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Abstract: Experimental studies show that fracture surfaces exhibit rather remarkable scaling properties char-
acterized by universal roughness exponents, close to ζ = 0.4 in brittle materials and close to ζ = 0.8 in
quasi-brittle and ductile materials. In this work, we go beyond the value of the roughness exponent, and fo-
cus on the distribution of height fluctuations on the fracture surface of a large range of materials, from brittle
to ductile and quasi-brittle solids. At first, we show how damage accompanying crack propagation results on
average into deviations to the Gaussian statistics observed on brittle fracture surfaces. Then, we identify on the
fracture surface the location of the largest jumps responsible for the fat tails observed on these distributions, and
show that these extreme events are actually organized in a network of clusters made of connected events. The
statistical analysis of these clusters show many interesting features, including a characteristic sizes reminiscent
of the typical size of the damage processes in the material studied, a power law distribution of cluster size for
ductile and quasi-brittle fracture surface, while their probability distribution decay exponentially in brittle frac-
ture surface. This new approach in the analysis of the morphology of fracture surface is a first step into a better
understanding of the damage processes occurring within the process zone during crack propagation, and open
promising perspectives into the description of damage mechanisms in a large range of materials by an unified
theory.
Keywords: Fracture surface, roughness statistics, scaling behavior.

1 Introduction
Understanding the failure properties of a solid is a constant goal in material science. A fine description
of these properties can have important applications for the design of new materials and the expertise of
failures. Experimental studies show that fracture surfaces exhibit rather remarkable scaling properties
characterized by universal roughness exponents, close to ζ = 0.4 in brittle materials and close to
ζ = 0.8 in quasi-brittle and ductile materials. However, much more information about the failure
process remains encoded in the fracture surface as the crack roughness reveals the interaction between
the crack fronts and the material microstructure. Therefore a fine description of the statistics of
fracture surface shall guide the development of more accurate models of fracture propagation and
therefore allows a finer understanding of the failure process.
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2 Material and methods
Aluminum alloy and mortar are chosen as the archetypes of ductile and quasi-brittle materials, re-
spectively. The alloy specimens are aluminum 4 wt% copper with an as-casted microstructure. They
are broken under uniaxial mode I tension with constant traction velocity (strain rate of approximately
1.6×10−2s−1)[1]. Their fracture surfaces are observed with a scanning electron microscope at two tilt
angles. A high resolution elevation map is produced from the stereo pair using the cross-correlation
based surface reconstruction technique. The reconstructed image of the topography represents a rect-
angular field of 3.7×2.7 mm (1250×950 pixels). The in-plane and out-of-plane resolutions are of the
order of 3 µm. We present results for sample broken at different temperatures, i.e. 480◦ for the sample
#1 and 620◦C for the sample #2. A part of the fracture surface of aluminum #2 (2.7 × 2.7 mm) is
represented on Fig. 1(a). Mortar fracture surfaces are obtained by applying four points bending under
controlled displacement conditions to a notched beam. The length of the beam is 1400 mm and its
height and thickness are both equal to 140 mm. The topography of the fracture surfaces is recorded
using an optical profilometer. The maps include 400 profiles of 4096 points each. We make sure that
the analyzed profiles are located far enough from the initition region, so that the roughness proper-
ties are statistically stationnary. The sampling step along profiles is 20µm. Two successive profiles
are separated by 50 µm along the direction of crack propagation. The lateral and vertical accuracy
are of the order of 5µm (see [2] for more experimental details). A part of the fracture surface #2
(20 × 20 mm) is represented on Fig. 1(b). In situ observations and acoustic emissions analysis show
that failure occurs by multicracking processes present in an extended zone ahead of the notch. To
compare our findings with a reference material that does not involve damage mechanisms, fracture
surfaces of brittle ceramics made of sintered glass beads are also analyzed. For this material, the pro-
cess zone was shown to be much smaller than the diameter d ' 100µm of the grains [12]. Tapered
Double Cantilever Beam with width and length equal to 20 mm (perpendicular to the crack propaga-
tion) and 60 mm (parallel to it) respectively, are broken at constant opening rate. The tapered shape
of these specimens allows us to obtain a stable quasi-static mode I crack growth. The roughness of
the fractured specimens is measured using a mechanical stylus profilometer (™Talysurf Intra) with a
10 nm vertical and a 2µm lateral resolutions. The obtained fracture surface (8× 8 mm) is shown on
Fig. 1(c).

3 Non-Gaussian statistics of fracture surface roughness
We first study the distribution of height fluctuation on the fracture surfaces. For a given increment
δ~x of the coordinates in the average fracture plane, we note p(δh|δ~x) the probability distribution of
an height increment δh = h(~x) − h(~x + δ~x) where the sampling of the distribution is done on all
admissible coordinates ~x. We also note p(δh|δr) the distribution of δh where the sampling is done
on all admissible ~x and δ~x such as |δ~x| = δr. The distribution p(δh|δr) at different δr is shows in a
semi-logarithmic scale on Fig. 2 for (a) aluminum alloy sample #2, (b) For the aluminum and mortar
samples (Fig. 2(a)(b)), the distribution of height fluctuations shows a strong non-Gaussian behavior
at small scale δr with prononced fat tail. As the scale δr is increased, the tails of the distribution
become less pronounced. At a sufficiently large scale, the distribution can barely be distinguished
from a Gaussian distribution , taking a parabolic shape in this semi-logarithmic representation. For
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Figure 1: Fracture surfaces of (a) aluminum #2 (2.7 × 2.7 mm), (b) mortar (20 × 20 mm) and (c)
a brittle ceramics (8 × 8 mm): the height of the surface is encoded using grey shades, with white
representing the highest points while black corresponding to the lowest ones. The typical height
denivelation on this surface is (a) 1.3 mm, (b) 2.3 mm and (c) 250µm, respectively.

the brittle ceramic sample (Fig. 2(c)), the distribution of height fluctuations shows an essentially
Gaussian behavior at all scales. As the scale δr is increased, the standard deviation of the distribution
is increased but the shape of the distribution remains essentially the same. The evolution of these
distributions can be described by a familly of Student t distributions (Fig. 2). The detailed analysis of
this behavior will be presented elsewhere [4].

4 Spatial organization of large fluctuations on fracture surfaces
The distributions of height fluctuations in the materials investigated do not follow a Gaussian behav-
ior because of the fat tails. In this part, we proceed to a detailed analysis of these extreme events or
largest height variations that are present in an abnormally high proportion on fracture surfaces and
that are directly responsible for these tails. Our analysis will reveal a fundamental difference be-
tween the morphology of fracture surfaces obtained by brittle failure, and the one obtained by damage
mechanisms. It will also provide interesting clues on the origin of this deviation from the Gaussian
behavior.

4.1 Revealing the spatial organization of the extreme events on fracture sur-
faces

The maps of extreme events with clusters are extracted from the fracture surface using the following
procedure. We define the operator

δh(δr, ~x) = 〈[h(~x+ δ~x)− h(~x)]2〉
1
2

|δ~x|=δr (1)

where the average 〈.〉 is done on a circle of radius δr, i.e. for all admissible δ~x such as |δ~x| = δr.
This operator has several interesting properties. First, at a given scale δr, the operator is uniquely
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Figure 2: Distribution of height fluctuations p(δh|δr) at various scales δr.(a) Aluminum alloy #2
with δr = (1) 25 µm, (2) 115 µm, (3) 550 µm; (b) Mortar sample with δr = (1) 225 µm, (2)
915 µm, (3) 3.8mm; (c) Brittle ceramic sample with δr = (1) 60 µm, (2) 310 µm, (3) 1.5mm.
The experimental distributions are represented in black, and the corresponding fit with a Student t
distribution are representend in red/grey. For readability the distributions have been multiplied by 104

for (1) and by 102 for (2)

defined for each point of the experimental map and defines a transformation of the original map.
Second, it is perfectly isotropic. Third, the average procedure makes it robust to measurement artifact.
Qualitatively, this operator describes the local intensity of the height variation at a scale δr. The fields
δh(δr, ~x) obtained from (a) the aluminum #2, (b) the mortar and (c) the ceramics fracture surfaces
are represented on Fig. 3 at scale δr = 6µm, δr = 100µm and δr = 15µm, respectively. Here,
the largest height variations are presented in white while the smallest ones are in black. Strikingly,
the extreme events are spatially correlated and form a network of rough lines for the alloy [Fig. 3(b)]
and the mortar [Fig. 3(c)], while they are rather uniformly distributed for the ceramic fracture surface
[Fig. 3(a)]. At first sight, the differences between these maps are obvious. But to proceed to a
quantitative analysis and describe their differences, we need to threshold these maps. As we are
interested by the fat tails only, we define maps that contain the largest height variations only. As a
result, we introduce a threshold δhth so that for value of δh(δr, ~x) higher than hc, we assign a value
unity to the point ~x (in white on Fig. 4), while a value zero is attributed to the points ~x for which
δh(δr, ~x) < δhth (in black on Fig. 4). Two parameters need to be chosen in order to obtain the
maps of extreme events represented on Fig. 4: the value of δr that sets the scale at which the height
variations δh(δr, ~x) are computed and the value of the threshold that distinguish the extreme events
from the regular ones. In the following, instead of δhc, we will use the quantity pth that indicates the
proportion of points ~x with value δh(δr, ~x) > δhc defined as extreme events. Since we investigate the
tail of the roughness distribution, typical values of pth will be in the range 5%−25%. In the following,
we will see that the actual value of pth as well as the value of δr have actually a limited influence on
the statistical properties of the extreme events.
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Figure 3: Maps of height variations δh computed on the fracture surfaces of (a) the aluminum alloy
#2 for δr = 6µm, (b) the mortar and (c) the brittle ceramics shown on Fig. 1.

Figure 4: Threshold maps of the height variations δh shown on Fig. 3 computed on the fracture
surfaces of (a) the aluminum alloy #2, (b) mortar and (c) brittle ceramics. Here, only the largest
events that represents pth = 15% of all the points on surfaces have been kept.

4.2 Statistical properties of clusters of extreme events
A rapid look at the spatial distribution of the extreme events shown on Fig. 4 shows that they organize
in clusters of connected points. In this part, we investigate the properties of these clusters, such as
their fractal dimension and their size distribution. For analyzing the cluster statistics, we define for
each cluster isolated from the other ones three quantities that characterize their size, namely `x, `z
and Rg, as well as one quantity S characterizing their area. `x is the maximum extent of the cluser
along the x direction while `z is the maximum extent of the cluster along the z direction - let us note
that x and z corresponds to the direction of the propagation, and the perpendicular one, respectively.
Rg is the radius of gyration of the cluster. It is obtained by defining the center of gravity C of each
cluster, and then compute the average distance between C and the points {Mk}1≤k≤N belonging to the

cluster, i.e. Rg =
√∑N

k=1 | ~CMk|2 with
∑k

k=1
~CMk = 0. For each cluster, we have so three variables

characterizing its length while S defined as the total number N of of points of pixels that belongs to
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the cluster times the area of one pixel represents its area. As shown on the Figs. 5 that shows the
relation between length and area for each cluster for the , the three quantities `x, `z and Rg are found
to follow the same scaling S ∼ `D with the cluser area S. This indicates a fractal geometry of these
objects with dimension D ' 1.70 that depends very weakly of the considered material (see Table 1
for the values of D of each material). This result indicates that any of the three quantities `x, `z and
Rg can be used to investigate the cluster size distribution. In the following, we choose the radius of
gyration. The probability distribution of the cluster sizes is shown on Fig. 6 for (a) aluminum alloy #1
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Figure 5: Relationship between length and area of the clusters of extreme events for (a) the aluminum
#1, (b) the mortar and (c) the brittle ceramics. The scaling of the cluster rarea with its radius of
gyration indicates a fractal dimension D ' 1.70, irrespective of the material considered.

and (b) mortar for different values of pth for δr = 6µm and δr = 100µm, respectively. Irrespective
of the actual value of the threshold probability pth, the distribution for mortar and aluminum fracture
surfaces follow a power law P (Rg) ∼ R−αg with exponent α ' 2.2. The picture is rather different
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Figure 6: Distribution of cluster sizes Rg for (a) the aluminum alloy #1, (b) the mortar and (c) the
brittle ceramics fracture surfaces.

for brittle fracture surfaces: as shown on Fig. 6(c) for δr = 16µm, the distribution of cluster sizes
follows an exponential law P (Rg) ∼ e−Rb/ξ characterized by the length scale ξ ' 25µm, the value of
which depends very weakly of the threshold pth, as shown in the inset of Fig. 6(c). This exponential
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behavior confirms the visual observations made on Fig. 4: for ceramics fracture surfaces, the largest
height variations do not form any large scale structures, contrary to mortar and aluminum. As a
result, clusters of size larger than ξ = 25µm are exponentially rare. These results are confirmed on
another brittle material, a natural sandstone. For its fracture surface also, the density probability of
cluster size decreases exponentially, with a characteristic length scale ξ ' 50µm (see Table 1). This
length might be directly related to the material microstructure since the grain size d in the ceramics
and the sandstone are of the same order than this cut-off length, i.e. d = 100µm and d = 200µm,
respectively [5, 6]. We investigate now the effect of the length scale δr chosen to compute the field of
height variations h(δr, ~x) on these properties. Figure 7 shows such maps obtained on the aluminum
#1 fracture surface calculated at different scales, i.e. for (a) δr = 6µm, (b) δr = 12µm and (c)
δr = 18µm. We see that changing this scale mainly affects the thickness of the lines constituting the
network of extreme events, but does not really affect their geometry. This impression is confirmed on
Fig. 8 where the statistical properties of the clusters obtained from these different maps are compared.
The scale δr has a weak effect on both (a) the relation between the area and the radius of gyration
of each cluster and (b) their size distribution. In other words, changing the scale δr in the range
investigated does not affects significantly the value of the exponents D ' 1.70 and α ' 2.2.

Figure 7: Map δh(δr, ~x) of height vatiations computed at different length scales (a) δr = 6µm, (b)
δr = 12µm and (c) δr = 18µm for the aluminum #1.

5 Discussion
We would like now to connect the statistical properties of the roughness showing deviations to the
Gaussian behavior with the complex spatial distribution of extreme events observed on the height
variations maps δh(δr, ~x). To bridge these both properties, it is relevant to consider the decomposi-
tion δh(~x, δ~x) = h(~x, δ~x) − h(~x) =

∑n
k=1 h(~x + k

n
δ~x) − h(~x + k−1

n
δ~x) = Σn

k=1δh(~x + k−1
n
, δ~x/n)

that expresses a height variation calculated at the scale δr = | ~δx| in position ~x as the sum of n height
variations calculated at a smaller scale δr/n near ~x. For an uncorrelated map of height variations,
the central limit theorem predicts then that the statistics of height variations - that writes as the sum
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Figure 8: Effect of the length scale δr on the statistics of clusters of extreme events: (a) Relationship
between area and length of clusters showing D ' 1.70 for the fracture surface of aluminum #1. (b)
Distribution of cluster sizes Rg showing α ' 2.1 on aluminum #1 fracture surface.

of uncorrelated variables - belongs to one of the three stable distributions, i.e. Gumble, Weibull or
Gaussian distributions. Here, we expect the statistics of our fracture surfaces to follow a Gaussian
distribution. This agrees with our observations made on brittle fracture surfaces that exhibit both
Gaussian statistics and uncorrelated maps of height variations. On the contrary, quasi-brittle and duc-
tile failure mechanisms that produce correlated height variations maps [Fig. 4 (a) and (b)] also display
strong deviations to the Gaussian behavior. But once investigated at scales much larger than the typ-
ical size of those patterns, the height variations becomes uncorrelated, and so a Gaussian statistics
might be expected: this explains the transition from fat tail distribution at small scale to a Gaussian
statistics at large scales, as shown on Fig. 2. An analysis of the distribution p(δh|δr) of height vari-
ations at different scales δr allows for an estimation of the crossover length δr = ξ corresponding
to the transition from fat tails to Gaussian statistics. Its value measured on mortar and the various
aluminum alloys fracture surfaces is given in Table 1 . In this case, a typical value of the cluster size
could not be extracted from their distribution as for brittle failure, due to the limited dimension of the
fracture surfaces investigated. However, the previous connection between the roughness statistics and
the patterns of extreme events suggests that the roughness recovers a Gaussian behavior once δr is
much larger than the typical cluster size. This means that the length scale extracted from the cluster
size distribution might be quite close to the crossover length between power law tail and Gaussian
statistics. For this reason, we have used the same notation ξ whenever this length was extracted from
the roughness statistics or the cluster size distribution. Our results show that that when fracture sur-
faces investigated at scales δr � ξ display spatially correlated roughness characterized by a power
law tail statistics, while investigated at scale δr � ξ, they follow a Gaussian behavior without exhibit-
ing any spatial correlation on the height variations map. Interestingly, the deviations to the Gaussian
behavior that are characterized by a change in the shape of the roughness distribution p(δh|δr) with
the scale δr results in a multi-affine behavior, that means that the various moments of this distribution
scale with different exponents, contrary to mono-affine brittle surfaces for which one roughness expo-
nent ζ is sufficient to fully describe the roughness statistics and the scaling of the different moments.
Multi-scaling is classically associated with the presence of spatially correlated fluctuations. This in-
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ζ D α ξ
Aluminum #1 0.74 1.70 2.2 450µm
Aluminum #2 0.73 1.70 2.3 550µm
Mortar 0.73 1.61 2.2 1.3 mm

Sandstone 0.45 × × 25µm
Ceramics 0.43 × × 25µm

Table 1: Scaling exponents extracted from the fracture surfaces resulting from ductile and quasi-brittle
(upper part of the table) and brittle failure (lower part): the roughness exponent ζ characterizes the
scaling behavior of the roughness correlation, the exponents D and α describe the patterns made by
the largest height variations on the fracture surfaces presented on Fig. 4. The length ξ provides the
crossover length between fat tail and Gaussian statistics for damage accompanied failure (alloy and
mortar) while it gives the characteristic length of the exponential decay of the cluster size distribution
for brittle failure.

terpretation is then fairly consistent with our observations. Let us note that this might also be the case
in various other materials where multi-scaling were reported at small scale, before a transition towards
a Gaussian behavior [7, 8]. We would like now to propose a physical interpretation of the length ξ and
the origin of the complex features observed on the height variations maps. Various findings presented
here suggest that the deviations to Gaussian statistics and the associated patterns of extreme events
find their origin in the microcracking processes accompanying failure of mortar and aluminum alloys.
This is supported by the following observations:

(i) For mortar and aluminum fracture surfaces, abnormally large height fluctuations producing fat
tail statistics of crack roughness organizes into a network of rough lines. This features are not
present on brittle fracture surfaces for which damage mechanisms does not come into play,
suggesting a direct link between clusters of extreme events and damage processes.

(ii) The size of the clusters observed on the height variation maps is power law distributed, up to
a cut-off length scale ξ that coincides well with the typical size associated with the damage
processes in these materials: a few grain or a few hundreds of micrometers in aluminum alloy
and a few millimeters in mortar. In addition, direct observations of the failure processes within
the damage zone ahead of cracks in some quasi-brittle rocks show the presence of a forest of
microcracks with power law distributed sizes. Direct observations have not been reported in
mortar nor in aluminum alloys, but the acoustic emission following power law statistics in these
materials suggest a similar behavior.

(iii) In a recent study, networks of lines observed on PMMA fracture surfaces were shown to result
from microcracking processes [9]. The mechanisms into play can be described by considering
the coalescence of two interacting microcracks that start to avoid before attracting each to let
a bump on the fracture surface [10]. Contrary to mortar or aluminum alloys, the PMMA is
rather homogeneous at the scale where these lines where observed, allowing a straightforward
observation, and even a quantitative interpretation of these features in terms of microcracking
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history in the material [11]. In mortar and aluminum alloy, the network made by these lines
is hidden by the surrounding roughness generated by the material heterogeneities. In addition,
the microcrack density might be much larger in these materials, so that such an interpretation
of the clusters observed for these materials is much more complex. However, they might be
signature of microcracking and their size distribution might be closely connected with the size
distribution of microcracks.

6 conclusion
The fracture surface investigated in this study revealed a much more complex roughness than their
classical description based on the measurement of the roughness exponents. Neglecting for this study
the anisotropy of fracture surfaces [12], we showed that one roughness exponent ζ ' 0.4 remains
sufficient to fully describe the roughness statistics. However, in quasi-brittle and ductile materials
where the roughness exponent is found to be larger with ζ ' 0.75, the full distribution of height
variations is found to be highly non-Gaussian with the presence of fat tails. However, these deviations
disappear as the investigation scale increases, leading to a Gaussian statistics at a sufficiently large
scale. This behavior can be described with a family of Student’s t distributions.
We proceeded then to the analysis of the largest height jumps on the surface, responsible for the fat
tails observed in the roughness distribution. For this purpose, we defined maps of extreme events
that displayed connected clusters of large fluctuations. These clusters of spatially correlated large
fluctuations are shown to follow power law statistics: they have a fractal geometry with dimension
D ' 1.7 with a power law distributed size with exponent α ' 2.2. In brittle materials like sandstone
and ceramics, the size distribution of these cluster follows a power law distribution characterized by
the length scale ξ. In other words, we have a very small probability to find big clusters in brittle
material that was shown to be in agreement with a Gaussian statistics.
The length scale ξ that we defined alternatively on quasi-brittle and ductile fracture surfaces from the
crossover length from fat tail statistics at small scale to Gaussian statistics at large scale reveals the
microscale failure mechanisms of materials. Our observations suggest that this length is connected
with the typical length of micro cracks in materials. A possible interpretation is that the coalesence
between micro cracks leads a signature on the fracture surface that we identified as abnormally large
height fluctuations. According to this scenario, the length ξ extracted from the fracture surfaces might
be connected to the typical damage zone size ahead of the crack during failure.
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