 10 Variations of the parameter
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k/(k − 2) used in the fit
by Student’s distribution, Eq. (20), of the histrograms P(δh) of
height fluctuations as a function of δx

et al. 2006; Morel et al. 2008). The crossover length
between the two regimes - large exponents and fat
tail statistics at small scale to small exponents with
Gaussian statistics at large scale - may be a reflection
of the size scale associated with the micro mechanism
of fracture. If so, the value of ξ extracted from the
analysis of the roughness statistics could serve as a
length scale associated with the underlying damage
process.

Figure 10 compares the variations of the parame-
ter

√
k/(k − 2) for the materials analyzed. The power

law decay differs from one material to another. The
exponent μ � 0.15 —the slope of the straight line
variations in this logarithmic representation—remains
rather constant. But the variations in the position along
the ordinates indicate different values of ξ , and more
generally, different level of deviations from Gaussian
(and so brittle) behavior.

The deviation from Gaussian behavior is more pro-
nounced for material #3 than for material #2 for which
the values of

√
k/(k − 2) is smaller at all length scales

δx . This may indicate that material #3 is more ductile
than material #2 which is expected due to the larger
value of the nucleation stress for the large inclusions.
Extrapolation of

√
k/(k − 2) to large values of δx indi-

cates that the crossover value ξ = 300ex for material
#3 which is much larger than the value estimated for
the materials #1 and #2.

The comparison of material #1 with material #2
is more complex. The relative position of the curves

√
k/(k − 2) indicates stronger deviations from Gaussian

behavior for material #1. However, the extrapolated
value of ξ � 100ex gives a similar value for both
materials.

5 Discussion

Calculations have been carried out for a fixed size, den-
sity and distribution of discretely modeled void nucle-
ating inclusions. The statistics of the fracture surfaces
was investigated. In addition, the statistics of the frac-
ture surfaces obtained in Needleman et al. (2012) were
recalculated. In Needleman et al. (2012), the fracture
surface was defined by a threshold value ft = 0.1,
somewhat smaller than the material parameter ft used
in the constitutive model to define final failure. In the
present studies, in some cases, an even smaller value,
ft = 0.03, is chosen to define a well connected crack
surface. Fig. 5 shows that the crack surfaces obtained
by these definitions are rather close, as the value of f
increases steeply in the material near the fully open
crack. In Needleman et al. (2012), a thickness average
of the fracture surface height was calculated and this
average profile was used to obtain the correlation func-
tion �h(δx). Here, instead, �h(δx) is calculated for
each cross section, and is subsequently averaged, and
it turns out that this procedure gives power law scal-
ing over a larger range, with less difference between
the various inclusion distributions in Needleman et al.
(2012). Also in Needleman et al. (2012) only the rough-
ness exponent was calculated whereas here we calcu-
late more complete fracture surface statistics.

As noted in Needleman et al. (2012) the calcula-
tions contain several length scales: (1) the mean spac-
ing between inclusion centers; (2) the inclusion radius;
(3) the slice thickness; and (4) the finite element mesh
spacing. A significant difference between these length
scales is that the first three are physically relevant length
scales whereas any dependence of the results on the
finite element mesh length scale is a numerical arti-
fact. Whether or not there is a significant effect of the
finite element mesh spacing on the predicted statistics
of fracture roughness remains to be determined.

Our results give rise to a value of β = 0.56 ± 0.03
that is essentially independent of the inclusion distribu-
tions and fracture properties considered and that is also
close to the value β3D � 0.6 reported for 3D fracture
surfaces of a wide range of ductile and quasi-brittle
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materials in the crack propagation direction Ponson
et al. (2006), Ponson et al. (2006). While the proba-
bility distribution of heights is a Gaussian for brittle
fracture, it is more complex for ductile fracture sur-
faces. We showed that Student’s t distribution can fit
all the histograms in Fig. 8. This distribution is equiva-
lent to a Gaussian at sufficiently small values of δh/ex

but crosses over to a power-law at larger values. Also,
as seen in Fig. 8 for small values of δx/ex the com-
puted distributions display fat power law tails whereas
for sufficiently large values of δx/ex the distribution
is well-fit by a Gaussian. The transition from fat tail
to Gaussian statistics is described by introducing a sec-
ond exponent μ � 0.15. In the experiments in Vernède
et al. (2013) where the roughness statistics were calcu-
lated as an average over all directions in the fracture sur-
face, the statistics were also observed to deviate from
a Gaussian and the deviation was well-described by
two exponents. The value of μ was close to the one
obtained here but the value of γ was larger than in
our calculations. Hence, while for brittle fracture sur-
faces, knowledge of the roughness index β is sufficient
to describe completely the probability distribution, for
ductile fracture surfaces independent exponents are
needed.

Our results indicate that for ductile fracture sur-
faces there is a length characterizing the crossover from
power law to Gaussian statistics. The results also sug-
gest that this length may correlate with the size of the
fracture process zone. What remains to be determined
is the extent to which this crossover length as well as
other aspects of the non-Gaussian statistics correlate
with measures of fracture toughness such as KIc and
crack growth resistance curves. For the type of materi-
als considered here, this requires more extensive calcu-
lations with increased crack growth, larger variations
of inclusion density and distribution, and greater varia-
tion in material properties. Such calculations are being
undertaken and the results here suggest the possibil-
ity of a connection being made between post-mortem
fracture surface statistics and crack growth resistance.

6 Conclusions

1. A central result of this paper is that, for the material
parameter variations analyzed, the computed duc-
tile fracture surfaces exhibit self-affine properties
with similar values of the fracture surface rough-

ness exponent β but their full statistical properties
differ.

2. For the ductile fracture surfaces analyzed:

– The computed fracture surfaces are self-affine over
a range of length scales of about two orders of mag-
nitude.

– The computed values of the fracture surface rough-
ness exponents along the crack growth direction are
not sensitive to the larger particle distributions nor
to the fracture parameter variations investigated.

– The computed fracture surface roughness distrib-
utions are not Gaussian but they are all well fitted
by Student’s distribution. Both the roughness expo-
nent β = 0.56 ± 0.03 and the exponent μ � 0.15
characterizing the transition with δx/ex from fat
tail to Gaussian statistics are found to be rather
independent of the spatial distributions of the larger
inclusions and of material parameters in the range
investigated.

– The computed full fracture surface roughness sta-
tistics vary with the fracture parameters investi-
gated.
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