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Abstract

A time-dependent nonlocal continuous damage model is developped in order to describe the transition to failure in quasi-brittle

materials. It is based on an energetic approach and takes into account the interactions between microstructural elements through

an integral nonlocal formulation in which a microscopic length is included. Using a phase-field approach, the damage evolution

law of each point of the system is obtained. The model is applied to a fiber bundle and we study the influence of the internal length

on the temporal and spatial organization of damage prior to complete failure. This model captures qualitatively various features

of quasi-brittle fracture as observed in experiments and allows for a rigorous analysis of the energy dissipated during the failure

process.
c© 2014 The Authors. Published by Elsevier Ltd.
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1. Introduction

Quasi-brittle fracture of heterogeneous materials occurs by microcracking of the medium. It is characterized by

complex temporal and spatial organizations of microcracks that produces both intermittency of damage events and

localization (Bažant et al. (1998), Alava et al. (2006)). The present study aims at investigating the origin of these

mechanisms by considering a simplified description of the failure process that takes into account microscale material

heterogeneity and interactions between elements of the system. To do so, we consider a fiber bundle model with a

time-dependent damage law. A nonlocal integral approach (Pijaudier-Cabot et al. (1987)) is used and allows us to

control the interactions between fibers of the bundle: damage of a given fiber affects the other fibers over a distance

fixed by an internal length. The heterogeneities of the material are also well varied using a statistic distribution of

fracture energy of the fibers, which allows for exploring both brittle and quasi-brittle failure behaviors.
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2. Model

2.1. Presentation of the model

We consider a one-dimensional fiber bundle modeled as a continuous system. Fibers are indexed by their position

x and distributed equidistantly in space over the range [0; L]. They are aligned between to rigid plates: the bottom

one is clamped whereas the system is driven by a uniform macroscopic displacement Δ applied to the upper plate, in

a direction perpendicular to the axis x. We consider a quasistatic process, so that all fibers reach a mechanical equilib-

rium before a subsequent increase of the macroscopic displacement. We introduce a damage dependent microscopic

stiffness defined by

k[d(x,Δ)] = k0[ad
3
(x,Δ) − (a + 1)d(x,Δ) + 1] (1)

where k0 is the stiffness of the intact fibers taken constant in the bundle, a is a constant taken equal to -0.3 so that

individual fibers break in an unstable process: as long as a < 0 the failure is unstable and the actual value of a does not

affect significantly the response of the bundle, and d is the nonlocal damage parameter. This nonlocal field allows us to

introduce the interactions between fibers on an internal length R0, corresponding to a number of 2R fibers interacting,

via a weight function α:

d(x,Δ) =

∫ L

0

α(x, ξ)d(ξ,Δ)dξ (2)

where d is the local microscopic damage parameter, ranging from 0 when the fiber is intact to 1 when it is broken, and

α is a parabolic function of the distance between fibers at points x and ξ:

α(x, ξ) = α0(x, ξ)/
∫ L

0

α0(x, ζ)dζ

α0(x, ξ) =

⎧⎪⎪⎨⎪⎪⎩
〈
1 − ||x − ξ||2/R2

0

〉2
if ||x − ξ|| ≤ R0

0 else

(3)

We express the total energy E(Δ) of the fiber bundle and the loading system as the sum of the elastic energy Eel,

the fracture energy Ed and the work of the external force W:

E(Δ) = Eel(Δ) + Ed(Δ) −W(Δ) =

∫ L

0

1

2
Δ2k[d(x,Δ)]dx +

∫ Δ
0

∫ L

0

Yc(x)ḋ(x,Δ)dxdΔ −
∫ Δ

0

F(Δ)dΔ (4)

where ḋ = dd/dΔ. Considering unstable failure of the fibers (a < 0) and in the limit of very slow driving rate, damage

develops by burts of broken fibers at constant imposed displacement. Therefore the work of the external force does

not contribute to the nonlocal damage energy release rate Y which can be expressed as

Y(x,Δ) = −δEel(Δ)/δd =
∫ L

0

α(x, ξ)Y(ξ,Δ)dξ (5)

Y writes as the convolution of the weight function α with the local energy release rate

Y(x,Δ) = − 1
2
Δ2k0

[
3ad

2
(x,Δ) − (a + 1)

]
(6)

Mechanical equilibrium is reached for Y = δEd/δd = Yc. The actual dynamics of the fiber bundle between successive

equilibrium positions is described using a phase-field approach

ḋ(x,Δ) = vM
〈
Y(x,Δ) − Yc(x)

〉
(7)

where the rate of damage ḋ is proportional to the driving force δE/δd as considered for example in brittle failure

(Bonamy et al. (2008)), v is the loading speed, M is a material constant and Yc(x) the fracture energy of the fiber

located at x. The term in the brackets is non-zero if strictly positive.
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Fig. 1. (a) normalized macroscopic force F/F0 versus normalized macroscopic displacement Δ/Δ0 for different values of the level of disorder σ
averaged over 50 configurations of the material disorder for R = 5; (b) σ = 0.3, zoom of the mechanical response exhibiting intermittency of

damage events.

2.2. Numerical integration

Thresholds Yc values are drawn from a uniform distribution of mean value < Yc >=1 with fixed standard deviation

σ that controls the intensity of disorder, i.e. the level of heterogeneity in the system.

To solve the evolution equation (7) we use an explicit discretization scheme that allows for the calculation of the

damage field:

d(x,Δ + δΔ) = d(x,Δ) + vM
〈
Y(x,Δ) − Yc(x)

〉
δΔ (8)

where δΔ is small enough to assure convergenge of the numerical response of the system. In the following a bundle

of N = 20000 fibers is considered.

3. Macroscopic failure behavior

We first investigate the macroscopic mechanical response of the system at fixed internal length scale R = 5 for

different disorder levels σ as shown on Fig.1(a). The macroscopic force and displacement are normalized by the force

F0 = N
√

2k0 < Yc > and displacement Δ0 =
√

2 < Yc > /k0 of fracture of the system. The curves are obtained by

avaraging over 50 realizations of the disorder. As the intensity of disorder σ increases, complete failure is delayed.

Varying this parameter allows for the exploration of brittle to quasi-brittle fracture with a more pronounced softening.

One observes that the total energy of fracture which coincides with the area under the curves on Fig.1(a) is rather

independent of σ, with however negligeable fluctuations resulting from the viscous dissipation during the failure

bursts. Despite the apparent smoothness of the mechanical response of the bundle, the system exhibits rather strong

fluctuations, as shown on Fig.1(b) where we consider the response of one configuration of the bundle only.

4. Failure bursts analysis

To study the role of interactions in the system, in the following σ = 0.5 and R is varied from 2 to 2000.
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Fig. 2. (a) histogram of avalanche sizes S in terms of number of broken fibers as a function of the distance to failure δ for different internal length

scales R; (b) normalized probability density functions of S obtained for different R values and by taking into account all damage events occuring

close to failure, for 0.99 ≤ δ ≤ 1 = δc.

4.1. Temporal distribution

As mentioned earlier, the macroscopic response results from intermittency of damage events: macroscopic fracture

occurs through the sudden failure of a group of fibers, also referred to as avalanche. To study this phenomenon we

define the avalanche size S as the number of broken fibers per displacement increment. The distance to failure is

accounted by the parameter

δ = Δ−Δel

Δr−Δel (9)

where Δel is the displacement at which the weakest fiber fails (end of the elastic regime) and Δr the displacement at

which failure of the whole bundle occurs.

Fig.2(a) shows the avalanche sizes as the bundle approaches full failure: the amplitude of damage events remains of

the order of the internal length and the failure process accelerates as macroscopic failure approaches.

We focus on the intermittency of the system close to failure, for 0.99 ≤ δ ≤ 1, and analyze the probability density

functions of avalanche sizes for different values of R, as shown on Fig.2(b). For large values of R, it follows a power

law of characteristic exponent 3/2 up to some cutoff size S ∗ that depends on R: decreasing R shifts S ∗ toward lower

values, eventually suppressing the power law behavior. Note that the largest avalanches are limited to 2-3 times the

value of R. As confirmed by the analysis of their spatial extent, damage events are localized within a process zone the

size of which is given by the interaction length.

During an avalanche some amount of elastic energy S el stored in the fibers is dissipated in both fracture energy (S r)

and viscous dissipation (S c). The elastic energy dissipated during an avalanche at displacement Δ is computed from

the difference of stored energy before and after the avalanche. The fracture energy of an avalanche is the sum of the

fracture energy of the broken fibers. As so, we obtain the expression of the viscous dissipation during an avalanche

as S c = S el − S r. This dissipation that can be shown propotional to ḋ2 results from the unstable dynamics of failure

events and can be interpreted as the kinetic energy provided to the bundle during the avalanche.

The insets of Fig.3(a) and (b) show the relationship between the rupture energy (resp. viscous dissipation) correspond-

ing to an avalanche of S broken fibers versus the size of the avalanches S , obtained by fixing R = 500 and averaging

over 50 realizations of the disorder. The rupture energy is linearly proportional to S . However, the viscous dissipation
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Fig. 3. Statistics of avalanches close to failure for R = 500 in terms of dissipated energy: (a) probability density functions of rupture energy of

avalanches, the inset shows the linear dependency of the rupture energy per avalanche of size S and the size S of the avalanches; (b) probability

density functions of the viscous dissipation during avalanches, the inset shows the power law dependency of exponent 1.4 of the viscous dissipation

per avalanche and the size S of the avalanches.

presents a power law dependency with a higher exponent of 1.4. Therefore, under the assumption that the excess

of elastic energy release produces the emission of acoustic waves, this finding might indicate that the energy of the

acoustic bursts recorded during fracture events are not propotional to their fracture energy. This may have important

implications in the interpretation of the acoustic emission largely recorded during fracture experiments.

Focusing on damage events occuring for 0.99 ≤ δ ≤ 1 and using the relation P(S ) ∼ S α with α = −3/2 and S r ∼ S
(resp. S c ∼ S 1.4), we predict P(S r) ∼ S −3/2

r (resp. P(S c) ∼ S −1.35), which is in good agreement with the exponents

(resp. -3/2 and -1.37) measured directly from simulations that show power law behaviors (see Fig.3).

4.2. Spatial distribution

Spatial evolution of the damage is shown on Fig.4(a) and (b) for different values of R. The temporal evolution is

characterized by the density n of broken fibers in the bundle (0 when all fibers are intact and 1 = nc when all fibers

are broken). One does not observe any qualitative difference when the interaction length is varied. This observation

is confirmed on Fig.5(a) where the variation of the mean number of clusters of broken fibers as a function of the

mean size of these clusters is fairly identical in the case of systems with finite interaction length and in the case of an

interaction free system where fibers are broken independently, according to their fracture energy (percolation process).

Finally, the statistics of clusters of broken fibers is explored through the probability density functions of clusters sizes

T as a function of nc − n (Fig. 5(b)). It displays a cutoff size T ∗ that grows as the system evolves towards failure. As

shown in the inset, this growth is linear with nc − n, following approximately the evolution of the mean cluster size

< T >, similarly to the behavior of a percolating system.

5. Conclusions

We have proposed a modified fiber bundle model that accounts for the transfer of elastic energy stored in loaded

fibers into fracture energy and viscous dissipation. A strong intermittency of the failure process is observed for large

internal length scales R only. The avalanche sizes distribution is characterized by a power law with exponent 3/2.

We also characterize this intermittency in terms of bursts of fracture energy and viscous dissipation released during

failure events.

The introduction of a finite interaction length does not affect qualitatively the spatial organization of damage events
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Fig. 4. Spatial evolution of the damage d(x, n) as a function of position x in the bundle and the density of broken fibers n. The broken fibers are in

black and the intact ones in white. (a) R = 2; (b) R = 2000.
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Fig. 5. (a) mean number of clusters < NT > of broken fibers as a function for their mean size < T > for different values of R exhibiting the

very close agreement to percolation theory; (b) normalized probability density functions of broken fibers clusters sizes for different values of the

remaining intact fibers density nc − n. The inset shows the evolution of both the mean cluster size < T >p for a percolating system and for a system

with finite internal length scale R = 5 (< T >) and the cutoff size T ∗ as a function of nc − n for the latter one.

which mostly behave as a percolating system for all R values. Application of our approach to two-dimensional systems

of fibers may lead to a more complex spatial behavior and in particular to the emergence and growth of a correlation

length as the system evolves toward complete failure.
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