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Abstract: 
Dynamics of vibro-fluidised granular gas is investigated experimentally using the transfer of grains from a 
compartment through a horizontal slit at a given height h . It is demonstrated that the transfer rate j varies 
linearly with the grain number N in the box when N remains small; however j(N) becomes strongly non linear 
as soon as the number n of layers is larger than 0.3; dj/dN becomes negative for n>0.4.It is found also that the 
maximum of j(N) increases slightly with the acceleration aω² of the vibration which excites the granular gas. 
Using dynamical system theory, dynamics equations are written, and a critical bifurcation is found,  which 
explains the existence of a condensation and of a phase transition. This explains how the pseudo “ Maxwell’s 
demon” works in granular gases. This experiments contradicts recent modelling . 

Pacs # : 5.40 ; 45.70 ; 62.20 ; 83.70.Fn 
 

Recently, granular matter has been the topics of numerous works; this is probably 
because it has been taken as an archetype for studying complex dynamical systems, 
and to illustrate many non linear effects. Among these effects, one of them, which is 
known as Maxwell’s demon, looks quite impressive: when shaking 2 half-boxes 
connected via a slit and partly filled with granular matter one observes under some 
special excitation conditions the partial emptying of one cell into the other one [1, 2]. 
This phenomenon can be observed with dense layers [1] or in the case of granular gas 
[3]. It is not the purpose of this paper to discuss the correctness of the terminology 
“Maxwell’s demon” to explain this behaviour, neither to discuss the applicability of 
this notion to classic thermodynamics problem [4].  

This paper reports on a “toy” experiment dedicated to initiate undergraduate 
students, i.e. P. Jean, H. Bellenger, P. Burban, L. Ponson, to the physics (i) of granular 
media, (ii) of dynamical system theory and of chaos and (iii) of phase transition. The 
experiment is quite simple and can be home made. Of course, it can be improved quite 
a bit; but as it is, it allows already to illustrate few important concepts and to point out 
also few incompatibilities and mismatches between experiments and recent theories 
published by famous journals  [3, 5]. In particular it points out the difficulty of 
applying to granular gas a continuous formalism in general, and the fluid mechanics 
approach, as it has been proposed in [5].  

Furthermore, this experiment shows that the transfer rate j1→2 from one 
compartment to the other one varies linearly with the grain number N, at small N; this 
contradicts the theory proposed in [3], which finds that j(N) should scale as N². It 
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shows also that j1→2  passes through a maximum when N is increased; then j1→2  
decreases with increasing N at larger N. It results in an unstable behaviour and one 
compartment fills up spontaneously while the other one empties.  

We have found that j1→2 starts behaving non linearly with N as soon as the 
number of layer n in one cell is larger than 0.2 (and the maximum of j occurs at 0.3-
0.4 n); this proves that energy loss due to grain-grain collision modifies deeply the 
mechanical behaviour of a granular gas as soon as particles can collide; this is in 
agreement with recent interpretation [6] of micro-gravity experimental results [7] on 
clustering of vibro-fluidised gas. Indeed these experiments prove an other time that 
homogeneous granular gas only exists in the Knudsen regime, that is to say when 
particles do not touch one another because their mean free path lc is larger than the box 
length L. This experiment shows also that clustering occurs as soon as particles collide 
and as soon as their mean free path lc becomes smaller than the box length L.  

Indeed this is a new finding: of course clustering of granular gas has been 
predicted already [3,5,8,9]; but these works use a continuous approach which is not 
valid when lc<L, so that they do not apply to granular clustering and their predictions 
cannot be considered as correct. This incompatibility will be confirmed by studying 
the flow j(N) vs. N of particles from a compartment which contains a small number N 
of beads. We will find that j(N) scales as N in the present work; but it is predicted to 
scale as N² in [3] , which disclaims this paper, hence the continuous approach it uses. 
On the contrary the present experiment and the clustering experiment in 
weightlessness conditions [6-7] both demonstrate that a more general approach is 
required, which will not be based on the hypotheses of a continuum medium. But this 
is a much harder task!   
 

Fig. 1: Sketch of the box :   
 

1. Experimental set-up: 

A 3d rectangular box (height H=120mm, width w=12mm and length L=25.5mm) is 
divided into two equal parts by a vertical wall of thickness δe=1mm. These two parts 
are connected via a horizontal slit (width 1.5mm) located in between h1=9mm and 
h2=10.5mm from the bottom. This box contains from 0 to 3000 bronze spheres from 

Box size: 
height H=120mm 
 width w=12mm  
length L=25.5mm 

slit width : 1mm 
slit height: 10±0.5mm 
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Makin Metal Powders; their diameter d ranges in between d=0.425mm and 
d=0.600mm and their average mass is 0.72-0.76 mg, so that a dense layer contains (L-
δe)w/(2d²sin60)≈530-550 beads in mean, in each half box. The slit allows the grains to 
pass from one part of the box to the other one when the box is vibrated at large enough 
amplitude, as sketched in Fig. 1. 

So, the box is mounted on a loudspeaker which vibrates vertically (amplitude a, 
frequency f=ω/(2π)). The system exhibits a mechanical resonance around 18-20 Hz, 
which is also the working frequency range during the present experiment. The 
loudspeaker is excited via an ac generator and an amplifier. Amplitude a of vibration 
has been measured optically; voltage, frequency and duration of loudspeaker 
excitation has been measured using a numerical Agilent 54621A oscilloscope. Grain 
number in each compartments and grain flow have been determined either by 
weighting or by direct counting. 

2.  Experimental results : 

2.1.  Distribution at equilibrium as a function of the acceleration * 

Be N1 and N2 the number of beads in each compartment. In a first experiment, the 
number Ntot = 2No=N1 + N2 of beads has been fixed to 460 and the acceleration has 
been changed by varying the voltage applied to the loudspeaker at constant frequency 
f=19.5 Hz. At large amplitude of vibration, the balls are equally distributed into the 
two half boxes. Lowering the acceleration Γ provokes the asymmetry of the 
distribution below a given Γc: one of the box is more filled than the other one, the 
smaller Γ the larger the asymmetry and the larger Γc-Γ the larger the asymmetry. 
One can measure the asymmetry through the parameter ε=N1/Ntot-1/2.  
 

    

Figure 2: Variation of the asymmetry of the equilibrium distribution of beads as a function of the 
acceleration Γ in g unit, when the total number Ntot of beads in the two compartments is Ntot =460. The 
asymmetry is measured via ε(Ntot) =N1/Ntot-1/2=1/2-N2/Ntot. 

One can then analyse this phenomenon in terms of the bifurcation theory. In this 
case, Γ plays the part of the control parameter and ε=N1/Ntot-1/2 the part of the order 
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parameter; their interdependence is displayed in Fig. 2, for Ntot=460 beads. As shown 
in this Fig. 2, the evolution of ε is continuous, but the slope ε vs. Γ is discontinuous 
and changes from vertical to horizontal when Γ→Γc ; so this bifurcation is critical. 

One observes also in Fig. 2 that ε is slightly different from 0 when acceleration Γ 
is above Γc. However, this difference is never large and does not overpass the typical 
amplitude of fluctuations δε=δN/Ntot =1/√Ntot one shall expect in application of the 
Gaussean central limit theorem; this is normal and expected due to the small number 
of beads involved in this experiment. 

2.2. Distribution at equilibrium as a function of Ntot : 

We demonstrate in the following that these results, i.e. both the threshold Γc and the 
curve ε(Γ), depend on the bead number Ntot=2No . For instance, one can repeat the 
experiment of §-2.1 but one can vary Ntot instead of a, and let a, ω and Γ fixed; one 
obtains ε(Ntot); a typical example is given in Fig. 3 which reports ε(Ntot) curve at 
Γ=2.6g and f=18.5 Hz. In this case, one observes an other “critical” bifurcation : ε 
remains constant and vanishingly small as far as Ntot< 350; then it starts growing fast 
and saturates at ε=0.5 when Ntot>700. Indeed, ε=0.5 means that one of the 
compartment is merely empty and that the other one contains most of the grains.   
 

 

Figure 3: Variation of the asymmetry ε(Ntot) of the equilibrium distribution of beads at a given 
acceleration Γ= 2.6 g, as a function of the total number of beads Ntot in both compartments .The 
asymmetry is measured via ε(Ntot) =N1/Ntot-1/2=1/2-N2/Ntot. 

The curve ε(Ntot) exhibits some noise. Another time,  as in §-2.1, the amplitude of 
this noise is compatible with normal fluctuations due to the small number of grains in 
each compartment in the vicinity of ε=0 or ε=0.5. However, the transition around 
Ntot=300-450 in Fig. 3 looks rather smooth, and noisier; at least, it does not look as 
sharp as the one occurring at Γ=3.2g in Fig. 2. Does it means it does not correspond to 
a critical bifurcation in this representation space? We believe not; we think this 
broadening is linked to finite size effect and to critical fluctuations;  but we will 
discuss this point later.  
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2.3.  Kinematics to equilibrium:  

The kinematics of reaching the equilibrium has been investigated in the condition of 
Fig. 2, i.e. for Ntot=460 and for three different acceleration. Results are reported in Fig. 
4. The study starts with equi-repartition; and the evolution of ε as a function of time 
has been recorded by stopping quickly the vibration at different instants after the 
beginning; then the amount of beads in each compartment has been weighted and 
placed back into the compartments. And vibration has been applied for a  new lapse of 
time, and so on… The quick stoppage of the vibration is equivalent to a fast freezing 
of the system.  
 

  

Figure 4: Time dependence of the distribution asymmetry for a total bead number Ntot=460, at different 
accelerations Γ, (Γ=2.7g, 3.1g and 3.4g). The asymmetry is measured via ε(Ntot) =N1/Ntot-1/2=1/2-
N2/Ntot. 

Indeed the evolution of the distribution occurs because the flows j1→2 & j2→1 of 
particles through the slit are different. Equilibrium occurs when the two flows are 
equal. So one may describe the evolution with the set of coupled equations: 

dN1/dt = -j1→2+ j2→1     & dN2/dt = j1→2 - j2→1 =-dN1/dt  (1) 

In general, each current j can depend on the number of beads in both 
compartments and on the density of grains in the slit. In the present case however, as 
both compartments are not dense and as the current of grains flowing through the slit 
seems to be small, one may suppose that each current j1→2 (resp. j2→1) depends only on 
the conditions at work in the compartment from which the grains flow, i.e. 
compartment 1 (resp. compartment 2) for j1→2 (resp. j2→1) . 

Owing to Eq. (1) one can conclude that measuring the evolution of ε or of N1-N2 
does not allow to determine j1→2  and j2→1, but only their difference j1→2 - j2→1 . 
However, one way to proceed to determine unambiguously j1→2 is to force 
compartment 2 to remain empty and to record the flow from compartment 1 as a 
function of time (and hence on N1). This is what has been done. 
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2.4.  Flow  j1o2  of beads through the slit : 

So, in order to get a better insight in the physics of this dynamical system, one can 
decide to study the kinematics of a single half box. This can be simply performed 
using some sellotape in the second box. This sellotape acts as a glue which traps the 
grains as they are transferred from the first compartment. So starting with a large 
number of grains N in the first compartment and stopping vibrating intermittently to 
count and eliminate the number of glued grains in compartment 2 allows to determine 
N1(t) and its time derivative dN1/dt which is the flow j1→2=dN/dt. Indeed, one expects 
this flow to depend on the vibration parameters and on the number N of grains only; so 
this allows to determine j1→2(N). This process can be repeated for different values of 
the acceleration Γ. This study is reported in Figs. 5 & 6 for 3 different accelerations. 
We report also in Fig. 6 the variations of j as a function of the number n of layer of 
beads. In the present case, the number of beads per layer is 540 about. 

 

 

Figure 5: Typical time dependence of the number N(t) of grains in the first compartment, keeping empty 
the second one, at different accelerations Γ, Γ=2.7g, 3.1g and 3.4g.  

 

  

Figure 6: Flow j1→2=dN(t)/dt of grains flowing from the first compartment as a function of N of grains 
in compartment #1(left Fig.) or as a function of the number n  of layers in compartment #1 (right Fig.), 
keeping empty the second compartment, at different accelerations Γ, Γ=2.7g, 3.1g and 3.4g. It is worth 
noting that (i) j varies linealy with N (or n) at small N, (ii) that j exhibits a maximum, which  occurs 
much before n= ½  , and (iii) that non linear behaviour occurs at n ≥ ¼   .  
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It is worth noting that a precise evaluation of j requires to take rather large 
increment of time since the normal expected fluctuations on j∆t=∆N is √∆N. In the 
present case, the time increment which has been used for Fig. 6 has been 10s about; so 
the normal fluctuations depends on j; it lays around ∆j/j=10% when j=10 grains/s and 
∆j/j=30% when j=1 grains/s.  

We note in Fig. 6 that j varies linearly with N (or n) at small N, i.e. j=AN. This is 
in contradiction with the scaling found theoretically by Eggers [3], who gives 
j1→2=Fl→r=Fo Nl² exp(-aNl²). This cast then a serious doubt on the validity of Eggers’ 
theory.  

We note also in Fig. 6 that j passes through a maximum jm located at Nm (or nm); 
both jm at Nm depend on Γ; and the larger Γ, the larger jm and Nm . We note also that 
Nm varies from 190 to 250 grains in the present case, depending on Γ (Γ ranges from 
1.7 to 3.2 g). As it will be explained in §-2.6, a linear variation of Nm with Γ explains 
the existence of a critical bifurcation when lowering Γ at fixed Ntot. However, this 
requires first to understand the effect of a maximum in the j(N) curve, which is 
explained in §-2.6. 

It seems also that the slope A of the curve j vs. N is rather constant near the origin 
N=0, and that this slope A is rather independent of Γ. This may be an artefact due to 
the small number of grains involved since the phenomenon is observed when N<20-50 
grains; indeed, N<50 limits strongly the accuracy on (i) the number of grains and (ii) 
on the flow, and leads to strong uncertainty. A best way to estimate the slope consists 
then in analysing the time dependence of the data at small N and to fit with an 
exponential law, since from Eq. (1) one expects the emptying law to be: 

dN/dt=-AN (2.a) 

whose solution is 
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Figure 7: Time dependence of the emptying when N is small, in semi-log plot, for 3 different 
accelerations Γ. The time origin of the three curves have been translated from an arbitrary value. The 3 
curves exhibit the same time dependence. 
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N= No exp(-At) (2.b) 

This fit is tested in Fig. 7. It works rather well, and gives about the same lifetime 
τ=1/A ≈16s for the three accelerations; so it confirms the result of Fig. 6. 

2.5.  Validation of the hypotheses of Eq. (1): 

We see also from Fig. 6 that the flow of beads through the slit is always small (<10 
beads/s). But the typical height the beads occupy in their gaseous mode is limited to 
1cm about due to gravity; this leads to a typical speed vt=(2gh)½ ≈0.4m/s and to a 
typical time τ1=(2h/g)½ ≈0.04s . So the transfer of a bead from a compartment to the 
other one shall not last more than 0.05s ; then the probability that a collision between 
two beads occurs when a bead passes through the slit is as little as : p< jmaxτ1 d²/[(w-
d)(δe-d)]=0.01 . This makes the risk of bead-bead collision very little and quite 
negligible, which validates the hypothesis made earlier. In the same way,  the 
occupancy of each compartment is small so that the transfer rate from box 1 to box 2 
shall not depend on the occupancy of box 2. This validates then completely the model 
of transfer rate used in Eq. (1). 

It is worth noting however that these assumptions are not always valid when 
observing Maxwell’s demon in granular media. For instance, it is not true in the case 
of experiments reported in [1] with deep layers of sand; in this case, collisions which 
occur in the slit are frequent and the probability of finding a hole in compartment 2 
which is large enough to accept a grain coming from the other compartment is  rare; 
this makes the mechanics of the dense system completely different, even if one feels at 
first sight that it is the same demon which is at works in both cases. 

2.6.  Use of Fig. 6 to understand (or predict) clustering: 

We demonstrate now that Figs. 2 and 3 can be deduced from Fig. 6: 
First of all, we remark that the curve j(N) exhibits a maximum jmax at Nm. We 

note also that both jmax and Nm depend on Γ (cf. Fig. 6), and the larger Γ the larger jmax 
and the larger Nm (and nm).  

Let us first consider the case when both compartments contain less beads than 
Nm; in this case, the solution N1=N2 is stable against any small perturbation, since if 
N1>N2 implies j(N1)>j(N2). So N1=N2 is an attractor of the dynamics.  

Conversely, N1=N2 becomes no more an attractor of the dynamics when N1>Nm 
& N2>Nm since j(N1)>j(N2) if N1<N2 (which implies that the emptier compartment 
keeps on emptying and the fuller one keeps on filling up). This explains why the 
system looks for an other solution. Indeed, there are two new solutions when Ntot>2 
Nm, which are symmetric compared to Nm . They both satisfy the set of Eqs. (3): 

 N1+N2=constant= 2No>2Nm, (3.a)  

j(N1)=j(N2)  (3.b) 

N1<Nm and N2>Nm  (3.c) 



P.Jean et al. / Phase transition or Maxwell’s demon - 35 - 
 

poudres & grains 13 (3), 27-39 (Juillet-Août 2002) 

More precisely, the stability of these new solutions require dj/dN1+dj/dN2>0, as 
can be deduced from perturbation and their existence needs that the two different 
solutions N1(j) & N2(j) have a mean (N1(j)+N2(j))/2 which increases continuously 
when j decreases from jmax (this will be shown in a next paper).  

In the present case both conditions are satisfied indeed; this is why a critical 
bifurcation is found when 2No>2Nm. Furthermore, using limited development in the 
vicinity of 2No=2Nm and writing N1+N2=2 No= 2Nm+δN, one finds N1-N2≈δN 

½ =2ε. 
This explains why the slope ε(N) changes from horizontal to vertical when passing 
through N=Nm keeping Γ constant and increasing continuously N; this is why also 
N=Nm is a bifurcation point at Γ=constant. 

Furthermore, as pointed out already, Nm and jmax depend both on Γ; be 
Nm=Nmo+βΓ the law of variation; it is a good approximation as shown in Fig. 8. So, 
according to this modelling, one finds that the solution N1=N2=2No, is stable when Γ> 
Γc=(No-Nmo)/β ; but that it becomes unstable when Γ<Γc ; this generates an 
heterogeneous distribution as soon as Γ<Γc. Using limited development and the linear 
variation of Nm  vs. Γc , one gets that 2ε=N1-N2 shall scale as (Γc- Γ) 

½  in the vicinity 

of Γc
-, i.e. when Γ<Γc. So j(N) given in Fig. 6  predicts that the slope of ε(Γ) changes 

also from vertical to horizontal at Γ=Γc as it is observed in Fig. 2. The bifurcation 
which occurs at Γ=Γc is then also a critical bifurcation. 
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Figure 8: Linear dependence of jmax and Nm with Γ. 

Things can be a bit more complicated, depending also on the values and of the 
signs of larger-order derivative (d

p
j/dN

p
)Nm of j(N) at Nm. In particular one can get in 

some case some sub-critical bifurcation… This will be studied in a next paper.  
This next paper shall also discuss what are the right parameters which govern the 

flow: is it the typical acceleration Γ=aω² of the box, or its typical speed v=aω? Indeed, 
one can expect it is the same as the one which governs the physics of the gas of 
particles. So, as remarked in [10], one shall then expect it is not governed by the 
acceleration Γ =aω², but rather by the speed v=aω of the  vibration; otherwise, one 
gets misunderstanding of granular gas physics as in [11].  
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As in a granular gas, the particles do not interact strongly, their dynamics can be 
well represented by the one of a single bead in a vibrating box, whose statistics is 
described in [12] when gravity is strong enough to confined the granular gas.  

However, when the box has a lid on top and when the vibration amplitude 
becomes large enough to allow the bouncing of the balls with this lid too, then gravity 
becomes negligible; in this case, the model of a single particle in a vibrating box 
without gravity [13] should apply. On the other hand, when the system contains few 
layers of particles, the dynamics is approximately the one of a cake which performs 
periodic free-flight followed by completely inelastic collisions with the vibrating plate; 
this looks like the problem of the bouncing of an inelastic ball which is treated in [14].  

In order to show the difference which is caused by a lid, we have also 
investigated this case in order to prepare a flight experiment in weightlessness 
condition. This is reported in the next section. It gives also a good example of the 
efficiency of the model of the bouncing of an inelastic ball, when both the number of 
layers and the acceleration are large. 

2.7.  flow from a compartment closed on top: 

Investigation of larger vibration intensity requires the use of a box closed on top. This 
was achieved with a box having the same horizontal section, and the same location 
and geometry of slit; but the height of the cell is H=30mm. Results are reported in Fig. 
9. The experiment has been performed with a mechanical vibrator, working at constant 
amplitude of vibration, i.e. a=1.7mm, but at different frequencies f, in the range 
17Hz<f<33Hz, so that the accelerations range is 2g <Γ< 7g. Data have been obtained 
by weighting the mass which has flown from the slit every 5 s. 
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Figure 9: Flow j1→2=dN(t)/dt of grains from the slit of a vibrated compartment as a function of the 
number N of grains in the compartment. vibration amplitude a=1.7 mm, variable frequency f =(Γ/a)½ 

/(2π). Left Fig.: N and j are given in mass and mass/s . Right Fig: N is given in number of layers n, and 
j in beads/s; bead mass=0.74mg ; there are 540 grains later. Differences with Fig. 6 experiment are: 
compartment is closed on top; frequency is varied and a fixed. One observe similar trends; one see also 
a second increase for large acceleration and large n. In this case, the motion looks like the one of an 
inelastic which perform free flight; when Γ is large enough, the cake can reach the slit and the beads 
flow out. This requires h/a=6>Γ/g about. 

The curves j(N) exhibit behaviours similar to the ones of Fig. 6. As in Fig. 6, and 
for the same reason, the curves fluctuate due to the small amount of beads involved. A 
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better precision on the mean behaviour is possible to obtained by repeating the same 
experiment few times and by averaging. However this will not reduce the natural 
uncertainty on each experiment, because it is linked really to the small number of 
beads flowing from the slit. 

 As in Fig. 6, the slope of j(N) at N=0 seems to be independent of Γ; but the 
accuracy of the determination remains small; We have observed also that no flow 
passes through the slit if the number n of layer is too large and when the acceleration 
is small enough, i.e. when Γ<Γc; so there is a critical limit nc above which no flow 
occurs when Γ<Γc; indeed nc depends also slightly on Γ, the larger Γ, the larger nc.  

But this is no more true for larger Γs; in this case one finds that the beads flow 
always from the slit; indeed, the system looks like a cake which makes inelastic 
bouncing on the vibrator in this case; so one expects that the height of free flight can 
reach the slit height h when a²ω²>gh, which reads also Γ >Γc=g h/a, since Γ=aω². 
Indeed, one observes this regime in Fig. 9 for larger values of n and Γ.   

3. Discussion and conclusion: 

This simple experiment allows to illustrate efficiently a series of concepts which are 
required in non linear physics, dynamical system theory and phase transitions; in 
particular, it shows that it is better to measure the current j, rather than the balance of 
the transfer. It exemplifies also that the real motor of the instability comes the decrease 
of j with the control parameter, which is N in the present case. Indeed, this results in 
the instability of the transfer balance : from Eq. (1) one can write d(N1-N2)/dt=-
2{j1(N1)-j2(N2)} ; so and expanding j around its pseudo-equilibrium value jo at 
No=(N1+N2)/2. One gets: 

d(N1-N2)/dt=-2A (N1-N2) (4) 

where A is the slope of j at jo. Eq. (4) shows then that population difference grows 
exponentially with time if A is negative, i.e. when the slope of j is negative, while it 
decreases exponentially if A is positive. And the characteristic time τ is τ=1/A.  

One gets then that N1=N2 is the stable equilibrium if A>0, but it is not when A is 
negative. Indeed, when A is negative, the system diverges till the difference N1-N2 
becomes large enough to reach a new basin of attraction (when it exists); this new 
point is characterised by some A’ and the system converges towards this new 
equilibrium, which is stable if A’>0.  

This is a common feature of all instabilities. Also, when a state becomes unstable 
by the modification of a control parameter, this is because A changes from positive to 
negative. When A varies continuously, that means that A crosses 0 at the bifurcation 
and that the characteristic times becomes infinite. It means then that the dynamics 
slows down when A tends to 0. This is called the critical slowing down and the 
bifurcation is called critical bifurcation.  

In general dynamical systems are a bit more complicated, because they are 
described by a set of few parameters, i.e. few dimensions; each of them having a 
different Ai. When all the Ai are positive the point is an attractor and the point 
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correspond to a stable equilibrium, otherwise it is not an attractor; however some of 
the direction can be attracting and some others repulsive... 

 
It is also obvious that the clustering process which has been studied looks like a 

phase transition, since one observes the equilibrium between a dense “liquid” phase 
and a “gaseous” one when N>Nm. This connects the physics of phase transition to the 
one of bifurcation. However, a difference between these two problems exists because 
the interface between the liquid and the gas builds up spontaneously in the liquid-gas 
transition, while the wall and the slit forces the position of the interface in the present 
clustering. So these two transitions are not strictly equivalent. 

 
Also, j is a current; so Eq. (1) is related to a problem of diffusion; this can be 

shown easily if one takes a larger number of interconnected boxes, either in 1d or in 
2d. So,  Generalisation of Eq. (1) can be performed easily and transformed into a 
Master equation, into a diffusion equation or into a Fokker-Plank equation,… This is 
then a simple way to initiate students to diffusion problems and to its different 
modelling, to approach the continuous limit. It will illustrate also efficiently the effect 
of a negative diffusion coefficient, which is a leading point when one is concerned 
with phase transition. 

 
Some of the explanations which have been given in this paper can be developed a 

bit further and the notions can be improved. For instance one can try to predict more 
precisely the kind of bifurcation from the shape of j(N). Also, as the “granular gas” 
occurs only when the particles do not collide together, a good modelling seems to be 
the one of a bouncing ball; so one can then try to use this modelling, to get a better 
insight of the “granular gas” phase and to calculate some parameters. For instance, we 
will show in a forthcoming article that the mean free path of the grains in this 
“granular gas” phase depends only on the number of layers n (and not really on h or 
g). This will confirm that the gaseous regime occurs only in the Knudsen regime, 
when no continuous mechanic equation can be written...  

 
As a conclusion, it turns out that this simple “toy” experiment allows to touch 

with the thumb some important problems of physics and to illustrate some theoretical 
concepts (physics of granular media, bifurcation theory, limits between continuous vs. 
discrete approach, diffusion theory). It can be also extrapolated in few different 
ways… Furthermore, it has already served to demonstrate that few hypotheses or 
conclusions published recently in famous papers [3,5] were not correct. This is indeed 
a good point to teach to students, because this is the only way that science can use : 
asking new questions, looking for the validity of the approximations used and of the 
hypotheses. And this does not require complicated arguments, but rather good thinking 
and clear mind. It shows also that scientific truth has always to be questioned, 
demonstrated and argued… and is not a question refereeing.  

So it is really a powerful experiment.  
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