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1 Introduction and method of analysis

The statistical analysis of fracture surfaces is a valuable tool for understanding failure mechanisms in
engineering materials [1]. Self affinity of the fracture surfaces has been established through a significant
amount of experimental work [2–4] and is described by the scaling relation h�λx� � λζh�x�, where h�x�
is the height distribution of a crack profile, λ is a scaling factor, and ζ is a parameter, known as Hurst
or roughness exponent, which characterizes the roughness of the cracked surface. The Hurst exponent
ζ remains invariant under a scale transformation. With reference to the experimental characterization of
fracture in 3D brittle materials, Milman et al. [5] found a Hurst exponent ζ3D � 0�4�0�15 for the frac-
ture surface in tungsten single crystals and highly oriented pyrolitic graphite. For materials exhibiting
intergranular brittle fracture, Boffa et al. [6] reported an exponent equal to 0�5. Ponson et al. [7] have
observed the self-affine properties of cracked surfaces of compacted brittle granular materials and re-
ported ζ3D � 0�46�0�05. From the theoretical side, fracture surfaces have been modeled as the trace left
by the crack front as it propagates through an elastic solids with random spatial fluctuations of fracture
energy, leading to a value of roughness exponent ζth3D � 0�39 close to the experimental values [8, 9]. For
crack propagation in 2D systems, the value of the roughness exponent is a priori different, since failure
consists now of the propagation of the crack tip in a 2D plane, contrary to the motion of the crack line
in 3D settings [10]. In these geometries, experimental studies have led to values close to ζ2D � 0�6�0�7
(see e.g. Ref. [11]), but have been mainly devoted to systems with rather complex microscopic failure
mechanisms such as viscoelasticity and microcracking. As a result, the connexion with the theoretical
models issued from Fracture Mechanics that predict rather smaller values (ζth2D � 0�50) [12, 13] is not
clear.
This study has been designed in order (i) to clarify the discrepancy between theory and experiments on
the morphology of crack profiles in 2D setting, and (ii) to understand the role played by the microstruc-
ture of polycrystalline materials on their fracture surfaces during brittle and intergranular failure. For
these reasons, we have simulated intergranular cracks in brittle polycrystalline materials. Intergranular
crack paths are obtained with a Generalized Finite Element Method (GFEM) for polycrystals [14]. This
method provides an accurate description of the stress field in a polycrystalline material and yields reli-
able crack paths [15]. In our approach, a polycrystal is obtained by the superposition of a polycrystalline
topology on a simple background finite element mesh which does not need to conform to the local fea-
tures of the topology. This superposition is automatically handled using the partition of unity property of
finite element shape functions hence automating the mesh generation stage. A sequential polycrystalline
analysis approach is used to handle our large simulations as discussed in Section 3. Resulting crack
profiles are analyzed using the height-height correlation function in section 4. The estimated value of the
Hurst exponent is compared with recent experimental and theoretical findings.
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Figure 1: Geometry and boundary conditions for the notched specimen employed in the simulations.

2 Test setup and material

The geometry and boundary conditions of the test setup are reported in Figure 1. The material parameters
are taken to be representative of an average polycrystalline alumina, Al2O3, with Young’s modulus E �
384�6 GPa and Poisson’s ratio ν � 0�237. Plane strain analyses are performed under the assumption
of small elastic strains and rotations considering quasi-static loading conditions. A centroidal Voronoi
tessellation algorithm is used to generate 18 different topologies of 3140 grains each. These topologies
are embedded in the process zone shown in Figure 1. The average grain size is� 20 µm, with an average
grain boundary length lgb � 10�62 µm. The linear elastic isotropic grains are separated from each other
by means of cohesive grain boundaries which follow the Xu-Needleman cohesive law [16] incorporating
secant unloading and reloading behavior. According to Shabir et al. [15], intergranular crack paths in
brittle polycrystals are not influenced by key cohesive law parameters. Following this argument, the
mode-I fracture energy GIc and the maximum normal cohesive strength σmax are set equal to 39�6 Jm�2

and 0�6 GPa, respectively. With this set of cohesive law parameters, relatively coarse meshes can resolve
the cohesive law along grain boundaries.

3 Sequential polycrystalline analysis

Crack paths are generated using a sequential polycrystalline analysis approach. With this approach,
large crack propagation simulations can be carried on by considering a suitable number of cheaper sub-
simulations with a considerable saving in terms of computational effort. A typical example is shown in
Figure 2(a) with the first and last simulations reported in Figures 2(b) and (c), respectively. The blue
boxes in these figures show the area where the crack is allowed to propagate within a sub-simulation.
Each box is termed “process window”. Two different levels of mesh refinement are used in each of these
sub-simulations. The mesh in the process window is characterized by a level of refinement according
to [15], whereas the region outside is refined by providing at least two elements along each grain bound-
ary. When a crack touches the end of a process window, the simulation is stopped and the resulting crack
profile is saved. The next sub-simulation is launched considering the saved crack profile from the previ-
ous simulation. A new crack tip is defined by reducing the length of the loaded crack profile such that the
new tip is now at a position where the cohesive strength of the previous simulation would be negligible.
In other words, we make sure that nonlinear processes are accurately captured by enclosing nonlinear
regions with a process window. We have found that an overlap of � 2�5lgb between two consecutive
process windows satisfies this requirement with the current choice of cohesive law and parameters. Un-
like classical adaptive refinement approaches, the only information that is transferred from simulation to
simulation is the crack path.
We have compared our approach with a monolithic approach on a series of polycrystalline topologies
and the resulting crack paths are identical. Moreover, with reference to the load-displacement curves,
if all the curves obtained with the sequential analysis approach were joined together by removing the
pre-peak branch of each sub-simulation except the first one, then the resulting curve would follow the
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Figure 2: Sequential polycrystalline analysis of a 3140-grain topology.

curve obtained with the monolithic approach very closely. As for the stress field, we could hardly find
any difference.

4 Roughness characterization of the crack profiles

In order to characterize the statistical properties of the numerical fracture surfaces, we analyze 18 crack
profiles characterized by � 315 cracked grain boundaries obtained from 3140-grain samples —each
sample corresponds here to different polycrystalline arrangements. We use the height-height correla-
tion function defined as ∆h�δx� � ��h�x� δx�� h�x��2�1�2x . Its variations are represented in Figure 3 in
logarithmic scales. It follows a power-law, reminiscent of self-affine properties, characterized by the
roughness exponent ζ� 0�50 in a rather large range of length scales, from the typical length of the grain
boundaries (� 10 µm) to a fraction of the system size (ξ � 800 µm � Lf�4, where Lf is the fracture
ligament length equal toW�3).
Such a value of the Hurst exponent is smaller than the experimental findings ζ2D � 0�6�0�7 obtained in
2D materials such as paper sheets [11]. However, such materials are known to give rise to microcracking
and damage ahead of the main crack during crack propagation while in the polycrystalline materials con-
sidered here failure mechanisms are perfectly brittle. As a result, those two different values of roughness
exponent are in rather good agreement with the scenario proposed in Ref. [17] where brittle and damage
failure of disordered 2D materials are expected to give rise to ζth2D � 0�5 and ζth2D � 0�5, respectively.
Why brittle intergranular failure of polycrystalline materials studied here gives rise to ζ � 0�50, and to
which extent our findings can be understood within the framework developed in Refs. [12, 17] are still
open questions.
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Figure 3: Hurst exponent ζ estimated on crack profiles obtained from 18 3140-grain topologies.
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