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In a recent paper (Leblond et al., 2012), we established, using some results of Rice (1989), the second-
order expression of the variation of the mode I stress intensity factor resulting from some small, but
otherwise arbitrary coplanar perturbation of the front of a semi-infinite tensile crack in an infinite body.
The aim of the present work is to apply the expression found to a geometrically nonlinear analysis of
quasistatic, coplanar crack propagation in some heterogeneous medium. In a first step, we recall Leblond
et al. (2012)’s formula, extending it to the case where the unperturbed stress intensity factor, for the
straight configuration of the front, depends on the position of this front; in addition to being intrinsically
interesting, such an extension is necessary in order to avoid meaningless divergent integrals in what fol-
lows. In a second step, assuming the local energy-release-rate to be equal everywhere on the crack front
to its critical value, we derive an expression of the shape of this front accurate to second order in the fluc-
tuations of toughness of the material. In a third step, as an application, we present a second-order calcu-
lation of the equilibrium shape of the crack front, when it penetrates a single infinitely elongated obstacle
or a periodic distribution of such obstacles. Special attention is paid to the case, of particular physical
interest, where the derivative of the unperturbed stress intensity factor with respect to the position of
the crack front can be neglected.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A quarter of a century ago, Rice (1985) derived the first-order
expression of the variation of the mode I stress intensity factor
(SIF) induced by some small, but otherwise arbitrary coplanar per-
turbation of the front of a semi-infinite tensile crack in an infinite
body. This expression has been extensively used since to investi-
gate the behavior of cracks propagating in heterogeneous materi-
als; see the works of Schmittbuhl et al. (1995), Tanguy et al.
(1998), Schmittbuhl and Vilotte (1999), Krishnamurthy et al.
(2000), Roux et al. (2003), Schmittbuhl et al. (2003), Charles
et al. (2004), Katzav and Adda-Bedia (2006), Bonamy et al.
(2008), Ponson (2009), Laurson et al. (2010), Ponson and Bonamy
(2010), among others, and the reviews of Alava et al. (2006) and
Lazarus (2011). Quite recently, Legrand et al. (2011) extended Rice
(1985)’s formula to the case of coplanar perturbation of an emerg-
ing tensile crack lying on the mid-plane of a plate, thus accounting
for the effect of the finite dimensions of the specimens; and Patinet
et al. (2011) showed that use of the new formula did lead to
improved agreement of experimental and computed shapes of
crack fronts deformed by the presence of hard obstacles.
ll rights reserved.
However Rice (1985)’s and Legrand et al. (2011)’s formulae
were accurate only to first order in the perturbation of the front,
whereas geometric nonlinearities could be suspected to play a sig-
nificant role in actual experimental situations. This was the moti-
vation for Leblond et al. (2012)’s very recent extension to second
order of Rice (1985)’s first-order formula for coplanar perturbation
of a semi-infinite crack in an infinite body. Leblond et al. (2012)’s
treatment was basically simple and relied on application of some
general results of Rice (1989). Their formula for the perturbed SIF
was found to differ from the earlier ones, themselves in conflict,
of Adda-Bedia et al. (2006) and Katzav et al. (2007), derived by a
more complex method. Direct numerical computations of the SIF
along perturbed crack fronts by the finite element method con-
firmed the correctness of Leblond et al. (2012)’s new formula.

The aim of this paper is to apply Leblond et al. (2012)’s formula
to some geometrically nonlinear analysis of quasistatic, coplanar
crack propagation in media having a heterogeneous distribution
of fracture toughness. We shall first extend this formula to the case
where the unperturbed SIF, for the straight configuration of the
front, depends on the position of this front within the crack plane.
Such an extension is desirable to address realistic geometrical con-
ditions. In addition, even the interesting case where the unper-
turbed SIF becomes independent of the position of the front
requires this extended formula. The reason is that considering

http://dx.doi.org/10.1016/j.ijsolstr.2012.10.001
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immediately this case would generate meaningless divergent inte-
grals in both the first- and second-order expressions of the equilib-
rium shape of the crack front in heterogeneous materials. However,
once expressions involving the derivatives of the unperturbed SIF
with respect to the position of the front are obtained, it becomes
possible, with certain precautions, to consider the limiting case
where these derivatives go to zero.

The paper is organized as follows:

� Section 2 recalls Leblond et al. (2012)’s results, suitably
extended as just explained. The presentation is brief since the
extension is simple and again based on straightforward use of
Rice (1989)’s results.
� Section 3 applies the results found to the case of a crack propa-

gating quasistatically, according to Griffith’s criterion, along a
plane having a given heterogeneous distribution of fracture
toughness. Assuming the energy-release-rate (ERR) to be equal
to its critical value at every point of the crack front, we deter-
mine the resulting shape of this front up to second order in
the fluctuations of toughness.
� As an application, Section 4 considers the case of a crack pene-

trating into a single obstacle of infinite length in the direction of
propagation, or some periodic distribution of such obstacles.
The equilibrium shape of the front is calculated up to second
order in the contrast of toughness between the matrix and the
obstacle (s). The first-order expression agrees with that found
by Chopin (2010) while the second-order one is new.

2. Second-order coplanar perturbation of a semi-infinite crack

2.1. Notations

Consider (Fig. 1) a semi-infinite tensile crack located in some
infinite body subjected to prescribed forces only (no prescribed
displacements). Assume that the crack front is slightly curved, its
equation in the crack plane Oxz being of the form

xðzÞ ¼ aþ �/ðzÞ ð1Þ

where a denotes the distance from the axis Oz to some ‘‘reference
straight front’’, � a small parameter, and /ðzÞ a given, fixed, smooth
function. The position of the front is thus characterized by the
parameters a and �, and the position of a current point along it by
the parameter z.
(z)εφ

O

x

y

z

a

Fig. 1. A semi-infinite crack with a slightly perturbed front in an infinite body.
The mode I SIF for a given, fixed loading imposed upon this
cracked geometry is denoted Kða; �; z1Þ. Our interest lies in the sec-
ond-order expression of this SIF with respect to �:

Kða; �; zÞ � K0ðaÞ þ �K1ða; zÞ þ �2K2ða; zÞ þ Oð�3Þ: ð2Þ

It is assumed in this equation that the loading has a translatory
invariance in the direction z, so that the unperturbed SIF K0ðaÞ de-
pends on the position a of the (straight) front but not on the posi-
tion of the point of observation along it.

2.2. Second-order expansion of the stress intensity factor in the
physical space

At order 1, K1ða; zÞ is obtained through direct application of Rice
(1989)’s formula for the variation of the SIF to the straight config-
uration of the front; this is possible since the fundamental kernel
appearing in this formula is known explicitly for this configuration.
The result reads:

K1ða; z1Þ ¼
dK0

da
ðaÞ/ðz1Þ þ

K0ðaÞ
2p

PV
Z �1

�1

/0ðzÞ
z� z1

dz ð3Þ

where the symbol PV denotes a Cauchy principal value.
At order 2, K2ða; zÞ may again be obtained from the same for-

mula of Rice (1989), now applying it to some pre-perturbed config-
uration of the front upon which a secondary, infinitesimal and
proportional perturbation is superimposed. When doing so, one
must use formulae for the SIF and the fundamental kernel on the
pre-perturbed configuration, accurate to first order in the primary
perturbation; the first of these formulae is provided by Eq. (3) and
the second by another equation of (Rice, 1989). The output is an
expression of the derivative of the SIF with respect to the ampli-
tude of the perturbation, accurate to first order in this amplitude;
the second-order expression of the SIF then follows through inte-
gration. This was the procedure followed by Leblond et al.
(2012); they assumed K0ðaÞ to be independent of a, but this
hypothesis is easily removed and the final result reads:

K2ða; z1Þ ¼
1
2

d2K0

da2 ðaÞ /ðz1Þ½ �2 þ 1
2p

dK0

da
ðaÞPV

Z �1

�1

/ðzÞ/0ðzÞ
z� z1

dz

þ K0ðaÞ
8p2 PV

Z þ1

�1

Z þ1

�1

1
z0 � z1

þ 2
z0 � z

� �
/0ðz0Þ

�
þ 2

z� z1

1
z0 � z1

� 1
z0 � z

� �
/ðz0Þ

�
/ðzÞ � /ðz1Þ
ðz� z1Þ2

dzdz0: ð4Þ

It is worth noting that for the sinusoidal perturbation

/ðzÞ � cosðkzÞ ðk > 0Þ;

Eq. (4) yields, after some calculations,

K2ða;zÞ¼1
2

d2K0

da2 ðaÞcos2ðkzÞ�1
4

dK0

da
ðaÞkcosð2kzÞ�K0ðaÞ

8
k2 sin2ðkzÞ;

this result was also very recently arrived at by Willis (2012), by a
completely different method.

2.3. Second-order expansions of the stress intensity factor and the
energy-release-rate in Fourier’s space

Expressions of the Fourier transforms of the SIF and the ERR in
the direction of the crack front will be needed. The definition
adopted here for the Fourier transform ŵðkÞ of an arbitrary function
wðzÞ is

wðzÞ �
Z þ1

�1
bwðkÞeikzdk() bwðkÞ � 1

2p

Z þ1

�1
wðzÞe�ikzdz: ð5Þ
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The expression of the Fourier transform cK1ða; kÞ of K1ða; zÞ is then
(Lazarus, 2011):

^K1ða; kÞ ¼ K0ðaÞ dK0

K0da
ðaÞ � jkj

2

" #
/̂ðkÞ: ð6Þ

That of the Fourier transform ^K2ða; kÞ of K2ða; zÞ was derived by Le-
blond et al. (2012), again assuming K0ðaÞ to be independent of a;
but again this hypothesis is easily removed and the result reads:

^K2ða; k1Þ ¼ K0ðaÞ
Z þ1

�1
Pða; k; k1 � kÞ/̂ðkÞ/̂ðk1 � kÞdk ð7Þ

where

Pða; k; k0Þ � 1
2

d2K0

K0da2 ðaÞ �
1
4

dK0

K0da
ðaÞjkþ k0j þ 1

16
sgnðkk0Þðkþ k0Þ2
n

þ sgnðkÞ � sgnðk0Þ
� �

jkþ k0jðk� k0Þ � k2 � k02
o
: ð8Þ

The expansion of the Fourier transform Ĝða; �; kÞ of the ERR Gða; �; zÞ
follows from Irwin’s formula and the expressions (6) and (7) of
^K1ða; kÞ and ^K2ða; kÞ:

Ĝða; �; kÞ � G0ðaÞdðkÞ þ � ^G1ða; kÞ þ �2 ^G2ða; kÞ þ Oð�3Þ ð9Þ

where d denotes Dirac’s function, G0ðaÞ the unperturbed ERR, and

^G1ða; kÞ ¼ G0ðaÞ dG0

G0da
ðaÞ � jkj

h i
/̂ðkÞ

^G2ða; k1Þ ¼ G0ðaÞ
Rþ1
�1 Qða; k; k1 � kÞ/̂ðkÞ/̂ðk1 � kÞdk

8<: ð10Þ

with

Qða; k; k0Þ � 1
2

d2G0

G0da2 ðaÞ �
1
4

dG0

G0da
ðaÞ jkþ k0j þ jkj þ jk0j
� 	

þ 1
8

sgnðkk0Þðkþ k0Þ2 þ sgnðkÞ � sgnðk0Þ
� �

jk
n

þk0jðk� k0Þ � jkj � jk0j
� 	2

o
: ð11Þ
3. The equilibrium shape of the front of a crack propagating in a
heterogeneous material

3.1. Generalities

We shall now apply the preceding results to the study of copla-
nar propagation of the crack governed by Griffith’s criterion with a
heterogenous fracture toughness Gcðx; zÞ given by

Gcðx; zÞ � Gc 1þ �gcðx; zÞ½ �; ð12Þ

where Gc is a ‘‘mean toughness’’, � a small parameter and gcðx; zÞ a
given function describing the toughness fluctuations. For a given
loading, provided that G is equal to Gc at every point of the crack
front, the distribution of toughness determines the shape of this
front in the form

x ¼ aþ �/1ða; zÞ þ �2/2ða; zÞ þ Oð�3Þ ð13Þ

where a;/1ða; zÞ and /2ða; zÞ are a parameter and functions to be
determined.

3.2. First- and second-order expressions of the crack front shape

To determine a;/1ða; zÞ and /2ða; zÞ, it is useful to rewrite, for a
crack front shape of type (1), Eq. (10) in the form

^G1ða; kÞ � Ĝ1 a; f/̂g
h i

ðkÞ; ^G2ða; kÞ � Ĝ2 a; f/̂g
h i

ðkÞ: ð14Þ
These somewhat formal equalities express the fact that the func-
tions ^G1ða; �Þ and ^G2ða; �Þ are linear and quadratic functionals,
respectively, of the Fourier transform /̂ of the ‘‘perturbation func-
tion’’ /. With these notations, for the crack front shape depicted
by Eq. (13), corresponding to the perturbation function
/ � /1 þ �/2, the expansion (9) of Ĝða; �; kÞ takes the form
Ĝða; �; kÞ ¼ G0ðaÞdðkÞ þ �Ĝ1 a; f ^/1 þ � ^/2g
h i

ðkÞ

þ �2Ĝ2 a; f ^/1 þ � ^/2g
h i

ðkÞ þ Oð�3Þ

¼ G0ðaÞdðkÞ þ �Ĝ1 a; f ^/1g
h i

ðkÞ

þ �2 Ĝ1 a; f ^/2g
h i

ðkÞ þ Ĝ2 a; f ^/1g
h i

ðkÞ
n o

þ Oð�3Þ: ð15Þ
Now the local toughness is

Gc x ¼ aþ �/1ða; zÞ þ �2/2ða; zÞ þ Oð�3Þ; z
� �
¼ Gc 1þ �gc aþ �/1ða; zÞ þ �2/2ða; zÞ þ Oð�3Þ; z

� �
 �
¼ Gc 1þ �gcða; zÞ þ �2 @gc

@x
ða; zÞ/1ða; zÞ

� �
þ Oð�3Þ:

The spatial expansion of Gc here is based on the assumption that the
geometrical perturbations of the crack front are small compared to
the typical scale over which the local toughness varies in the direc-
tion of propagation. The Fourier transform of this expression at the
point k1 is

Gc dðk1Þ þ �ĝcða; k1Þ þ �2
Z þ1

�1

@ĝc

@x
ða; kÞ ^/1ða; k1 � kÞdk

� �
þ Oð�3Þ:

Assuming G to be equal to Gc at every point of the crack front and
therefore equating the right-hand side of Eq. (15)2 (at k ¼ k1) to this
expression, one gets the following conditions:

� At order 0:
G0ðaÞ ¼ Gc: ð16Þ
This condition determines the position a of the reference straight
front as a function of the loading applied.
� At order 1:
Ĝ1 a; f ^/1g
h i

ðkÞ ¼ Gcĝcða; kÞ;
which implies, by the expression (10)1 of the functional
Ĝ1 a; f ^/1g
h i

ðkÞ and Eq. (16), that
^/1ða; kÞ ¼ � ĝcða; kÞ
jkj � dG0

G0da
ðaÞ

: ð17Þ
� At order 2:
Ĝ1 a; f ^/2g
h i

ðk1Þ ¼ � Ĝ2 a; f ^/1g
h i

ðk1Þ þ Gc

Z þ1

�1

@ĝc

@x
ða; kÞ

� ^/1ða; k1 � kÞdk;
which implies, by Eqs. (10), (16) and (17), that
c/2 ða;k1Þ¼
1

jk1j� dG0

G0da
ðaÞ

Z þ1

�1
Qða;k;k1�kÞ ĝcða;kÞ

jkj� dG0

G0da
ðaÞ

ĝcða;k1�kÞ
jk1�kj� dG0

G0da
ðaÞ

dk

8<:
þ
Z þ1

�1

@ĝc

@x
ða;kÞ ĝcða;k1�kÞ

jk1�kj� dG0

G0da
ðaÞ

dk

9=;: ð18Þ
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Fig. 2. The distribution of fracture toughness in an infinite body containing a single
infinitely elongated obstacle.
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3.3. Comments

It is necessary to discuss here the convergence of the integrals

appearing in the expressions of ^/1ða; kÞ and ^/2ða; kÞ and their in-
verse Fourier transforms /1ða; zÞ and /2ða; zÞ. The following
hypothesis is introduced on the sign of the derivative of the unper-
turbed ERR G0ðaÞ:

dG0

da
ðaÞ < 0: ð19Þ

This condition is necessary for quasistatic propagation to be stable,
as was the case in all experiments mentioned in the Introduction.

With this condition, the denominator in the expression (17) of
^/1ða; kÞ can never be zero, so that the integral over k expressing

/1ða; zÞ in terms of ^/1ða; kÞ is perfectly convergent. Also, in the inte-

grals appearing in the expression (18) of ^/2ða; k1Þ, the denomina-

tors jkj � dG0

G0da
ðaÞ and jk1 � kj � dG0

G0da
ðaÞ again cannot vanish so they

do not raise any problem of convergence either. Finally the integral

over k1 expressing /2ða; zÞ in terms of ^/2ða; k1Þ involves the denom-

inator jk1j � dG0

G0da
ðaÞ, but again this denominator can never be zero

and convergence of the integral is ensured.
Consider now the special but interesting situation where G0 be-

comes independent of a. This is in fact a limit-case in which the

derivative dG0

da ðaÞ takes very small negative values; in physical
terms, this means that the characteristic distance of variation of
the unperturbed ERR is much larger than that of fluctuations of
the fracture toughness.

When dG0

da ðaÞ ¼ 0, the expression (17) of ^/1ða; kÞ still makes
sense, but the integral over k expressing /1ða; zÞ in terms of
^/1ða; kÞ involves the denominator jkj which becomes zero in the

interval of integration; hence the integral diverges, except if

ĝcða;0Þ ¼ 0. Also, in the expression (18) of /̂2ða; k1Þ, the integrals
are also divergent, except again if ĝcða;0Þ ¼ 0, because they involve
the denominators jkj and jk1 � kj. Finally, even if ĝcða;0Þ ¼ 0, the

expression of ^/2ða; k1Þmakes sense but that of /2ða; zÞ is once more
a divergent integral over k1 involving the denominator jk1j.

It may thus be concluded that consideration of the limiting case
where dG0

da ðaÞ ¼ 0 requires some mathematical precautions. The
best way to handle it is to first assume dG0

da ðaÞ < 0, perform all cal-
culations with this hypothesis, and only finally examine whether
the expressions found make sense in the limit dG0

da ðaÞ ! 0, which
they may or may not, depending on the quantity of interest.
4. The shape of crack fronts encountering obstacles

As an application, we shall determine the equilibrium shape of
the front of a crack penetrating into a single obstacle of infinite
length in the direction of propagation, or a periodic distribution
of such obstacles, up to second order in the contrast of toughness.
The toughness of the matrix will be denoted GM

c , and the toughness
and width of the obstacle (s), GO

c and 2d, respectively. We shall be
particularly interested in the limit-case where dG0

da ðaÞ ! 0; this cor-
responds, in physical terms, to the situation where the typical dis-
tance of variation of the unperturbed ERR is much larger than d
(and the period in the periodic case).
4.1. Case of a single obstacle

The distribution of toughness in this case is represented in
Fig. 2. This distribution may be represented by formula (12) with
Gc � GM
c ; � � GO

c � GM
c

GM
c

; gcðx; zÞ � gcðzÞ �
1 if jzj < d

0 if jzj > d:

�
ð20Þ

The Fourier transform of the function gcðx; zÞ is given by

ĝcðx; kÞ � ĝcðkÞ �
1

2p

Z d

�d
e�ikzdz ¼ sinðkdÞ

pk
: ð21Þ

At order 1, one gets from Eqs. (17) and (21):

^/1ða; kÞ ¼ � sinðkdÞ
pk jkj � dG0

G0da
ðaÞ

h i
so that

/1ða; zÞ ¼ � 1
p

Z þ1

�1

sinðkdÞ
k jkj � dG0

G0da
ðaÞ

h i eikzdk

¼ � 2
p

Z þ1

0

sinðkdÞ
k k� dG0

G0da
ðaÞ

h i cosðkzÞdk:

Now let dG0

da ðaÞ ! 0. It is clear that the integral defining /1ða; zÞ di-
verges in this limit; this is an illustration of the mathematical diffi-
culties mentioned in Section 3.3. However we are not really
interested in the absolute position of the crack front in the direction
x, but only in its deviation from straightness. This deviation is char-
acterized at order 1 by the quantity

f/1ða; zÞ � /1ða; zÞ � /1ða; 0Þ

¼ 2
p

Z þ1

0

sinðkdÞ
k k� dG0

G0da
ðaÞ

h i 1� cosðkzÞ½ �dk: ð22Þ

This quantity has a well-defined limit f/1ðzÞ for dG0

da ðaÞ ! 0 given by

f/1ðzÞ � 2
p

Z þ1

0

sinðkdÞ
k2 1� cosðkzÞ½ �dk: ð23Þ

To calculate this integral explicitly, it suffices, following Chopin
(2010), to differentiate it with respect to z, evaluate the derivative
using Gradshteyn and Ryzhik (1980)’s formula 3.741.1 and re-inte-
grate. The result is (Chopin, 2010):

f/1ðzÞ ¼ d
p

1þ uð Þ ln 1þ uj jð Þ þ 1� uð Þ ln 1� uj jð Þ½ �; u � z
d
: ð24Þ

At order 2, Eqs. (18) and (21) yield, since the function ĝcðx; kÞ is
independent of x:
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/2ða;zÞ¼
Z þ1

�1

Z þ1

�1
Qða;k;k0Þ ĝcðkÞ

jkj� dG0

G0 da
ðaÞ

ĝcðk
0Þ

jk0 j� dG0

G0 da
ðaÞ

eiðkþk0 Þz

jkþk0 j� dG0

G0 da
ðaÞ

dkdk0

¼ 1
p2

Z þ1

�1

Z þ1

�1
Qða;k;k0Þ sinðkdÞ

k jkj� dG0

G0 da
ðaÞ

h i sinðk0dÞ
k0 jk0 j� dG0

G0 da
ðaÞ

h i
� eiðkþk0 Þz

jkþk0 j� dG0

G0 da
ðaÞ

dkdk0 ¼ 2
p2

Z Z
kþk0P0

Qða;k;k0Þ sinðkdÞ
k jkj� dG0

G0 da
ðaÞ

h i sinðk0dÞ
k0 jk0 j� dG0

G0 da
ðaÞ

h i
� cos½ðkþk0Þz�

kþk0 � dG0

G0 da
ðaÞ

dkdk0

where we have grouped the terms ðk; k0Þ and ð�k;�k0Þ in the double
integral and accounted for the fact that Qða;�k;�k0Þ ¼ Qða; k; k0Þ,
see Eq. (11).

Again, we are interested only in the deviation of the crack front
from straightness, characterized at order 2 by the quantity

f/2ða;zÞ�/2ða;zÞ�/2ða;0Þ¼ 2
p2

Z Z
kþk0P0

Qða;k;k0Þ sinðkdÞ
k jkj� dG0

G0da
ðaÞ

h i
� sinðk0dÞ

k0 jk0j� dG0

G0da
ðaÞ

h i cos½ðkþk0Þz��1

kþk0 � dG0

G0da
ðaÞ

dkdk0: ð25Þ

This quantity has a well-defined limit f/2ðzÞ for dG0

da ðaÞ ! 0 given by

f/2ðzÞ � 2
p2

Z Z
kþk0P0

Q 0ðk; k0Þ sinðkdÞ
kjkj

sinðk0dÞ
k0jk0j

� cos½ðkþ k0Þz� � 1
kþ k0

dkdk0 ð26Þ

where

Q 0ðk; k0Þ � lim
dG0=da!0

Qða; k; k0Þ ¼ 1
8

sgnðkk0Þðkþ k0Þ2
n

þ sgnðkÞ � sgnðk0Þ
� �

jkþ k0jðk� k0Þ � jkj � jk0j
� 	2

o
; ð27Þ

the integral in Eq. (26) is convergent because the function Q0ðk; k0Þ
verifies the properties Q0ðk;0Þ ¼ Q0ð0; k0Þ ¼ 0.

Quite remarkably, one may calculate the integral in Eq. (26)
explicitly. To do so, the first step consists in reducing the integra-
tion domain ðk; k0Þ; kþ k0 P 0


 �
. This domain consists of two

sub-domains, ðk; k0Þ; kþ k0 P 0; k P k0

 �

and ðk; k0Þ; kþ k0 P



0; k0 P kg which yield equal contributions since the integrand is
invariant upon interchange of k and k0; hence the integral is equal
to twice the integral over the first sub-domain. Also, this sub-do-
main consists of two sub-sub-domains, ðk; k0Þ; k P 0; 0 6



k0 6 kg and ðk; k0Þ; k P 0; �k 6 k0 6 0


 �
, over which the function

Q 0ðk; k0Þ takes the values kk0=2 and �k0ðkþ k0Þ=2 respectively;
using the change of variable k00 � �k0 in the integral over the sec-
ond sub-sub-domain, then re-using the notation k0 instead of k00,
one finally gets

f/2ðzÞ ¼ 2
p2

Z þ1

0

Z k

0

sinðkdÞ
k

sinðk0dÞ
k0

cosððkþ k0ÞzÞ � 1
kþ k0

�(

þ sinðkdÞ
k2

sinðk0dÞ
k0

cosððk� k0ÞzÞ � 1
� ��

dk0


dk:

In a second step, one may write k0 � kk; 0 6 k 6 1 and use the vari-
ables of integration ðk; kÞ instead of ðk; k0Þ; the preceding equation
then becomes

f/2ðzÞ ¼ 2
p2

Z þ1

0

Z 1

0

sinðkdÞ
k

sinðkkdÞ
kk

cosðð1þ kÞkzÞ � 1
ð1þ kÞk

��
þ sinðkdÞ

k2

sinðkkdÞ
kk

cosðð1� kÞkzÞ � 1½ �
�

kdk


dk

or equivalently, upon change of the order of integration,
f/2ðzÞ ¼ 2
p2

Z 1

0

J d; kd; ð1þ kÞz½ � � Jðd; kd;0Þ
kð1þ kÞ

�
þ J d; kd; ð1� kÞz½ � � Jðd; kd;0Þ

k


dk ð28Þ

where

Jða; b; cÞ �
Z þ1

0
sinðaxÞ sinðbxÞ cosðcxÞdx

x2 : ð29Þ

The third step consists in calculating the integral Jða;b; cÞ; this is
done in Appendix A and the result is

Jða; b; cÞ ¼ p
8

aþ bþ cj j þ aþ b� cj j � a� bþ cj j � a� b� cj jð Þ:

ð30Þ

Eq. (28) becomes, upon use of this formula, replacement of z by jzj
(which is admissible since the function f/2ðzÞ is obviously even) and
rearrangement of terms,

f/2ðzÞ ¼ d
4p

Z 1

0
j1� jujj � 2

2þ k
1þ k

� 1
k

1� k
1þ k

� juj
���� �����

þ1
k

1þ k� ð1� kÞjujj j
�

dk ð31Þ

where u has been defined in Eq. (24)2. In a fourth and final step, one
must evaluate this integral; the calculation is straightforward but
somewhat heavy because of the presence of absolute values in
the integrand which make it necessary to distinguish between
cases. The final result reads

f/2ðzÞ ¼
� d

2p ð1þ uÞ lnð1þ uÞ þ ð1� uÞ lnð1� uÞ½ � if juj 6 1

� d
2p ðjuj � 1Þ ln jujþ1

juj�1

� �
þ 2 ln 2

h i
if jujP 1:

8<:
ð32Þ

It is remarkable that by Eqs. (24) and (32)1, f/2ðzÞ ¼ �f/1ðzÞ=2 inside
the obstacle (juj 6 1). Outside of the obstacle (jujP 1), however, the
functions f/1ðzÞ and f/2ðzÞ behave differently; for instance in the
limit juj ! þ1;f/1ðzÞ diverges like 2d

p lnðjujÞ whereas f/2ðzÞ goes to
the constant � d

p ð1þ ln 2Þ.
Fig. 3 shows the ‘‘normalized perturbation of the front’’

½�/1ðzÞ þ �2/2ðzÞ � �/1ð0Þ � �2/2ð0Þ�=d ¼ ½�f/1ðzÞ þ �2f/2ðzÞ�=d, de-
duced from Eqs. (24) and (32), as a function of the ‘‘normalized
toughness contrast’’ �. The nonlinear dependence of

½�f/1ðzÞ þ �2f/2ðzÞ�=d upon � is quite conspicuous here: the effect
of � seems to ‘‘saturate’’ when this parameter becomes large, that
is, the linear theory tends to overestimate the deformation of the
crack front for large toughness contrasts. This observation seems
to be confirmed by experiments performed by Chopin (2010) for
a very large toughness contrast of 50, which have produced rela-
tively modest crack front deformations, thus supporting the idea
that the crack front becomes stiffer as its perturbation increases
in amplitude for a fixed wavelength.

It may be inferred from these numerical results that the range
of values of the normalized toughness contrast � for which the
above formulae provide reasonably accurate predictions extends
up to about 0:2 if Eq. (24) is used alone, and to about 1 if Eqs.
(24) and (32) are used in conjunction.

4.2. Case of a periodic distribution of obstacles

The distribution of toughness for a periodic array of infinitely
elongated obstacles is represented in Fig. 4, where the period is de-
noted 2L. This distribution may be represented by formula (12)
with
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Fig. 3. Equilibrium shape of a crack front penetrating into a single obstacle
(represented by a gray rectangle), for various toughness contrasts.
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Gc� 1� d
L

� 	
GM

c þ d
L GO

c ; �� GO
c �GM

c

Gc
;

gcðx;zÞ�gcðzÞ�
1� d

L if jz�2nLj<d

�d
L if jz�2nLj>d

(
ðð2n�1ÞL6 z6 ð2nþ1ÞLÞ:

8>><>>:
ð33Þ

The functions gc and ĝc are then of the equivalent forms

gcðx; zÞ �
Xþ1

m¼�1
cmeimk0z () ĝcðx; kÞ �

Xþ1
m¼�1

cmdðk�mk0Þ ð34Þ

where

k0 �
p
L

; cm �
1
2L

Z L

�L
gcðzÞe�impz=Ldz ¼

0 if m ¼ 0
sinðmpd=LÞ

mp if m – 0:

(
ð35Þ

At order 1, Eqs. (17), (34)2 and (35) yield

^/1ða; kÞ ¼ �
Xþ1

m¼�1

cm

jmjp
L � dG0

G0da
ðaÞ

d k�mp
L

� �
) /1ða; zÞ

¼ �
Xþ1

m¼�1

cm

jmjp
L � dG0

G0da
ðaÞ

eimpz=L

¼ �
X
m–0

sinðmpd=LÞ
mp jmjp

L � dG0

G0da
ðaÞ

h i eimpz=L

¼ � 2
Xþ1
m¼1

sinðmpd=LÞ
mp mp

L � dG0

G0da
ðaÞ

h i cosðmpz=LÞ:
Gc

Gc
O

GMc

z

−d d L−L O

Fig. 4. The distribution of fracture toughness in an infinite body containing a
periodic array of obstacles.
Taking the limit dG0

da ðaÞ ! 0 does not raise any particular problem
here; /1ða; zÞ goes to a limit /1ðzÞ given by the following series,
which unfortunately cannot be expressed in terms of elementary
functions:

/1ðzÞ � � 2L
p2

Xþ1
m¼1

sinðmpd=LÞ
m2 cosðmpz=LÞ: ð36Þ

At order 2, one gets from Eqs. (18), (34)2 and (35):

/2ða; zÞ ¼
Z þ1

�1

Z þ1

�1
Qða; k; k0Þ ĝcðkÞ

jkj � dG0

G0da
ðaÞ

ĝcðk
0Þ

jk0j � dG0

G0da
ðaÞ

� eiðkþk0 Þz

jkþ k0j � dG0

G0da
ðaÞ

dkdk0

¼
Xþ1

m¼�1

Xþ1
n¼�1

Q a;
mp

L
;
np
L

� � cm

jmjp
L � dG0

G0da
ðaÞ

cn

jnjp
L � dG0

G0da
ðaÞ

� eiðmþnÞpz=L

jmþnjp
L � dG0

G0da
ðaÞ

¼
X

m–0;n–0

Q a;
mp

L
;
np
L

� � sinðmpd=LÞ
mp jmjp

L � dG0

G0da
ðaÞ

h i
� sinðnpd=LÞ

np jnjp
L � dG0

G0da
ðaÞ

h i eiðmþnÞpz=L

jmþnjp
L � dG0

G0da
ðaÞ

:

Subtracting the average value /2� �
of /2, corresponding to the

terms having mþ n ¼ 0, one gets from there

/2ða; zÞ � /2ða; zÞ � /2� �
¼

X
m–0;n–0;mþn–0

Q a;
mp

L
;
np
L

� � sinðmpd=LÞ
mp jmjp

L � dG0

G0da
ðaÞ

h i
� sinðnpd=LÞ

np jnjp
L � dG0

G0da
ðaÞ

h i eiðmþnÞpz=L

jmþnjp
L � dG0

G0da
ðaÞ

¼
X

m–0;n–0;mþn>0

2Q a;
mp

L
;
np
L

� � sinðmpd=LÞ
mp jmjp

L � dG0

G0da
ðaÞ

h i
� sinðnpd=LÞ

np jnjp
L � dG0

G0da
ðaÞ

h i cos½ðmþ nÞpz=L�
ðmþnÞp

L � dG0

G0da
ðaÞ

:

In the limit dG0

da ðaÞ ! 0, this expression goes to a limit /2ðzÞ given by

/2ðzÞ � 2L3

p5

X
m–0;n–0;mþn>0

Q0 mp
L
;
np
L

� � sinðmpd=LÞ
mjmj � sinðnpd=LÞ

njnj

� cos½ðmþ nÞpz=L�
mþ n

:

Accounting finally for the expression (27) of the function Q0ðk; k0Þ,
one gets from there, after a few transformations:

/2ðzÞ ¼ L
p3

Xþ1
m¼1

Xþ1
n¼1

sinðmpd=LÞ
mðmþ nÞ

sinðnpd=LÞ
n

cos½ðmþ nÞpz=L�
�

þ2
sin½ðmþ nÞpd=L�

mþ n
cosðnpz=LÞ

�
: ð37Þ

Eqs. (36) and (37) permit to calculate the normalized perturbation
of the front ½�/1ðzÞ þ �2/2ðzÞ � �/1ð0Þ � �2/2ð0Þ�=d ¼ ½�/1ðzÞ
þ�2/2ðzÞ � �/1ð0Þ � �2/2ð0Þ�=d numerically, as a function of the
normalized toughness contrast � and the dimensionless parameter
L=d comparing the respective sizes of the period and the obstacle.
Figs. 5 and 6 show the results obtained; Fig. 5 is for � ¼ 1 and var-
ious values of L=d, and Fig. 6 for L=d ¼ 3 and various values of �. One
sees in Fig. 5 that the influence of the finiteness of the period is
maximum half-way between the obstacles, where the slope of the
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front is zero for symmetry reasons. One also sees in Fig. 6 that in the
periodic case, the nonlinear effect of the toughness contrast is weak,
except near the boundary of the obstacles (observe that at z=d ¼ �1,
the gap between the red and green curves, corresponding to values
of � differing by a factor of 5, is lower than what the linear theory
would predict).

Finally, it is worth noting that in the limit of a very large period,
the results for a periodic array of obstacles converge toward those
for a single one; this is illustrated in Fig. 7 which compares crack
front shapes obtained for a single obstacle and a periodic array
having L=d ¼ 640, for a normalized toughness contrast � of unity.

The theoretical predictions of Eqs. (24) and (32) for an isolated
pinning obstacle on the one hand, and (36) and (37) for a periodic
array of obstacles on the other hand, provide a basis to interpret
crack front patterns observed in heterogeneous interfaces (see
e.g. Dalmas et al., 2009; Chopin et al., 2011; Xia et al., 2012). In par-
ticular, it provides an efficient means of measuring the toughness
of defects or impurities in these systems, using the toughness con-
trast as an adjustable parameter in the fit of experimental data.

5. Conclusion

The aim of this work was to apply Leblond et al. (2012)’s expres-
sion of the stress intensity factor up to second order in the pertur-
bation of the crack front to investigate geometrically nonlinear
effects in the quasistatic, coplanar propagation of cracks in heter-
ogenous materials.

In a first step, this required an extension of Leblond et al.
(2012)’s treatment to the case where the unperturbed SIF K0ðaÞ,
for the straight configuration of the front, depends on its position
a within the crack plane. Indeed when dK0

=da ¼ 0, mathematical
difficulties arise in the form of divergent integrals appearing in
the expression of the equilibrium shape of the crack front resulting
from a given distribution of fracture toughness. Consideration of
this interesting limiting case therefore requires to first perform
all calculations with dK0

=da – 0, before finally (and carefully) tak-
ing the limit dK0

=da! 0. In addition, the new formula extends the
second order expression of the stress intensity factor of a per-
turbed crack front to more realistic fracture tests geometries.

In a second step, the formulae obtained for the first- and sec-
ond-order variations of the SIF resulting from a given perturbation
of the front were applied to the explicit calculation of the equilib-
rium shape of the front of a crack propagating in a heterogeneous
material according to Griffith’s criterion, up to second order in the
fluctuations of fracture toughness.

As an application, we calculated the equilibrium shape of a
crack front penetrating into a single obstacle of infinite length in
the direction of propagation, or a periodic array of such obstacles,
up to second order in the contrast of toughness between the matrix
and the obstacle (s). The second-order perturbation of the front
was expressed in a very simple analytical form for a single obsta-
cle, and as an infinite double series for an array of obstacles. The
formulae obtained may be useful in the future to study the pinning
of cracks by heterogeneities in experimental situations.
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Appendix A. Calculation of the integral Jða; b; cÞ

The well-known trigonometric relations

cos a cos b ¼ 1
2 cosðaþ bÞ þ cosða� bÞ½ �

sin a sin b ¼ 1
2 � cosðaþ bÞ þ cosða� bÞ½ �

(



378 M. Vasoya et al. / International Journal of Solids and Structures 50 (2013) 371–378
imply that

sinðaxÞ sinðbxÞ cosðcxÞ ¼ 1
2
� cos ðaþ bÞx½ � þ cos ða� bÞx½ �f g cosðcxÞ

¼ 1
4
� cos ðaþ bþ cÞx½ � � cos ðaþ b� cÞx½ � þ cos ða� bþ cÞx½ �f

þ cos ða� b� cÞx½ �g:

It then follows from Eq. (29) that

Jða;b; cÞ ¼ 1
4

Z þ1

0
� cos ðaþ bþ cÞx½ � � cos ðaþ b� cÞx½ �f

þ cos ða� bþ cÞx½ � þ cos ða� b� cÞx½ �g dx
x2 ¼

1
4

Iðaþ bþ cÞ½

þIðaþ b� cÞ � Iða� bþ cÞ � Iða� b� cÞ�;

IðkÞ �
Z þ1

0

1� cosðkxÞ
x2 dx:

The integral IðkÞ is given by formula (3.782.2) of Gradshteyn and
Ryzhik (1980):

IðkÞ ¼ p
2
jkj:

Inserting this result into the preceding expression of Jða;b; cÞ, one
gets Eq. (30) of the text.
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