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We investigate the scaling properties of postmortem fracture surfaces in silica glass and glassy
ceramics. In both cases, the 2D height-height correlation function is found to obey Family-Viseck scaling
properties, but with two sets of critical exponents, in particular, a roughness exponent � ’ 0:75 in
homogeneous glass and � ’ 0:4 in glassy ceramics. The ranges of length scales over which these two
scalings are observed are shown to be below and above the size of the process zone, respectively. A model
derived from linear elastic fracture mechanics in the quasistatic approximation succeeds to reproduce the
scaling exponents observed in glassy ceramics. The critical exponents observed in homogeneous glass are
conjectured to reflect the damage screening occurring for length scales below the size of the process zone.
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The morphology of fracture surfaces is a signature of the
complex damage and fracture processes occurring at the
microstructure scale that lead to the failure of a given
heterogeneous material. Since the pioneering work of
Mandelbrot et al. [1], a large amount of studies have shown
that crack surface roughening exhibits some universal
scaling features: Fracture surfaces were found to be self-
affine over a wide range of length scales, characterized by a
universal roughness exponent � � 0:8, weakly dependent
on the nature of the material and on the failure mode (see,
e.g., [2] for a review). Very recent studies [3] showed that a
complete description of the scaling properties of fracture
surfaces calls for the use of the two-dimensional (2D)
height-height correlation function. This function was ob-
served to exhibit anisotropic scaling properties similar to
the Family-Viseck scaling [4] predicted in interface growth
models [5], characterized by three critical exponents inde-
pendent to some extent of the considered material, the
loading condition, and the crack growth velocity.

The origin of the scaling properties of fracture surfaces
is still debated. Hansen and Schmittbuhl [6] suggested that
the universal scaling properties of fracture surfaces are due
to the fracture propagation being a damage coalescence
process described by a stress-weighted percolation phe-
nomenon in a self-generated quadratic damage gradient.
Bouchaud et al. [7] proposed to model the fracture surface
as the trace left by a crack front moving through randomly
distributed microstructural obstacles—the dynamics of
which is described through a phenomenological nonlinear
Langevin equation, keeping only the terms allowed by the
symmetry of the system. Finally, Ramanathan et al. used
linear elastic fracture mechanics (LEFM) to derive a linear
nonlocal Langevin equation within both elastostatic [8]
and elastodynamic [9] approximation. All these ap-
proaches succeed to reproduce scale invariant crack sur-
face roughness in qualitative—but unfortunately not
quantitative—agreement with the experimental observa-
tions [3].

The universality of the roughness exponent was found to
suffer from several exceptions: Metallic surfaces investi-
gated at the nanometer scale were found to exhibit self-
affine scaling properties, but with a roughness exponent
significantly smaller than 0.8, closer to 0.4–0.5 [10,11].
This was first interpreted as a kinetic effect similar to the
one expected for a moving line close to its depinning
transition [11]—the small (large) scale roughness expo-
nent 0.5 (0.8) corresponding to effective quenched (ther-
mal) noise [12]. The relevance of such an interpretation
was later questioned since no small scale � ’ 0:4–0:5
roughness exponent was observed for the nanoresolved
fracture surface of silica glass broken under stress corro-
sion with crack growth velocity as small as the picometer
per second [3]. Furthermore, recent experiments reported
similar values � ’ 0:4–0:5 at large length scales in sand-
stone [13], artificial rock [14], and glassy ceramics [15]. In
this latter case, the roughness exponent was found to be
independent of the bead size, the porosity, the transgranu-
lar or intergranular nature of the failure mode, and the
crack growth velocity. This suggests the existence of a
second universality class for failure problems.

The series of experiments reported here were designed
to uncover the origin of these two distinct universality
classes and focus more specifically on the range of length
scales over which the scaling properties are observed. Two
materials are investigated: homogeneous glass and glassy
ceramics made of sintered 100 �m glass beads. In both
cases, the fracture surfaces are found to exhibit Family-
Viseck scaling properties but with two different sets of
critical exponents, in particular, � ’ 0:75 for homogeneous
glass and � ’ 0:4 for glassy ceramics. The range of length
scales over which these two scalings are observed are
shown to be below and above the size of process zone,
respectively. Using LEFM, we show that the crack rough-
ness development can been described as an elastic string
with nonlocal interactions creeping in a 2D random me-
dium—the spatial coordinate along which the crack glob-
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ally grows playing the role of time. This approach allows
one to account quantitatively for the value of the observed
critical exponents in the case of glassy ceramics. The role
of damage in the case of homogeneous glass is finally
discussed.

Experiments.—In all the following, the reference frame
( ~ex, ~ey, ~ez) is chosen so that ~ex, ~ey, and ~ez are parallel to the
propagation, loading, and crack front directions, respec-
tively. Fracture surfaces in amorphous silica were obtained
for various growth velocity ranging from v�10�11 to v �
10�4 m=s using the procedure described in Refs. [3,16].
Their topography was then measured through atomic force
microscopy (AFM) with in-plane and out-of-plane resolu-
tions estimated to be 5 and 0:1 nm, respectively. The
resulting images are 1024� 1024 pixels2 and represent a
square field of 1� 1 �m2. The scaling properties of the
fracture surfaces were analyzed using the procedure dis-
cussed in Ref. [3]: First, the 1D height-height correlation
function �h��z�� h�h�z��z;x��h�z;x�	2i1=2 along the z
direction and �h��x� � h�h�z; x� �x� � h�z; x�	2i1=2

along the x direction were computed. Both �h��z� and
�h��x� were found to exhibit power-law behaviors, char-
acterized by exponents � ’ 0:75 and � ’ 0:6, respectively,
extending up to length scales �z and �x, respectively
(Fig. 1, inset). Second, the 2D height-height correlation
function was computed (Fig. 1) and was shown to follow a
Family-Viseck scaling [4]:

 �h / �x�f
�

�z
�x1=z

�
; f�u� 


�
1 if u� 1;
u� if u� 1;

(1)

with � ’ 0:75, � ’ 0:6, and z � �=� ’ 1:2, for length
scales �z  �z and �x  �x, in agreement with previous
studies reported in [3]. These exponents � , �, and z were

shown to correspond to the roughness, growth, and dy-
namic exponents defined in interface growth problems.

Then, we investigated the influence of the crack growth
velocity v on the scaling properties of the postmortem
fracture surface. The critical exponents � , �, and z do
not show any noticeable dependence on v. On the other
hand, the cutoff length � was observed to decrease slowly,
as the logarithm of v (Fig. 2). For the smallest value of v,
ranging from 10�11 to 10�9 m=s, we were able to ob-
serve in real time, at the nanometer scale, the crack propa-
gation during the specimen failure [16]. At these scales,
it was shown that the deformation field does not fit with
the linear elastic predictions over a fairly large region
(
100 nm) at the crack tip [16–18]. This zone is thereafter
referred to as the process zone (PZ). The variation of its
size Rc with respect to the crack velocity v are presented in
the inset of Fig. 2. First, Rc is found to be larger than, but of
the same order of magnitude as, �. Second, Rc, like �, is
observed to decrease as the logarithm of v. This leads us to
conjecture that the PZ size Rc is the relevant length scale
that sets the upper cutoff length � that limits the scaling
given by Eq. (1) with the exponents f� ’ 0:75; � ’
0:6; z � �=� ’ 1:2g. At these length scales, the material
cannot be identified with a coarse-grained equivalent linear
elastic medium, which explains the failure of existing
models [8] derived from LEFM to reproduce the critical
exponents f� ’ 0:75; � ’ 0:6; z � �=� ’ 1:2g observed
experimentally.

We now examine the scaling properties of fracture sur-
faces in glassy ceramics made of sintered beads of silicate
glass with diameter d ranging between 104 and 128 �m
(see Ref. [15] for details). In this class of materials, the PZ
size observed in the vicinity of the various (micro)crack
tips are expected to be of the order of 100 nm as in
homogeneous glass, while the microstructure scale is set
by the mean bead diameter at a length scale 3 order of
magnitudes larger. Figure 3 presents the 2D height-height
correlation function. As for homogeneous glass, this func-
tion is found to follow the Family-Viseck scaling [4] given
by Eq. (1), but with a different set of critical exponents
f� ’ 0:4; � ’ 0:5; z � �=� ’ 0:8g. This set of exponents
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FIG. 1. Inset: 1D height-height correlation function calculated
along z and x on a fracture surface of silica glass. The crack
growth velocity was v � 10�10 m=s. The straight lines are
power-law fits. The vertical dot-dashed line sets the cutoff
lengths �z ’ 70 nm and �x ’ 50 nm. Main panel: 2D height-
height correlation functions �h�x��z� corresponding to different
values of �x vs �z. The data collapse was obtained using Eq. (1)
with exponents � ’ 0:75, � ’ 0:6, and z � �=� ’ 1:2.
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FIG. 2. Cutoff length � (measured along z) as a function of the
crack growth velocity v. The straight line corresponds to a fit
� / log�v�. Inset: PZ size Rc (measured along x) as a function of
v. The straight line correspond to a fit Rc / log�v�.
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was found to be independent of the porosity, the bead
diameter, and the crack growth velocity.

Interpretation.—Since the scaling properties of glassy
ceramics were observed at length scales larger than the PZ
size, it is natural to attempt to interpret these scaling
properties within the LEFM framework. We restrict the
following analysis to the case where (i) the elastic proper-
ties can be considered as homogeneous and (ii) the crack
speed is small compared to the speed of wave propagation
so that quasistatic approximation is relevant. In an iso-
tropic elastic material, near the crack front, the stress field

can be written as follows [19]: �ij �
������

1
2�r

q
fKI�

I
ij��� �

KII�
II
ij��� � KIII�

III
ij ���g, where r is the distance from the

crack front, � is the angle with respect to the local direction
of crack propagation, �ij are universal functions of �, and
KI, KII, and KIII are mode I (tension), mode II (shear), and
mode III (tear) intensity factors, respectively. In an ideal
homogeneous elastic material under tensile K0

I loading, the
crack front would remain straight and would propagate
within a given plane. But heterogeneities of a disordered
material like glassy ceramics induce both in-plane distor-
tion f�z; t� and out-of-plane distortion h�z; x � f�z; t�	 of
the crack front. In turn, these deviations from straightness
induce perturbations �KI, �KII, and �KIII in the local
loading of the crack front. To linear order, �KI depends
only on f [20], while �KII and �KIII are functional of h
only [21]. Since we are primarily interested in the fracture
surfaces, we focus on the interrelations between �KII and
�KIII and h, returning at the end of this Letter to a brief
discussion of the in-plane crack roughness.

The path chosen by a crack propagating in an elastic
isotropic material is the one for which the local stress field
at the tip is of mode I type (‘‘criterion of local symmetry’’)
[22–24]. In other words, the net mode II stress intensity

factor should vanish in each location z along the crack
front. Three contributions should be taken into account in
the evaluation of �KII. The first contribution is due to both
inevitable imperfections in the loading system or in crack
alignment and the heterogeneous nature of the material.
This contribution is modeled by a quenched uncorrelated
random field �K�1�II � K0

I	�z; x; h� written, for sake of
simplicity, as the sum of two uncorrelated random fields
�K�1�II � K0

I f	q�z; h� � 	t�z; x�g. The second contribution

�K�2�II arises from the coupling of the singular mode I
component of the stress field of the unperturbed crack
with the position of the crack edge. In Fourier space this
contribution is given to linear order by [21] �K̂�2�II �kz; x� �
1
2K

0
I @xĥ�

1
2 jkzjK

0
I

2�3

2�
 ĥ�kz; x�, where 
 refers to the

Poisson’s ratio, and �K̂�2�II �kz; x� [ĥ�kz; x�] refers to the
Fourier transform of �K�2�II �z; x� [h�z; x�] with respect to
z. Finally, a third contribution comes from the coupling
between the slope of the crack surface and the nonsingular
T normal stress in the direction of crack propagation
[23,25]. This third contribution was shown to be negligible
with respect to the second contribution [21]. Finally, mak-
ing the net mode II stress intensity factor vanish at each
location z leads to

 

@h
@x
� �J�z; x; fhg� � 	q�z; h� � 	t�z; x�; (2)

where the Fourier transformed elastic kernel Ĵ�kz; x; fĥg� is
given by

 Ĵ�kz; x; fĥg� � jkzj
2� 3

2� 


ĥ�kz; x�: (3)

In other words, the morphology of the fracture surface
h�x; z� is given by the motion of the elastic string h�z�
that ‘‘creeps’’—the x coordinate playing the role of
time—within a random potential 	q�z; h� due to the ‘‘ther-
mal’’ fluctuations 	t�z; x�. The scaling properties of the
surface h�z; x� in the steady regime are then expected to be
described by a 2D height-height correlation given by
Eq. (1) [26]. Furthermore, if we consider an interface, the
interaction kernel of which in momentum space scales as
J�kz; fĥg� � J0jkzj

�ĥ, the values of the critical exponents
� ,�, and z depends only on�. In particular, for long-range
interaction � � 1, one gets � ’ 0:39 [27–29], z ’ 0:75
[28,29], and � � �=z ’ 0:5, in perfect agreement with
the values measured experimentally in glassy ceramics.

The values of the critical exponents experimentally ob-
served in homogeneous silica glass can now be discussed.
In this later case, the scaling properties were observed at
length scales smaller than the PZ size, i.e., at length scales
where the material cannot be considered as linear elastic
anymore. Recent AFM experiments [16,18] and molecular
dynamics observations [30] have shown that damage
spreading within this PZ occurs through the nucleation of
nanoscale cavities, the nature of which remains controver-
sial: They were first conjectured to be similar to the ones
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FIG. 3. Inset: 1D height-height correlation functions measured
along x and z on a fracture surface of glassy ceramics with a
porosity � � 6%. The straight lines are power-law fits. Main
panel: 2D height-height correlation functions �h�x��z� corre-
sponding to different values of �x vs �z. The data collapse was
obtained using Eq. (1) with exponents � ’ 0:4, � ’ 0:5, and z �
�=� ’ 0:8.
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classically observed—at much larger scale—during the
ductile fracture of metallic alloys [16,18]. This interpreta-
tion was later questioned since these cavities were shown
to leave no visible remnants on the postmortem fracture
surfaces [31]. It appears then natural to conjecture that
damage—independently of its precise nature—screens
the elastic interactions J�z; fhg� within the PZ, making
the effective � larger than the value � � 1 expected for
perfectly linear elastic materials. Renormalization group
methods [12,32] predict � � �2�� 1�=3, z � �5�� 2�=9
to first order in � � 2�� 1. ‘‘Arbitrary’’ values � ’
1:5–1:7 would then allow us to account for the values of
� ’ 0:75 and z ’ 1:2 observed in homogeneous silica
glass, as well as for a wide range of materials [2,3].

More generally, we conjecture that both critical scaling
regimes can be observed in all the heterogeneous materi-
als: For length scales smaller (larger) than the PZ size, one
expects Family-Viseck scaling with f� ’ 0:75; � ’
0:6; z � �=� ’ 1:2g (f� ’ 0:4; � ’ 0:5; z � �=� ’ 0:8g).

It should be mentioned that LEFM applied to describe
the motion of the in-plane crack front in a disordered
material results in a Langevin equation with nonlocal
elastic kernel and quenched noise [8,28]. At the depinning
transition, this approach predicts self-affine in-plane
roughness characterized by a roughness exponent � ’
0:39 [27] and a dynamic exponent z ’ 0:75 [28,29], while
experiments [33] report values � ’ 0:6 and z ’ 1. These
experimental values are much closer to the ones expected
in elastic line models with short range elastic interactions
that predict roughness exponents � ’ 0:63 and z � 1 [34],
which suggests similar damage screening effects as the
ones invoked for out-of-plane crack roughness. Work in
this direction is currently under progress.
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