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3

Fracture of thin sheets

Before describing fracture in all its complexity, i.e. fracture of a fully three-dimensional
material, we will restrict, in this chapter, to the rupture of quasi-bidimensional ma-
terials, i.e. thin sheets. "Thin" means of course that the thickness of the considered
sample - hardly exactly zero in the real world! - is much smaller than any other
dimension. If the sample is perfectly homogeneous, this simply means that its thick-
ness has to be much smaller than its length and width. But if it contains a certain
amount of disorder associated to a characteristic scale, then the thickness has to be
smaller, or, at the most, of the order of this new length. Hence, a one centimeter thick
piece of nanocrystalline metal cannot be considered to be two-dimensional, while a
one centimeter thick piece of expanded polystyrene with grains of a few millimeters
in size is a good approximation for what will be called a "thin sheet" below.

3.1

Experimental observations

In this context, the simplest fracture experiment one can think of is the tearing of
a paper sheet. Heterogeneities in paper are more or less tightly connected cellulose
fibers, which are typically (for common paper) 20 µm in diameter and 1 to 2 mm in
length. Hence, sheets which are one tenth of a millimeter thick - a few fiber diameters
only - can be considered as a good approximation of a two-dimensional material.
However, let us note that for a two-dimensional system, all the components of the
displacement field should be contained within the sheet plane, which is usually not
the case. In other words, it is extremely di�cult to perform tearing in pure mode I.
The out-of-plane displacement of the paper ahead of the propagating crack, leading
to mixed mode failure, is visible in Fig. 3.1.

Whatever the mode however, two basic observations can be made when paper is
torn. During the experiment, noise can be heard under the form of bursts of various
intensities. One may wonder how the amplitude and the time distribution of these
acoustic events can be described and related to the dynamics of the fracture process.
The second observation concerns the morphology of the crack line: one can observe
with naked eyes that the crack does not form a straight line, but progresses in zigzag.
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Figure 3.1 A crack propagating in paper. The crack emerging from the straight notch is
rough to the eye. One can also distinguish a large damaged zone where the crack is
partially closed at some points. Although the material can be considered as
two-dimensional, the loading conditions are 3D, as evidenced by the out-of-plane
displacement of the sheet, visible on the picture.

Figure 3.2 A crack line in paper observed at three di�erent magnifications. Apart from the
fibers which are more and more visible when the magnification is increased, the crack line
is very similar at the various scales.

This zigzag, however, has a specific character, since it seems to be the same when
the scale of observation is changed (Fig.3.2). These two observations can hardly be
described by Linear Elastic Fracture Mechanics as it was introduced in Chapter 1. The
very origin of the roughness of the crack, as well as of the intermittent character of its
propagation, resides in the presence of inhomogeneities. We will see that deciphering
these complex phenomena will pave the way to a quantitative understanding of the
role of microstructure on failure processes. This is why we will focus particularly on
the understanding of roughening and intermittency in fracture in thereafter.

Fibers can indeed be seen popping out of the torn sheet in Fig.3.3, when the crack
line is observed at high magnification. According to their size, their surrounding and
their orientation with respect to the direction of the applied stress, fibers are more or
less easy to break. A fiber may be stronger than its neighbours, or it may be oriented
in such a way that it is able to pin the crack tip at a given position for some time, until
there is an increase of the local stress. This is why the crack progression is not even,
but proceeds through bursts of various amplitudes. Moreover, heterogeneities tend to
impose local shear stresses even if the external load is purely mode I, which leads the
crack to deviate locally from its nominal straight trajectory. Shear and tensile local
stresses are further modified by the rough geometry of the crack itself.

We will focus first on the quantitative description of the morphology of cracks in
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Figure 3.3 A crack line in paper observed at large magnification. (a) Fibers can be seen to
pop out of the rough crack line, sometimes creating overhangs. (b) A red overlay was
superimposed to the observed crack line, which does not take into account the presence
of the fibers, and erases the overhangs.

thin sheets.

3.1.1
Geometry of crack profiles

The first experiment where the morphology of a crack line in paper was analyzed is
due to Kertèsz and coworkers [1]. More recently, Salminen et al. [2] have performed
similar experiments using remarkably long samples. Mallick et al. performed even
more accurate statistical analysis [3].

The first step always consists in extracting a line from pictures similar to those
shown in Fig. 3.1 or Fig. 3.2. At large enough scales (low magnifications), where
fibers, branchings and overhangs cannot be seen, this operation is straightforward.
But at smaller scales, it is not an easy task: as in Fig. 3.3(b), one has to define the
envelope of the actual profile (the envelope is superimposed to the real profile in red
in the figure), and obviously loose information.

Once this is done, and one deals with a rough line which can be described by a
function h defined everywhere along the x axis, one can compute, for example, the
second moment of the height distribution �h(�x) (see Annex 2 for details):

�h(�x) = h(h(x+ �x)� h(x))2i1/2x (3.1)

where hix denotes an average over all possible origins x of a window of width �x

extending between x and x+ �x.
For a self-a�ne profile, this quantity scales with �x as �xH , where H is the Hurst,

or roughness exponent. Several other momenta of the distribution of heights can be
computed as well, which have, in principal, an identical behaviour (see Annex 2).

Figure 3.4 shows �h(�x) for three di�erent kinds of paper: cardboard, drawing
paper and fax paper. One can see that the exponent does not vary with the nature of
the material, while the the scaling domain clearly depends on it, extending from a
tenth of millimeter to an upper cuto� ⇠ = 7, 1 or 4cm.

We have also broken a large (⇠ 50 cm) and thin (⇠ 1 cm) plate made of beads of
expanded polystyrene (Fig. 3.5). The beads have a diameter of ⇠ 3� 4 mm, so that
this material belongs to the category of bidimensional specimens.

The second moment of the height distribution is shown in Fig. 3.6. Here again, the
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Figure 3.4 Second moment of the height distribution computed along crack lines in three
di�erent kinds of paper: cardboard (o), drawing paper (o) and fax (o) papers. In each
case, �h(�x) is well fitted by a power law, with an exponent ⇣ ' 0.65� 0.7 which is very
weakly dependent on the nature of the sample. The extent of the scaling domain, on the
contrary, depends on the kind of paper used, and if the lower bound is of the order of a
tenth of millimeters, the upper bound is 7 cm, 1 cm and 4 cm for cardboard, drawing paper
and fax paper, espectively.

Figure 3.5 Broken specimen made of expanded polystyrene beads.

best fit of the data is a power law, which extends from the bead size (3� 4 mm) to an
upper limit ⇠ ' 10 cm. However, the Hurst exponent is significantly smaller than for
paper, H ' 0.45. We will argue later that this exponent is indeed di�erent, and that
it is indeed the directed random walk exponent HRW = 0.5.

In Section 3.2, we will see how to make sense of these observations. Before turning
to theory, however, let us examine the other striking aspect of fracture, related to
acoustic emission.
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Figure 3.6 Scaling properties of cracks in expanded polystyrene. In a domain extending
approximately from the bead size (3 to 4 mm) to ⇠ ' 10 cm, the second moment of the
height distribution is well fitted by a power law with exponent H ' 0.45. Inset: Crack profile
on which the statistical analysis was made.

3.1.2
Acoustic emission

Another striking feature of the paper tearing experiment is the complex dynamics
of the failure process. A closer look at the tip of the crack shows that its motion is
highly discontinuous and is made of a series of sudden jumps. This jerky motion
can be characterized through the study of the acoustic emission during the failure
process (Fig 3.7). These acoustic events are the signature of microinstabilities during
which elastic energy is abruptly released and dissipated within the process zone. An
example of acoustic signal recorded during the tearing of a sheet of paper is shown
on Fig. 3.7. The events span over a broad range of amplitudes as revealed by the
histogram of acoustic energies. The distribution follows a power law with exponent
↵ ' 1.3 [4], that is compatible with the statistics of crack length jumps measured
locally at the crack tip [5]. Intermittent dynamics of crack with power law distributed
fluctuations is a characteristic feature of the e�ect of disorder on failure phenomena.
An interpretation of this behavior will be given in the following.

In the following section, we will present a few simple models which extend LEFM
to heterogeneous materials by taking explicitly into account microstructural disorder.
We will examine in particular their predictions in terms of acoustic emission and
crack roughness.
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Figure 3.7 Acoustic emission during paper tearing (from Ref. [5])

3.2

Crack path predictions in 2D heterogeneous materials

In this section, we present theoretical arguments aimed at predicting the morphol-
ogy of crack paths in heterogeneous specimens. The first model we are presenting
derives directly from continuum mechanics, and applies to a perfectly elastic materi-
al containing some amount of disorder. Our conclusion will be that in this case, the
crack path simply follows a random walk. This random walk is only alterated when
a microcrack or a cavity such as the ones seen in Chapter 2 opens ahead of the crack
tip.

3.2.1
Perfectly brittle cracks

The model we present here is based on the principal of local symmetry [6, 7] dis-
cussed in Chapter 1: a crack follows the path along which it is loaded in pure mode I.
In other words, a crack propagates along the direction with vanishing shearing mode
II.

We follow the idea first introduced by Katzav et al. [8], and start from the calcula-
tion of Amestoy and Leblond [9] that predicts the propagation direction ✓ of a crack
from the local values kI(x) and kII(x) of the stress intensity factors at the crack tip
located in x (see Fig. 3.8):

✓(x+) = �2

kII(x)

kI(x)
(3.2)

We approximate the crack path as a succession of elementary straight segments sep-
arated by an incremental step �a along the x direction that can be subsequently taken
in the limit �a ! 0. As a result, in Eq. (3.2), the angle ✓(x+) provides the propaga-
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Figure 3.8 Sketch of the principal of local symmetry: the crack direction changes by an
angle ✓ in order to annul the shearing mode II.

tion direction on the right side of the position x while the local stress intensity factors
kI(x) and kII(x) are calculated from the crack path configuration before propaga-
tion. Since the angle ✓ is generally very small (✓ ⌧ 1), it can be approximated by
(Fig. 3.8):

✓(x+) ' dh

dx
|x+ � dh

dx
|x� . (3.3)

To predict the crack trajectory h(x), and close the system of equations (3.2) and
(3.3), the local stress intensity factors are expressed as a function of the crack geom-
etry h(x) and the loading conditions. As long as the crack perturbations are small
with respect to the specimen macroscopic size, one can use Cotterel and Rice’s result
[7] enriched by the work of Movchan et al. [10] that provide {kI , kII} as a func-
tion of h(x) and the stress intensity factors {K(0)

I ,K
(0)

II } as well as the coe�cients
{T (0), A(0)} of the higher order terms in the development of the stress field ahead of
the crack tip 1):
8
><

>:

khomI (x) = K
(0)

I

khomII (x) = K
(0)

II +

1

2

dh

dx
|x� �

r
2

⇡
T (0)

Z x

�1

dh
dx |up
x� u

du�
r

⇡

2

A(0)h(x).

(3.4)
We consider cracks under macroscopic tensile loading conditions, so that K(0)

II = 0

in the following.
Combining Eqs. (3.2), (3.3) and (3.4), one obtains a closed form of the path equa-

tion that writes as

dh

dx
|x+ =

2

p
2p
⇡

T (0)

K
(0)

I

Z x

�1

dh
dx |up
x� u

du+

p
2⇡

A
(0)

I

K
(0)

I

h(x). (3.5)

This equation holds for a homogeneous elastic medium only, and predicts a straight
crack trajectory h(x) = 0 as long as the T -stress is negative [7].

1) The constants {K(0)
I

, K
(0)
II

, T (0), A(0)} contain the relevant information on the specimen geometry
and the loading conditions. See Chapter 1 for their definition.
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To take into account the e�ect of spatial variations in the fracture properties of the
material, one introduces the parameter �khetII = �K

(0)

I ⌘(x)/2 that describes local
shearing perturbations induced by the material microstructure. Taking into account
both terms kII = khomII +khetII in the derivation of the path equation (3.2), one obtains

dh

dx
|x+ = ⌘(x)� c

Tp
L
T

Z x

�1

dh
dx |up
x� u

du+ c
A

h(x)

L
A

(3.6)

where L
T

=

 
K

(0)

I

T (0)

!
2

and L
A

=

K
(0)

I

A
(0)

I

are characteristic length scales of the

specimen and the macroscopic loading while c
T

and c
A

are dimensionless constants.
For example, in the Gri�th geometry where a crack of length 2c is embedded in
an infinite specimen submitted to an uniform tensile loading �1, the crack length
serves as the characteristic macroscopic length scale with L

T

= L
A

= c, while the
constants can be shown to take the values c

T

=

2

p
2

⇡ and c
A

=

3

4

[11].
For large enough specimens or for su�ciently long crack propagation distances, the

last two terms on the right hand side of the path equation (3.6) proportional to⇠ 1p
LT

and ⇠ 1

LA
vanish, while the first term ⌘(x) that describes the material microstructure

remains independent of these characteristic lengths. This observation results in the
following Langevin equation

dh

dx
|x+ ' ⌘(x). (3.7)

that predicts that the fluctuations of propagation direction are essentially the same as
the fluctuations of failure properties at the microscopic scale.

This prediction can be tested directly from the original path equation (3.6) that
is solved numerically in the Gri�th crack geometry. Assuming the existence of a
typical microstructural length scale ⇠ (e.g. grain diameter, fiber length...) beyond
which correlations of failure properties decay exponentially fast, one predicts

h⌘(x+ �x)⇥ ⌘(x)ix = e
�
⇣

�x

⇠

⌘2

) hdh
dx

|x+�x ⇥ dh

dx
|xix = e

�
⇣

�x

⇠

⌘2

. (3.8)

The autocorrelation function of the local crack propagation direction obtained nu-
merically from Eq. (3.6) is shown in the inset of Fig. 3.9 and compares well with
the one of the material disorder. The absence of correlations over distances �x > ⇠

larger than the microstructural length implies that the crack follows a random walk,
characterized by the Hurst exponent ⇣ = 1/2, as predicted numerically in the context
of the Gri�th crack configuration (Fig. 3.9). This result is fairly consistent with the
experiments on condensed polystyrene that is an archetype of 2D brittle disordered
medium.

Random walk-like crack paths can also be observed in more complex microstruc-
tures. For example, intergranular failure of 2D brittle polycrystal obtained numeri-
cally using cohesive zone models result in crack trajectory with roughness exponent
H = 0.5 (see Fig. 3.10). The lower cut-o� is provided here by the microstructural
length scale, the grain diameter d. In these numerical experiments, the crack cohesive
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Figure 3.9 Properties of crack profiles in disordered 2D media, as predicted from
Eq. (3.6): the crack follows a random walk with exponent H = 1/2. For very large
specimens, the autocorrelation function of the local slope shown in inset is very close to
the one of the material disorder ⌘, as expected from Eq. (3.7).

Figure 3.10 Simulated intergranular failure of polycrystals: (a) Typical example of
calculated crack path; (b) Illustration of the principle of the simulations based on a finite
element model of the elastic grains, separated by weak interfaces modeled using cohesive
zone approach [12, 13]; (c) The crack path shows a self-a�ne geometry with exponent
H = 0.50 characteristic of a random walk, and reminiscent of the brittle failure mechanism
into play.
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zone, or process zone size `
PZ

, where energy dissipation takes place, is smaller than
the grain size d [12, 13]. This intergranular failure mode is not without reminding the
process of crack propagation between the beads of expanded polystyrene shown on
Fig. 3.5. There also, actual failure processes take place at a microscopic scale much
smaller than the bead diameter, so that the condition `

PZ

< d is also fulfilled. The
same fracture surface statistics with H = 0.5 is observed in these two very di�erent
systems where the propagation of a brittle crack is the dominant failure mechanism.
This suggests the condition `

PZ

< d for observing brittle failure in thin sheets. This
represents also the application conditions of the model of brittle failure proposed in
Sec. 3.2.

Situations where the process zone is su�ciently important, so that it is larger than
the typical microstructural length scale is now investigated. We will see in the next
section that damage produces a di�erent crack path statistics.

3.2.2
The role of damage on crack trajectory

A qualitative investigation: Influence of a single microcrack on crack path

In order to explore the behavior of cracks in presence of damage, we consider first a
simplified configuration with one macrocrack in interaction with one microcrack. As
shown in the scheme of Fig. 3.11, a very long crack, parallel to the x-axis, is preceded
by a small microcrack of length 2c comprised within the same plane, in �c < x < c.
The specimen is submitted to tensile loading at infinity, and we want to determine the
e�ect of the presence of the microcrack on the behavior of the main crack. Since both
cracks, in this simplified collinear geometry, will propagate within the mean fracture
plane, we are interested here by the value of the stress intensity factor KI at the tip
of the main crack, and its relation with the stress intensity factor K(0)

I in the absence
of damage.

In order to compute the stress intensity factor resulting from the presence of the
microcrack, we follow the procedure proposed by Kachanov that allows for the stress
field in an elastic medium with multiple cracks [14]. The main hypothesis of the
technique lies in the two step procedure for the calculation of KI . First, we consider
the e�ect of the macrocrack on the loading conditions of the microcrack. And then,
we calculate the e�ect of the microcack on the macrocrack.

First, we calculate the loading conditions applying on the microcrack. We assume
that the e�ect of the remote loading on the microcrack is negligible, because in the
vicinity of the main crack tip, the e�ect of the stress field �macro

yy (x) produced by
the main crack is much larger. This stress is approximated by its homogeneous value
p
0

h�macro

yy (x)i�c<x<c

p
0

=

1

2c

Z c

�c

KIp
2⇡(c+ 2d� x)

=

KIp
⇡

⇣p
1 + d/c�

p
d/c
⌘

(3.9)

We have used here an important result for elasticity problem based on superposition
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theorem [15]: loading conditions applied far away from a crack embedded in an elas-
tic medium can be replaced by an internal pressure p(x) applying on the lips of the
crack, using p(x) = �

(nc)
yy (x) where the �(nc)

yy (x) is calculated for the same geometry
without crack under the same loading conditions.

In a second step, we calculate the stress field generated by the microcrack. For a
crack loaded by a constant internal pressure p

0

, one gets [11]

�micro

yy =

p
0q�

x
c

�
2 � 1

✓
x
c +

q�
x
c

�
2 � 1

◆
for |x| > c. (3.10)

The contribution of this stress field to the stress intensity factor of the main crack
is noted K

(1)

I ⌧ K
(0)

I and can be calculated using the classical formula KI =r
2

⇡

Z 1

c+2d

�micro

yy (x)
p
x� 2d� c

dx [16]. It follows that

K
(1)

I =

p
2⇡KI(

p
1 + d/c�

p
d/c)I

0

with I
0

=

Z 1

2d/c+1

dup
u(u2 � 1)

�p
u2 � 1 + u

�
(3.11)

The overall stress intensity factor at the tip of the main crack results then from the
combined e�ect of the external loading and the retroactive e�ect of the microcrack,
that can be inferred from Eqs. (3.11)

KI = K
(0)

I +K
(1)

I =

K
(0)

1

1�
p
2

⇡ I
0

(

p
1 + d/c�

p
d/c)

. (3.12)

Since the integral I
0

is a positive constant, the actual stress intensity factor in pres-
ence of a microcrack is actually larger than its value without it. The variations of
the amplification factor KI/K

(0)

I as function of the cracks separation distance d/c

relative to the microcrack length is represented in Fig. 3.11. The closer the cracks,
the larger the interaction e�ects. On contrary, when the cracks are far enough, for a
distance d ' c of the order of the microcrack length, the two cracks do not interact.
This is a key feature of multiple crack problems, where cracks can attract – but also
repulse in some configurations – as their separation distance is of the order of their
size, or smaller. Here, the process of interaction between collinear cracks results in
a rapid coalescence into one single crack.

Let us now discuss the e�ect of damage through microcracking on the trajectory
of cracks. We need to consider two steps: (i) First, microcracks find their origin in
the presence of weak zones in the material. These defects, when close enough to the
crack tip, are immersed in a strong tensile field. This results in the nucleation of a
microcrack. As the level of tensile stress is maximum along the direction ✓ = 0 ahead
of the crack (see Fig. 3.8), microcracks are likely to be also nucleated in this direction.
(ii) When a microcrack nucleates ahead of the macrocrack, new mechanism as the
one described in the previous paragraph where parallel cracks were shown to attract
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Figure 3.11 Interaction between a macro and a microcrack: The actual stress intensity
factor KI at the tip of the main crack is larger than the one K

(0)
I without microcrack. This

attraction between parallel crack vanishes for distance d larger than the microcrack length
c.

each other come into play. Indeed, the main crack is now more likely to propagate in
direction of the microcrack while the microcrack is more likely to propagate towards
the main crack, but in the opposite direction.

This local process of crack propagation direction results in macroscopic crack paths
with rather di�erent properties than in brittle media. Indeed, this mechanism results
in a persistent motion of the crack path, where excursions of crack path towards the
upper dh

dx > 0 (resp. lower dh
dx > 0) direction will be more likely followed by a pos-

itive (resp. negative) local propagation direction. Contrary to a random walk where
the sign of the local slopes are uncorrelated along the crack path (see e.g. on Fig. 3.10
in the context of a crack in a brittle polycrystal), the local slopes are positively corre-
lated in the presence of damage. For such a persistent Brownian motion, we expect
the roughness exponent to be larger than 1/2 [17].

Before considering extensive damage, let us consider now briefly the e�ect of a
ductile cavity on a bidimensional crack path.

Coupling between a macrocrack and a plastic cavity

In the same spirit as what we have just done by considering the trajectory of a main
crack when it is preceded by a microcrack, Bouchbinder and Procaccia [18] have
considered the case of a crack in front of which a cavity has opened. They consider
a material which is plastic, in the Von Mises sense, i.e. that yields when a certain
combination of the principal stresses corresponding to the distortional energy reach-
es a given value �

Y

, the yield stress. This defines a plastic zone, where they assume
that a plastic cavity can nucleate. Actually, they suppose that this event occurs as far
as possible from the crack tip, on the border of the plastic zone, which is disputable
since for plastic materials, cavity nucleation is much more likely to happen within the
plastic region. But this is somewhat a detail which does not compromise the gener-
ality of the result, as long as cavity nucleation takes place in an angular cone ahead



Laurent Ponson and Elisabeth Bouchaud: Fracture mechanics of heterogeneous materials —
Chap. 3 — 2013/12/2 — 2:03 — page 41

41

Figure 3.12 E�ect of a ductile cavity on the crack path. Calculation of the elastic stress
field ahead of the crack tip (left) for a straight crack (right) for a kinked crack shows that
the probability of microcrack nucleation is skewed towards the positive values of direction
✓ in the second case. This results into a persistent behavior for the crack evolution.

of the crack tip. By computing exactly the elastic stress field thanks to a conformal
invariant approach [19], they were able to show that the probability of microcrack
nucleation is skewed towards the positive values of ✓ when the crack is kinked to the
upper plane (see Fig. 3.12). As discussed in the previous paragraph, the propagation
direction is largely influcenced by the presence of a damage cavity, and the crack
propagates preferentially toward this ductile void. This mechanism results in a per-
sistent process, and the Hurst exponent can be shown to take a value around H ' 0.6,
larger than 1/2 [18]. This process is similar to the quasi-brittle case presented pre-
viously where the nucleation of a microcrack ahead of the main crack tip results in
persistency of the crack evolution.

To summarize, we have seen that roughness in a random microstructure is close
to a random walk for which H = 0.5 but biased to a larger value H > 0.5 in the
presence of damage. This is due to the tendency of cracks to continue growing, at
least for a while, in the direction of damage. A more detailed investigation of the
actual statistics of crack path in the presence of extensive damage is shown in the
next section.

The role of extensive damage

To expore the e�ect of several micro-cracks on the crack trajectory, it is relevant to
consider the random fuse simulations introduced in the previous Chapter. In the case
of perfectly plastic fuses, the crack path was shown to be equivalent to a minimum
energy path in a random network. In two dimensions, this is equivalent to the problem
of the directed polymer in a randomly distributed potential [20]. The equilibrium
configuration of the chain at zero temperature will be the one which minimizes the
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energy along its path. This configuration is characterized by a well-defined roughness
with exponent H = 2/3 [21]. Note that in three dimensions, the equivalent problem
leads to a rough surface with exponent H ' 0.42 [22].

Seppala and coworkers’ simulations [23] show that the perfectly brittle random
fuse is very similar to the perfectly plastic case. In particular, the scaling properties
of the simulated crack has a roughness exponent close to 2/3, although there is only
an overlap of 15% of the two crack paths. This equivalence between crack path and
minimum energy line may be surprising since the minimum energy surface is a man-
ifold at equilibrium. As a matter of fact, if a polymer can test all the configurations
to finally choose the one which minimizes its energy, it cannot be the case of a crack,
which is sensitive to the stress field in the vicinity of its tip only. As a consequence,
and despite a roughness exponent similar to the minimum energy line, a description
of the fracture process as a global minimization process seems unlikely.
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