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ABSTRACT: The propagation of a single crack in a disordered material is theoretically investigated. Restricting
first our analysis to perfectly brittle materials, we show within the framework of the linear elastic fracture
mechanics that a crack is described by two independent equations: A path equation, that gives the trajectory
followed by the crack within the disordered material, and amotion equation providing the local velocities along
the crack front during its propagation. Theoretical predictions resulting from the path equation are found in
good agreement with the statistical properties of experimental rough fracture surfaces resulting from perfectly
brittle fracture. The motion equation is then studied and predictions for the crack growth velocity dependence
with the applied stress intensity factor are given. The pathand the dynamics of a crack propagating in a quasi-
brittle material is also discussed using a natural extension of the previous description that takes into account the
effects of damage and microcracks.

1 INTRODUCTION

The fracture of disordered media represents an im-
portant applied problem, with intriguing theoretical
aspects. Models issued from statistical physics have
been shown to be very promising to describe various
aspects of the failure of heterogeneous media (Roux
and Herrmann 1990; Bouchaud et al. 1993). In par-
ticular, the morphology of rough fracture surfaces as
well as the spatio-temporal evolution of an interfacial
crack front are found to exhibit scaling laws charac-
terized by exponents the value of which depends very
weakly on the materials (Bouchaud et al. 1990; Måløy
et al. 1992; Ponson et al. 2006a; Ponson et al. 2006b;
Måløy et al. 2006). For example, the height-height
correlation function∆h = 〈(h(z + ∆z) − h(z))2〉1/2

z

computed on fracture surfaces perpendicularly to the
direction of crack propagation is observed to scale as
∆h ∼ ∆zζ where the roughness exponent is found to
beζ ≃ 0.75 for a wide range of materials. These prop-
erties suggest that one theory could describe the sta-
tistical properties of a crack propagating in any disor-
dered material. This theoretical description should be
able to depict the competition between two antagonist
aspects that govern such a phenomenon. The structure
and the microstructural material properties that are in-
homogeneous and the stress field that follows the law

of elasticity.
Recent experimental results suggest in fact the exis-
tence of second class in failure problems: Fracture
surfaces resulting from a perfectly brittle failure are
characterized by a lower roughness exponentζ ≃ 0.4
(Boffa et al. 1998; Ponson et al. 2006c), while failure
involving non-linear processes such as damage and
microcracks in quasi-brittle materials was suggested
to result in rougher fracture surfaces withζ ≃ 0.75 as
for mortar (Mourot et al. 2005) and wood (Morel et al.
1998).
In this article, we extend a model (Bonamy et al.
2006) based on Linear Elastic Fracture Mechanics
(LEFM) originally proposed to reproduce the statisti-
cal properties of fracture surfaces resulting from brit-
tle fracture of heterogeneous materials (Section 2).
An interpretation of the morphology of broken quasi-
brittle material surfaces is then proposed. Then we in-
vestigate theoretically the dynamics of the crack front
(Section 3). In particular, a relation between the mean
crack growth velocity to the applied stress intensity
factor is proposed for a perfectly elastic material. The
case of quasi-brittle materials is then discussed. The
experimental investigation of such a relation is cur-
rently under progress and the results will be published
elsewhere.



2 PATH EQUATION

In this section, the path followed by a single crack
propagating in a disordered material is theoretically
investigated. At first, we will focus on perfectly brittle
material so that the theoretical framework of LEFM
can be used. We restrict the following analysis to the
case where the crack speed is small enough com-
pared to the sound speeds – speed of longitudi-
nal, transverse and Rayleigh waves – in the material
so that the quasi-static approximation is relevant. A
pure mode I loading is considered. The crack front
(oriented along thez-axis) is thus confined roughly
to a plane(x, z) perpendicular to the tensile forces
(along they-axis) and propagates along thex-axis.
In a homogeneous material, the crack would prop-
agate at spatially uniform velocity within a plane,
the plane(z, x). But the heterogeneities of the ma-
terial induce bothin-plane f(z, t) andout-of -plane
h(x = x0 + f(z, t), z) perturbations in the crack front.
Schematic views of the in-planef(z, t) and out-of-
planeh(x = x0 + f(z, t), z) displacements are shown
in Figure 1. For simplicity, the out-of-plane pertur-
bations have been represented for a crack front with-
out in-plane perturbations (f(z, t) = 0). The morphol-
ogy of fracture surfaces is then a direct measurement
of the out-of-plane perturbationsh(x, z). For small
enough perturbations, the out-of-plane displacements
are independent of the in-plane displacements so that
the shape of the fracture surface can be predicted in-
dependently off(z, t). On the other hand, this implies
that the dynamical properties of the crack – the local
velocities of the crack front∂f

∂t
(z, t) – investigated in

Section 3 are decoupled from the crack pathh(x, z).

Let us consider a pointM of the crack front
characterized by its position(x = x0 + f(z, t), y =
h(x, z), z). The local stress field aroundM deter-
mines its trajectory. The stress at a distancer ahead
of the pointM in the directionθ can be written as the
sum of the contributions of each of the three fracture
modes, each mode being developed as ark/2 expan-

Figure 1:Geometry of perturbed cracks subject to mode I load-
ing (large arrows indicating the direction of macroscopic load-
ing). (a): In-plane perturbations. (b): Out-of-plane perturbations.
The shape of the fracture surface is effectively the historyof the
out-of-plane perturbations of the crack front.

sion withk ≥ −1 (Irwin 1958)
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whereKp(M) (stress intensity factors),Tp(M) (T -
stress) andAp(M) are depending on the remote load-
ing, the geometry of the sample, the shape of the
crack front, and the coordinatez of the pointM . The
functionsgij

p (θ), kij
p (θ) andlijp (θ) are universal. Even

though we focus here on a dominantly mode I loading
situation,KII andKIII are not equal to zero. The per-
turbationsh andf of the crack shape induce a small
shearing loading around the crack front.

The path chosen by the crack in M is the one for
which the local stress field is of mode I type (”cri-
terion of local symmetry”) (Gol’dstein and Salganik
1974; Cotterell and Rice 1980; Hogdon and Sethna
1993). In other words, the net mode II stress in-
tensity factorKII should vanish in each locationz
along the crack front and any positionx of the mean
line, the effect of the mode III on the crack path be-
ing here neglected. To first order inh(x, z), six con-
tributions should be taken into account in the eval-
uation of KII . The four first contributions are in-
duced by the out-of-plane perturbationsh(z, x) of
the crack and have already been calculated (Ball and
Larralde 1995; Mochvan et al. 1998) in the limit
of small perturbationsh(x, z). The fifth contribution
arises from inevitable imperfections in the loading
system or the crack alignment so that the applied
loading is not in pure mode I and a small exter-
nal mode II loadingKext

II ≪ Kext
I is applied to the

experimental sample. The sixth contributions is due
to the heterogeneous nature of the material and is
modelled by a quenched uncorrelated random field
KII =−Kext

I /2η(z, x, h) written, without loss of gen-
erality, as the sum of two uncorrelated random fields
δK

(1)
II = −Kext

I /2(ηq(z, h) + ηt(z, x)). Finally, for a
sample with Poisson’s ratioν, one gets
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One can show that the third and fourth contribu-
tions are negligible (Larralde and Ball 1995; Pon-
son 2006d) so that the criterion of local symmetry
KII = 0 leads to

∂h

∂x
= Aν

∫

h(z′)− h(z)

(z′ − z)2
dz′ +ηq(z, h)+ηt(z, x)+F0

(3)
whereAν = 1

π
2−3ν
2−ν

andF0 = −2Kext
II /Kext

I ≪ 1 are
constants. In other words, the morphology of the frac-
ture surfaceh(x, z) is given by the motion of the



elastic stringh(z) that ”creeps” – thex coordinate
playing the role of time – within a random poten-
tial ηq(z, h) due to the ”thermal” fluctuationsηt(z, x).
Thus, the line – and so the fracture surface – is self-
affine so that its height-height correlation function
scales as∆h ∼ ∆zζ where the exponentζ depends
only on the range of the elastic interactions along the
line. They are long-ranged, characterized by a ker-
nel decreasing as1/r2. Therefore, one getsζ ≃ 0.39
(Rosso and Krauth 2002; Vandembroucq and Roux
2004; Kolton et al. 2006). This result is in fairly good
agreement with experimental observations of fracture
surfaces reported for brittle glass ceramics (Ponson
et al. 2006c) and sandstone (Boffa et al. 1998).

Let us now discuss the morphology of fracture sur-
faces of quasi-brittle materials that are characterized
by a higher roughness exponentζ ≃ 0.75. In this lat-
ter case, the material cannot be considered as linear
elastic anymore. In front of the main crack, the pro-
cess zone made of various microcracks modifies the
main crack path and so the geometry of the result-
ing fracture surface. It appears natural to conjecture
that the induced ”porosity”screens the elastic inter-
actions making the elastic kernel1/rα+1 in Equation
(3) decreasing faster than the one1/r2 (α = 1) ex-
pected for sane linear elastic materials (Bonamy et al.
2006). An ”arbitrary” valueα ≃ 1.5− 1.7 would then
allow to account for the value ofζ ≃ 0.75 (Tanguy
et al. 1998) observed for quasi-brittle materials. Un-
derstanding how damage screening can select such an
effective interaction range in crack problems provides
a significant challenge for future investigations.

3 MOTION EQUATION
We focus now on the dynamical properties of a sin-
gle crack propagating in an heterogeneous material.
At first, let us address the case of an elastic mate-
rial. As mentioned in Section 2, dynamics and tra-
jectory are decoupled according to linear elastic frac-
ture mechanics. In other words, the time evolution of
the crack is given by its in-plane deformationf(z, t)
while its trajectoryh(z, x) is set by Equation (3). To
derive a motion equation of the crack, one can there-
fore neglect its out-of-plane perturbation so that a
crack propagating through a 3D material and an inter-
facial crack propagation correspond to the same phys-
ical situation. The latter case has already been studied
(Gao and Rice 1989) and the elastic interactions along
the crack front were shown to be long-ranged (with
α = 1) so that the local stress intensity factor is given
by

KI(z, t) = Kext
I +

Kext
I

2π

∫

f(z′, t)− f(z, t)

(z′ − z)2
dz′ (4)

Starting from the natural motion equationv = ∂f
∂t

∼
KI −KIc, and assuming local fluctuations within the

local toughnessKIc = K0
Ic − η(z, f(z, t)), Equation

(4) yields to
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The morphology of the crack front as well as the
statistical properties of its local velocities have been
widely studied both from the experimental (Schmit-
tbuhl and Måløy 1997; Måløy et al. 2006) and the
theoretical point of view (Schmittbuhl et al. 1995).
According to Equation (5), the projection of the front
on the mean crack plane is expected to display a self-
affine geometry characterized by the roughness expo-
nent ζdep = 0.39. Until now, experimental investiga-
tions mainly performed on interfacial cracks in Plexi-
glas and crack front in metallic alloys have led to a
larger valueζ ≃ 0.5 − 0.6. However, the relevance
of the linear elasticity to model crack propagation in
such materials can be questioned. Here, we will fo-
cus on the averaged velocity of the crack front that is
of higher interest for direct engineer applications. In-
deed, from the motion equation (Eq. (5)), it is possible
to derive the relation between the applied stress inten-
sity factorKext

I and the main crack growth velocity
vcrack = 〈∂f

∂t
〉z,t.

From the Equation (5), one can show (Barabási and
Stanley 1995; Kardar 1998) that, forKext

I smaller than
a critical valueK0

Ic + ∆KIc, the crack front is pinned
by the microstructural obstacles of the material while
the crack front propagates withvcrack > 0 for Kext

I >
K0

Ic + ∆KIc (The curvevcrack(K
ext
I ) is represented in

dashed line in Figure 2). This so-called depinning
transition from a pinned to a moving state only occurs
at zero temperature. ForT > 0, crack propagation is
always possible even at lowKext

I −K0
Ic. In that case,

the line can overcome energy barriers through thermal
activation. Taking in consideration both the geometry
of the line at finite temperature as well as the ”energy
landscape”, one can show (Nattermann 1990) that the
line creeps through the disordered media with a ve-
locity:

vcrack∼ e
−

C0
T

1

(Kext
I

−K0
Ic

)µ (6)

where the exponentµ is given by (Kolton et al. 2006):

µ =
1− α + 2ζeq

α− ζeq

(7)

Here,α is the range of the elastic interactions along
the line (α = 1 for a linear elastic material) andζeq is
the roughness exponent at equilibrium given byζeq =
α
3

(Nattermann and Rujan 1989). Thus, one gets:

µ =
3− α

2α
(8)



Figure 2:Variation of the mean velocity of the crack front with
respect to the applied external stress intensity factor at finite tem-
peratureT > 0. The dashed curve correspond toT = 0.

For a perfectly brittle materials (α = 1), Equation
(8) yields toµ = 1 so that the crack growth velocity

is expected to increase asvcrack ∼ e
−

C1

Kext
I

−K0
Ic . These

variations are represented in Figure 2 in solid line. Ex-
perimental works performed on brittle ceramics and
rocks are currently in progress to test this relation. Let
us note that this formula could have interesting en-
gineer applications because life-time of structure are
often directly linked with the growth velocities of pos-
sible cracks.

Let us now discuss the case of quasi-brittle materi-
als. In Section 2, we have suggested that the presence
of damage and microcracks ahead of the main crack
could screen the elastic interactions yielding to ef-
fective elastic interactions decreasing faster along the
front (α ≃ 1.5− 1.7) than in the elastic case (α = 1).
This effect may also be relevant to describe the role
of damage on the in-plane perturbationf and thus
the dynamics of the crack. Indeed, the observation of
interfacial cracks with a roughness characterized by
ζ ∼ 0.5− 0.6 is much closer to predictions of models
with shorter range interactions. In the case of screened
elastic interactions, one expects therefore, according
to Equation 7, lower values ofµ ≃ 0.4− 0.5. In addi-
tion with its evident practical interest, measuring the
variation of the crack growth velocity with the exter-
nal stress intensity factor for brittle and quasi-brittle
materials may be a way to probe the range of the elas-
tic interactions along the crack front. An experimental
study of the creep motion of cracks in concrete speci-
men is currently under progress in this direction.

4 CONCLUSIONS
The behavior of a single crack propagating in a disor-
der material represents an interesting challenge both
from the fundamental and applied point of view. Con-
trary to the case of an homogeneous material, the
crack is observed to deviate from a straight line result-
ing in rough fracture surfaces and intermittent crack

dynamics characterized by scaling laws. We have pro-
posed here a description based on two decoupled
equations: Apath equation that describes the out-of-
plane perturbations of the crack – and therefore to
the geometry of the fracture surface – and amotion
equation that predicts its in-plane perturbation that
rules the dynamical properties of the whole crack. The
case of crack propagation in brittle materials was first
treated and linear elastic fracture mechanics was used
to derive these two equations. The case of quasi-brittle
materials was then discussed and the main physical
differences with the elastic case were pointed out. The
main results of this work can be summed up as the fol-
lowing:

(i) In brittle materials, for a slow crack propagation
under mode I loading, the out-of-plane pertur-
bations of the crack are given by a creep equa-
tion of an elastic line with long-ranged elastic
interactions (Eq. (3)). The resulting roughness of
fracture surfaces is self-affine, characterized by
a roughness exponentζ = 0.39 in good agree-
ment with the experimental results reported on
surfaces of broken brittle materials (Boffa et al.
1998; Ponson et al. 2006c).

(ii) The in-plane perturbations of the crack are de-
scribed by a pinning/depinning equation (Eq. 5)
which also sets the local velocities of the front.
We go further than previous analyses (Schmit-
tbuhl et al. 1995) and derive the relation between
the mean crack growth velocityvcrack and the ex-
ternal applied loadingKext

I . This relation (Eq.
(6)) is a stretched exponential characterized by
the exponentµ = 1 for the case of brittle failure.

(iii) The case of crack propagations in quasi-brittle
materials has been discussed. The screening of
the elastic interactions caused by the presence
of damage and microcracks ahead of the main
crack front is proposed to be the mechanism re-
sponsible for the differences observed with the
linear elastic case. Changing the range of the in-
teractions along the crack accounts for the higher
roughness exponentζ ≃ 0.75 observed on frac-
ture surfaces of quasi-brittle materials. More-
over, we conjecture that the relation between
vcrack andKext

I is still valid, but withµ ≃ 0.4 −
0.5 to take into account the change in the range
of the elastic interactions.

An experimental study performed on both brittle
sandstones and quasi-brittle concretes is currently un-
der progress to test the proposed relation between
crack growth velocity and applied loading. The exper-
imental investigation of crack dynamics in disordered
material is of great interest because it could validate
the pinning/depinning description of front motion, but



because also this could provide an efficient theoretical
tool to predict crack growth velocity in materials and
therefore life-time of structures.
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