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Abstract

Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle
materials. So far, most analytical explorations of the crack front deformation arising from spatial
variations of fracture properties have been restricted to weak toughness contrasts using first order
linear approximation and to defects of small dimensions with respect to the sample size. In this
work, we investigate the non-linear effects arising from larger toughness contrasts by extending
the approximation to the second order, while taking into account the finite sample thickness.
Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a
function of the material parameters and the loading conditions, especially in the case of a single
infinitely elongated obstacle. Peeling experiments are presented which validate the approach and
evidence that the second order term broadens its range of validity in terms of toughness contrast
values. The work highlights the non-linear response of the crack front to strong defects and the
central role played by the thickness of the specimen on the pinning process.
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1 Introduction

Predicting the role played by small scale heterogeneities on the macroscopic response
of solids is an important challenge in mechanics. In a large range of free-boundary and
free-discontinuity problems like wetting of liquids on solid substrates, magnetization of
ferromagnetic materials or phase transformations, the relation between microscopic prop-
erties and macroscopic behavior is governed by some interface which can be highly sen-
sitive to localized defects. In the context of brittle fracture, this reflects on the strong
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dependence of the toughness to microstructural details, like the spatial distribution of
defects and their strength (Gao and Rice, 1989; Bower and Ortiz, 1991; Xia et al., 2012;
Patinet et al., 2013b; Démery et al., 2014). The development of predictive tools connecting
microstructural parameters of materials to their failure properties is central to engineer
materials achieving increased resistance and lifetime. However, to address this challenge,
predictive models must consider realistic situations and overcome the limitations of cur-
rent theories that consider either weak variations of material properties or infinitely small
defects compared to the specimen dimensions. The extension of these theories to strong
heterogeneities and finite size specimens is the central point of this work.

Microstructural effects on brittle failure phenomena have been largely explored through
the fracture mechanics analysis of a continuum elastic medium characterized by some
heterogeneous field of local toughness. This approach has met a fair amount of success
in capturing experimental observations (Ponson and Bonamy, 2010; Dalmas et al., 2010;
Santucci et al., 2010; Xia et al., 2012; Patinet et al., 2013a). In this description, small
scale variations of the failure properties locally perturb crack propagation and, in fine,
affect the whole failure behavior of the material. The central point in this approach is
the prediction of the crack front geometry from the characteristics of local toughness field
(spatial distribution of defects, toughness contrast...) and the distribution of the local
stress intensity factor along a perturbed crack front (Lazarus, 2011).

Thirty years ago, Rice (1985) derived a first-order formula for the variations of the stress
intensity factor induced by some small, but otherwise arbitrary coplanar perturbation of
the front of a semi-infinite tensile crack in an infinite body. This expression has been used
extensively to predict planar crack growth evolution through random arrays of defects
(Schmittbuhl et al., 1995; Ramanathan et al., 1997; Bonamy et al., 2008), and decipher
the puzzling geometrical properties of planar cracks observed in experiments (Delaplace
et al., 1999; Santucci et al., 2010; Bonamy and Bouchaud, 2011).

However, Rice’s first-order formula relies on the assumption that crack front perturbations
are of small wavelength compared to the specimen dimensions, which is questionable in
some experiments (Schmittbuhl et al., 2003). This was the motivation for Legrand et al.
(2011)’s recent extension of Rice (1985)’s formula to the case of coplanar perturbation
of an emerging tensile crack lying on the mid-plane of a plate of finite thickness, thus
accounting for the effect of the finite dimensions of the specimen. Patinet et al. (2013a)
showed that the new formula did significantly improve the agreement between experimen-
tal and computed shapes of crack fronts deformed by the presence of obstacles.

Both Rice (1985)’s and Legrand et al. (2011)’s formulae are however accurate only to first
order in the perturbation of the front, which limits their application to weak variations of
toughness. To explore the non-linear response of cracks pinned by defects of larger con-
trasts, Leblond et al. (2012) extended Rice (1985)’s first-order formula for a semi-infinite
crack in an infinite body to second order, under the assumption of independence of the
unperturbed stress intensity factor imposed by the loading with respect to the average
crack front location. Then, Vasoya et al. (2013) released this hypothesis, thus extending
the range of application of Leblond et al. (2012)’s formula to general loading conditions.
Recently, Willis (2013) and Willis and Movchan (2014) investigated the dynamic pertur-
bation of a crack up to second order. Their results, taken in the elastostatic limit for mode
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I loading conditions, were found to be consistent with those previous works.

Still, since both Leblond et al. (2012)’s and Vasoya et al. (2013)’s works considered only
infinite bodies, the combined effect of the finite size of the specimens and the geometrical
nonlinearities induced by strong defects remains unexplored, and it is the aim of this
work to address this question. The results of our calculations apply to several experimen-
tal situations involving strong heterogeneities, and for which the crack front perturbation
wavelength compares with the thickness of the specimen (Santucci et al., 2010; Chopin
et al., 2011). This study also provides predictive tools relevant for the design of heteroge-
neous materials or thin films where crack pinning by strong engineered obstacles is used
to control and modify their failure properties, e.g. to produce asymmetry in the peeling
strength of adhesives (Xia et al., 2012).

The paper is organized as follows:

• Section 2 recalls, as a prerequisite, some established results for planar cracks with
slightly perturbed fronts. These results pertain to cracks located (i) in some arbitrary
body (Rice, 1989), and (ii) on the mid-plane of a plate (Legrand et al., 2011).
• Section 3 presents an extension of Legrand et al. (2011)’s first-order results for a cracked

plate to the second order, using Rice (1989)’s general results.
• Section 4 applies these results to the case of a semi-infinite crack propagating quasi-

statically along the mid-plane of an infinite plate having some heterogeneous distribu-
tion of toughness. Assuming the stress intensity factor to be equal to the toughness
at every point of the crack front, we determine the resulting shape of this front up to
second order in the toughness fluctuations.
• As an application, Section 5 considers the case of a crack penetrating into a single

obstacle of infinite length in the direction of propagation. The equilibrium shape of the
front is calculated up to second order in the contrast of toughness between the matrix
and the obstacle.
• In Section 6, we take inspiration from the experimental setup designed in Xia et al.

(2012), and explore the process of front pinning in specimens of thickness comparable
with the obstacle size. The geometry of the experimental pinned front is compared with
the results of our calculations for various toughness contrasts of the obstacles, providing
a critical test of the theory and its range of applicability.
• Section 7 finally provides a summary of, and some comments on, the results obtained.

2 Summary of some previous works

2.1 Rice (1989)’s general formulae for perturbation of a plane crack

Consider (Figure 1) a planar crack with arbitrary contour embedded in some arbitrary
isotropic elastic body symmetric about the crack plane, loaded in pure mode I through
some symmetric system of prescribed forces and/or displacements. Assume that the crack
front is perturbed, under constant loading, by a small distance δa(s) within the crack
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plane in the direction perpendicular to the front, where s denotes a curvilinear abscissa
along it.

1

ba(s)

Fig. 1. A planar mode I crack with a slightly perturbed front in an arbitrary body.

Under such conditions, Rice (1989)’s first formula provides the infinitesimal variation δK
of the local SIF in the following form:

δK(s1) = [δK(s1)]δa(s)≡δa(s1),∀s + PV
∫
CF

Z(s1, s)K
0(s)[δa(s)− δa(s1)]ds. (1)

In this expression,

• [δK(s1)]δa(s)≡δa(s1),∀s denotes the value of δK(s1) for a uniform advance of the front
equal to δa(s1);
• the symbol PV denotes the Cauchy principal value of the integral, which is taken over

the crack front CF ;
• K0(s) denotes the local unperturbed SIF at the point s of the front;
• Z(s1, s) denotes the fundamental kernel (FK) of the cracked geometry considered, tied

to Bueckner’s mode I crack-face weight function.

The FK depends on the geometry, but has no dependence upon the loading other than on
which portions of the body and its boundary have forces versus displacements prescribed.
It is not known explicitly except in some special cases, but it is known to obey the following
general properties:

Symmetry : Z(s1, s2) = Z(s2, s1).

Asymptotic behavior for nearby points : Z(s1, s2) ∼
1

2π(s1 − s2)2
for s1 → s2.

(2)

Note that the second property shows that the integral in Eq. (1) does make sense as a
Cauchy principal value (the function δa being assumed to be differentiable).

In addition, Rice (1989)’s second formula provides the infinitesimal variation of the FK
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in the following form:

δZ(s1, s2) = δ∗Z(s1, s2) + PV
∫
CF

Z(s1, s)Z(s, s2)[δa(s)− δ∗a(s)]ds (3)

where δ∗Z(s1, s2) is the variation of the FK due to any other crack perturbation δ∗a(s)
such that δ∗a(s1) = δa(s1) and δ∗a(s2) = δa(s2). Note that there are in fact two principal
values here, one at s = s1 and the other at s = s2.

Eq. (3) is interesting, of course, only if special motions δ∗a(s) of the crack front exist for
which the variation δ∗Z(s1, s2) may be calculated independently. It is always possible to
find a combination of a translatory motion, a rotation and a homothetical transformation
of the crack front satisfying the constraints put on δ∗a(s). In the special case of a semi-
infinite crack in an infinite body subjected to prescribed forces only, a combination of
a translatory motion and a rotation suffices, and since such transformations leave the
overall geometry unchanged, δ∗Z(s1, s2) is zero. In finite bodies, this is no longer the case
in general but there are some special cases where certain perturbations δ∗a(s) generate a
zero δ∗Z. Under such conditions, Eq. (3) reads simply

δZ(s1, s2) = PV
∫
CF

Z(s1, s)Z(s, s2)[δa(s)− δ∗a(s)]ds. (4)

2.2 Legrand et al. (2011)’s solution for a crack lying on the mid-plane of a plate

Let us now consider (Figure 2(a)) a semi-infinite plate of thickness 2h. Choose the coor-
dinate axes in such a way that this plate occupies the domain 0 ≤ x < +∞,−h ≤ y ≤
h,−∞ < z < +∞ in 3D space. Assume that there is an emerging crack on the mid-plane
of the plate, occupying the region 0 ≤ x ≤ A, y = 0,−∞ < z < +∞, where A denotes the
distance from the plate boundary to the crack front. Finally assume that the upper and
lower parts of the boundary are subjected to opposite prescribed displacements perpen-
dicular to the crack plane, generating a state of pure mode I at every point of the crack
front.

Assume now that the crack front is perturbed by a small distance δa(z) within the crack
plane (Figure 2(b)). Under such conditions, Legrand et al. (2011) expressed the infinites-
imal variation of the local SIF in the following form:

δK(z1)

K0(A)
= −2

δa(z1)

A
+ PV

∫ +∞

−∞

f(A
h

; z−z1
h

)

(z − z1)2
[δa(z)− δa(z1)] dz (5)

where K0(A) denotes the unperturbed SIF, depending on the location A of the unper-
turbed front, and the function f(A

h
; z−z1

h
)/(z1 − z)2 represents the FK for the semi-infinite

cracked plate considered, subjected to displacements prescribed on its boundary. A fully ex-
plicit formula was provided for this specific FK.

An interesting limit-case is that of a semi-infinite crack in an infinite plate (A → +∞).
The conditions of prescribed displacements on the boundary then become equivalent to
conditions of prescribed bending moments far from the crack front. In such a limit-case,
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(a) View of the original crack in the Oxy plane.
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(b) View of the perturbed crack
in the Ozx plane.

Fig. 2. A slightly perturbed emerging crack lying on the mid-plane of a semi-infinite plate.

Eq. (5) becomes

δK(z1)

K0
= PV

∫ +∞

−∞

f( z−z1
h

)

(z − z1)2
[δa(z)− δa(z1)] dz (6)

where the function f( z−z1
h

)/(z − z1)2 ≡ f(+∞; z−z1
h

)/(z − z1)2 represents the FK for an
infinite cracked plate subjected to prescribed forces only. Attention will be focused on this
sole special case in the sequel.

It will be necessary to use formulae in Fourier’s space. The definition adopted here for
the Fourier transform φ̂(k) of an arbitrary function φ(z) is

φ(z) ≡
∫ +∞

−∞
φ̂(k)eikzdk ⇔ φ̂(k) ≡ 1

2π

∫ +∞

−∞
φ(z)e−ikzdz. (7)

The Fourier transform of δK(z1) is readily found by expressing the function δa in Eq. (6)

in terms of its Fourier transform δ̂a: one thus obtains

δK(z1)

K0
=
∫ +∞

−∞
δ̂a(k)

[
PV

∫ +∞

−∞

f( z−z1
h

)

(z − z1)2
(
eikz − eikz1

)
dz

]
dk.

Writing now eikz − eikz1 as eikz1(eik(z−z1)− 1), one gets from there, with a few transforma-
tions,

δ̂K(k)

K0
= −|k|X(kh)δ̂a(k) (8)

where

X(p) ≡ 1

|p|PV
∫ +∞

−∞

f(u)

u2

(
1− eipu

)
du ⇔ f(u) ≡ 1

2π

∫ +∞

−∞

[
|p|X(p)

]′′
e−ipu dp. (9)

Eq.(9)1 here is obtained directly, and Eq.(9)2 is then easily established by calculating
[|p|X(p)]′′.
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In the work of Legrand et al. (2011), Eq. (6) was not obtained directly but through
Fourier inversion of Eq. (8). This equation was itself established by solving the elasticity
problem of a plate the mid-plane of which contained a crack with a sinusoidal front, both
analytically in the case of an infinitesimal plate thickness and by the finite element method
in the case of a finite one. The procedure yielded the following explicit expression of the
function X(p):

X(p) ' 1

2

[
1 +

3

1 + 1
3
|p|4/3

]
. (10)

This expression is (slightly) approximate in general because of the numerical method used
to determine it, but exact in the two limits p→ 0 and p→ ±∞.

It is finally instructive to consider a sinusoidal perturbation of the front of wavelength
λ. For such a perturbation the only values of the wavenumber k to be considered are
k = ±2π/λ. Then:

• if h � λ, |kh| � 1 so that, by Eq. (10), X(kh) → 1
2

and Eq. (8) becomes identical to
Rice (1985)’s formula for a semi-infinite crack in an infinite body;
• if h � λ, |kh| � 1, so that X(kh) → 2 and Eq. (8) becomes identical to the formula

established analytically by Legrand et al. (2011) for a semi-infinite crack lying on the
mid-plane of a plate of infinitesimal thickness.

The value of δK(z) is thus 4 times larger, for a given crack front perturbation δa(z), in a
very thin plate than in an infinite body.

3 Coplanar perturbation of a semi-infinite crack lying on the mid-plane of
an infinite plate

3.1 Notations

For now on, we consider (Figure 3) the case of a semi-infinite crack located on the mid-
plane of an infinite plate of thickness 2h, loaded in pure mode I through prescribed forces
only.

Assume that the crack front perturbation δa(z) is of the form

δa(z) = εφ(z) (11)

where ε is a small parameter and φ(z) a given, fixed, smooth function. With this notation
the equation of the perturbed front reads

x(z) = a+ εφ(z) (12)

where a denotes the distance from some arbitrary reference axis Oz to the unperturbed
straight front. The position of the perturbed front is thus characterized by the parameters
a and ε, and the position of a current point along it by the parameter z.
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(a) View of the original crack in the Oxy plane.
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Fig. 3. A slightly perturbed semi-infinite crack lying on the mid-plane of an infinite plate.

3.2 First-order expansion of the fundamental kernel

The FK for the crack configuration depicted by Eq.(12) is denoted Z(ε; z1, z2), and our
interest here lies in the first-order expression of Z(ε; z1, z2),

Z(ε; z1, z2) ≡ Z0(z1, z2) + εZ1(z1, z2) +O(ε2). (13)

Since both the special loading considered by Legrand et al. (2011) when deriving Eqs. (6),
(9) and (10), and the more general one considered here, involve prescribed forces only, the
FK Z0(z1, z2) for the unperturbed configuration of the crack is the same as in Eq. (6),

Z0(z1, z2) ≡
f( z1−z2

h
)

(z1 − z2)2
(14)

where the function f is given by Eqs. (9) and (10).

In the specific case considered, the ancillary perturbation δ∗a(z) ≡ εφ∗(z) of Rice’s second
formula (3) may be taken as a suitable combination of a translatory motion and a rotation:

φ∗(z) ≡ φ(z1) +
φ(z2)− φ(z1)

z2 − z1
(z − z1) = φ(z2) +

φ(z1)− φ(z2)

z1 − z2
(z − z2). (15)

The lack of a homothetical transformation of the crack front here (which basically arises
from its initial straightness) implies that it undergoes a mere rigid-body motion. Un-
der such a motion the thickness of the plate, and therefore the overall geometry, remain
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unchanged 1 so that δ∗Z is zero. Eq. (4) therefore applies and gives

Z1(z1, z2) = PV
∫ +∞

−∞

f( z1−z
h

)f( z−z2
h

)

(z1 − z)2(z − z2)2
[φ(z)− φ∗(z)] dz (16)

where use has been made of Eq. (14).

3.3 Second-order expansion of the stress intensity factor in the physical space

The mode I SIF for a given, fixed loading imposed upon the cracked geometry is denoted
K(a, ε; z). Our interest here lies in the second-order expression of this SIF with respect
to ε:

K(a, ε; z) ≡ K0(a) + εK1(a; z) + ε2K2(a; z) +O(ε3). (17)

It is assumed in this equation that the loading has a translatory invariance in the direction
z of the crack front, so that the unperturbed SIF K0(a) depends on the location a of the
(straight) front but not on the position of the point of observation along it.

At order 1, the expression of K1(a; z) is obtained through direct application of Rice
(1989)’s first formula (1) for the variation of the SIF to the straight configuration of the
front:

K1(a; z1) =
dK0

da
(a)φ(z1) +K0(a)PV

∫ +∞

−∞

f( z−z1
h

)

(z − z1)2
[φ(z)− φ(z1)] dz. (18)

This equation is identical to Eq. (6) of Legrand et al. (2011) except for the additional
first term in the right-hand side. This term was zero for the special loading envisaged by
Legrand et al. (2011) because the unperturbed SIF was independent of the location of the
(straight) crack front within the crack plane, but this does not remain true for the more
general loading considered here.

In the same way, at order 2, K2(a; z) may be obtained by again applying Rice (1989)’s
first formula (1), considering some pre-perturbed configuration of the front upon which
is superimposed a secondary, infinitesimal proportional perturbation. When doing so, one
must use formulae for the SIF and the FK on the pre-perturbed configuration accurate
to first order in the primary perturbation; the first of these formulae is provided by Eq.
(18) and the second by Rice (1989)’s second formula (3), which takes the form (16) in
the present case. The output is an expression of ∂K(a, ε; z)/∂ε accurate to first order in
ε, which immediately yields the second-order expression of K(a, ε; z) upon integration.

This was the procedure followed by Leblond et al. (2012) and Vasoya et al. (2013) in the
case of an infinite body. The reasoning for a plate is analogous and therefore will not be

1 Note that the hypothesis of infiniteness of the plate plays a central role here; if it were semi-
infinite, like at the beginning of Section 2.2, the rotation of the crack front would not leave the
geometry unchanged since this front would not remain parallel to the plate boundary.
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repeated. The final result reads:

K2(a; z1) =
1

2

d2K0

da2
(a) [φ(z1)]

2 +
1

2

dK0

da
(a)PV

∫ +∞

−∞

f( z−z1
h

)

(z − z1)2
[φ2(z)− φ2(z1)] dz

+
K0(a)

2

{
PV

∫ +∞

−∞

∫ +∞

−∞

f( z−z1
h

)f( z
′−z
h

)

(z − z1)2(z′ − z)2
[φ(z)− φ(z1)][φ(z′)− φ(z)] dzdz′

+PV
∫ +∞

−∞

∫ +∞

−∞

f( z
′−z1
h

)f( z
′−z
h

)

(z′ − z1)2(z′ − z)2

[
φ(z′)− φ(z1)−

φ(z)− φ(z1)

z − z1
(z′ − z1)

]

×[φ(z)− φ(z1)] dzdz
′
}
.

(19)
3.4 Second-order expansions of the stress intensity factor and the energy-release-rate in

Fourier’s space

With regard to the SIF, at order 1, the expression of the Fourier transform of K1(a; z1) is
easily established by expressing the function φ in Eq. (18) in terms of its Fourier transform
φ̂ and using Eq. (9)1; one thus gets

K̂1(a; k) =

[
dK0

da
(a)−K0(a)|k|X(kh)

]
φ̂(k). (20)

This expression extends Eq. (8), due to Legrand et al. (2011), by including the term
dK0

da
(a)φ̂(k), which was absent in this equation since for the loading considered by these

authors, the unperturbed K0 was independent of the location of the crack front within
the crack plane.

In the same way, at order 2, the expression of the Fourier transform of K2(a; z1) can be
established by expressing the function φ in Eq. (19) in terms of its Fourier transform φ̂;
one thus gets

K2(a; z1) =
∫ +∞

−∞

∫ +∞

−∞
φ̂(k)φ̂(k′)

{
1

2

d2K0

da2
(a)ei(k+k

′)z1

+
1

2

dK0

da
(a)PV

∫ +∞

−∞

f( z−z1
h

)

(z − z1)2
(
ei(k+k

′)z − ei(k+k′)z1
)
dz

+
K0(a)

2

[
PV

∫ +∞

−∞

∫ +∞

−∞

f( z−z1
h

)f( z
′−z
h

)

(z − z1)2(z′ − z)2

(
eikz − eikz1

) (
eik
′z′ − eik′z

)
dzdz′

+PV
∫ +∞

−∞

∫ +∞

−∞

f( z
′−z1
h

)f( z
′−z
h

)

(z′ − z1)2(z′ − z)2

(
eikz

′ − eikz1 − eikz − eikz1
z − z1

(z′ − z1)
)

×
(
eik
′z − eik′z1

)
dzdz′

]}
dkdk′

(21)
Now, taking ei(k+k

′)z1 as a common factor in the integrands and using Eq. (9)1, one gets

K2(a; z1) =
∫ +∞

−∞

∫ +∞

−∞
φ̂(k)φ̂(k′)

{
1

2

d2K0

da2
(a)− 1

2

dK0

da
(a)|k + k′|X((k + k′)h)

+
K0(a)

2

[
I1(h; k, k′; z1) + I2(h; k, k′; z1)

]}
ei(k+k

′)z1dkdk′
(22)

10



where I1(h; k, k′; z1) and I2(h; k, k′; z1) are double integrals, the expression and calculation
of which is presented in Appendix A, with the following results:

I1(h; k, k′; z1) ≡ I1(h; k, k′) = |k′|X(k′h)
[
|k + k′|X((k + k′)h)− |k′|X(k′h)

]
I2(h; k, k′; z1) ≡ I2(h; k, k′) =

1

2

[
k2X2(kh)− (k + k′)2X2((k + k′)h)− k′2X2(k′h)

+2|k + k′||k′|X((k + k′)h)X(k′h)
]
.

(23)
Equation (22) becomes, upon use of these formulae and “symmetrization” of the integrand
with respect to k and k′,

K2(a; z1) = K0(a)
∫ +∞

−∞

∫ +∞

−∞
R(a;h; k, k′)φ̂(k)φ̂(k′)ei(k+k

′)z1dkdk′ (24)

where

R(a;h; k, k′) ≡ 1

2

d2K0

K0da2
(a)− 1

2

dK0

K0da
(a)|k + k′|X((k + k′)h)

+
|k + k′|

2
X((k + k′)h)

[
|k|X (kh) + |k′|X (k′h)

]
−1

4

[
(k + k′)2X2((k + k′)h) + k2X2(kh) + k′2X2(k′h)

]
.

(25)

Using the change of variable k1 = k + k′, the preceding expression of K2(a; z1) may be
rewritten in the form

K2(a; z1) = K0(a)
∫ +∞

−∞

[∫ +∞

−∞
R(a;h; k, k1 − k)φ̂(k)φ̂(k1 − k)dk

]
eik1z1dk1

which implies, upon comparison with the definition (7) of the Fourier transform, that

K̂2(a; k1) = K0(a)
∫ +∞

−∞
R(a;h; k, k1 − k)φ̂(k)φ̂(k1 − k)dk. (26)

Note the remarkable property that K̂2(a; k1), just like K̂1(a; k1), depends upon the FK
of the cracked geometry considered through the sole function X defined by Eq. (9) (since
the expression (25) of R(a;h; k, k′) involves only X).

A comparison with the results of Vasoya et al. (2013) for an infinite body is in order here,
by letting h go to infinity. The function R becomes in this limit, since X(kh) → 1

2
(see

Eq. (10)):

lim
h→+∞

R(a;h; k, k′) =
1

2

d2K0

K0da2
(a)− 1

4

dK0

K0da
(a)|k + k′|

+
1

16

[
2|k + k′| (|k|+ |k′|)− (k + k′)2 − k2 − k′2

] (27)

which is another form of the function R found by Vasoya et al. (2013) (and noted P in
their paper). This establishes the consistency of the results with those found in the case
of an infinite body. Interestingly, Eq. (27) is also consistent with the calculations up to
second order of Willis (2013) who considered the more general situation of the dynamic
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in-plane perturbation of a mode-I crack. Specializing his results to some sinusoidal front
perturbations φ(z) = ε cos(kz) in the elastostatic limit, his calculations lead to K2 =

−1

8
K0(kε)2 sin2(kz) in agreement with our results for loading conditions invariant in the

propagation direction, i.e. for
dK0

da
= 0.

The expansion of the Fourier transform Ĝ(a, ε; k) of the elastic energy-release-rateG(a, ε; z)

follows from Irwin’s formula and the expressions (20) and (26) of K̂1(a; k) and K̂2(a; k):

Ĝ(a, ε; k) ≡ G0(a)δ(k) + εĜ1(a; k) + ε2Ĝ2(a; k) +O(ε3) (28)

where δ denotes Dirac’s function, G0(a) the unperturbed elastic energy-release-rate, and
Ĝ1(a; k) =

[
dG0

da
(a)− 2G0(a)|k|X(kh)

]
φ̂(k)

Ĝ2(a; k1) = G0(a)
∫ +∞

−∞
S(a;h; k, k1 − k) φ̂(k) φ̂(k1 − k) dk

(29)

where

S(a;h; k, k′) ≡ 1

2

d2G0

G0da2
(a)− 1

2

dG0

G0da
(a)
[
|k + k′|X((k + k′)h) + |k|X(kh) + |k′|X(k′h)

]
−1

2

[
|k + k′|X((k + k′)h)− |k|X(kh)− |k′|X(k′h)

]2
+2|k||k′|X(kh)X(k′h).

(30)

4 The equilibrium shape of the front of a crack propagating in a heteroge-
neous plate

We shall now apply the preceding results to the study of coplanar propagation of a crack
along the mid-plane of a plate, governed by Griffith’s criterion with a heterogeneous
fracture toughness Gc(x, z) given by

Gc(x, z) ≡ Gc [1 + εgc(x, z)] , (31)

where Gc is a “mean toughness”, ε a small parameter and gc(x, z) a given dimensionless
function describing the toughness fluctuations. For a given loading, provided that G is
equal to Gc at every point of the crack front, the distribution of toughness determines the
shape of this front in the form

x = a+ εφ1(a; z) + ε2φ2(a; z) +O(ε3) (32)

where a, φ1(a; z) and φ2(a; z) are a parameter and functions to be determined.

For the crack front shape depicted by Eq. (32), corresponding to the perturbation function
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δa ≡ εφ1 + ε2φ2, the expression (28) of Ĝ takes the form

Ĝ(a, ε; k) = G0(a) δ(k) + εĜ1
[
a; {φ̂1}

]
(k)

+ε2
{
Ĝ1
[
a; {φ̂2}

]
(k) + Ĝ2

[
a; {φ̂1}

]
(k)
}

+O(ε3)
(33)

where Ĝ1
[
a; {φ̂}

]
and Ĝ2

[
a; {φ̂}

]
are the linear and quadratic functionals of the function

φ̂ defined by Eqs. (29)1 and (29)2 respectively. Also, the value of the local toughness along
the crack front is

Gc

[
x = a+ εφ1(a; z) + ε2φ2(a; z) +O(ε3), z

]
= Gc

[
1 + εgc(a, z) + ε2

∂gc
∂x

(a, z)φ1(a; z)

]
+O(ε3).

The Fourier transform of this expression at the point k1 is

Gc

[
δ(k1) + εĝc(a, k1) + ε2

∫ +∞

−∞

∂ĝc
∂x

(a, k) φ̂1(a; k1 − k)dk

]
+O(ε3).

Equating the right-hand side of equation (33) (at k = k1) to this expression, one gets the
following conditions:

• At order 0:
G0(a) = Gc . (34)

This condition determines the mean location a of the crack front.
• At order 1:

Ĝ1
[
a; {φ̂1}

]
(k) = Gc ĝc(a, k),

which implies, by the expression (29)1 of the functional Ĝ1 and equation (34), that

φ̂1(a; k) = − ĝc(a, k)

2|k|X(kh)− dG0

G0da
(a)

. (35)

• At order 2:

Ĝ1
[
a; {φ̂2}

]
(k1) = −Ĝ2

[
a; {φ̂1}

]
(k1) +Gc

∫ +∞

−∞

∂ĝc
∂x

(a, k) φ̂1(a; k1 − k)dk,

which implies, by equations (29), (34) and (35), that

φ̂2(a; k1) =
1

2|k1|X(k1h)− dG0

G0da
(a)

{∫ +∞

−∞
S(a;h; k, k1 − k)

× ĝc(a, k)

2|k|X(kh)− dG0

G0da
(a)

ĝc(a, k1 − k)

2|k1 − k|X((k1 − k)h)− dG0

G0da
(a)

dk

+
∫ +∞

−∞

∂ĝc
∂x

(a, k)
ĝc(a, k1 − k)

2|k1 − k|X((k1 − k)h)− dG0

G0da
(a)

dk

}
.

(36)

To warrant convergence of the integrals appearing in these expressions of φ̂1(a; k) and

φ̂2(a; k) and their inverse Fourier transforms φ1(a; z) and φ2(a; z), it is necessary to make
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the assumption that

dG0

da
(a) < 0 (37)

which ensures that the denominators of the various fractions never vanish. This hypothesis
is natural since it warrants stability of crack propagation in the case of a homogeneous
toughness (straight crack front). It was satisfied in all experiments mentioned in the
Introduction, and will also be so in those discussed in the sequel.

5 The shape of a crack front encountering a single obstacle

5.1 Toughness map

As an application, we shall determine the equilibrium shape of the front of a crack lying
on the mid-plane of an infinite plate and penetrating into a single obstacle of infinite
length in the direction of propagation, up to second order in the contrast of toughness.
The toughness of the matrix will be denoted GM

c , and the toughness and width of the
obstacle, GO

c and 2d, respectively (see Fig. 4). We shall be particularly interested in the
limit-case where dG0

da
(a)→ 0, corresponding to the situation where the typical distance of

variation of the unperturbed elastic energy release rate is much larger than d.

The toughness distribution may be represented by formula (31) with

Gc ≡ GM
c ; ε ≡ GO

c −GM
c

GM
c

; gc(x, z) ≡ gc(z) ≡

 1 if |z| < d

0 if |z| > d.
(38)

Gc

Gc
M

GOc

O zdïd

Fig. 4. Distribution of fracture toughness on a plane containing a single infinitely elongated
obstacle.

14



5.2 Expressions of the crack front shape up to the second order

The Fourier transform of the function gc(x, z) is given by

ĝc(x, k) ≡ ĝc(k) =
1

2π

∫ d

−d
e−ikz dz =

sin(kd)

πk
. (39)

At order 1, one gets from equations (35) and (39):

φ̂1(a; k) = − sin(kd)

πk
[
2|k|X(kh)− dG0

G0da
(a)
]

so that

φ1(a; z) = − 1

π

∫ +∞

−∞

sin(kd)

k
[
2|k|X(kh)− dG0

G0da
(a)
] eikz dk

= − 2

π

∫ +∞

0

sin(kd)

k
[
2kX(kh)− dG0

G0da
(a)
] cos(kz) dk.

In the limit dG0

da
(a) → 0−, the integral defining φ1(a; z) here diverges. However we are

interested only in the deviation of the crack front from straightness. This deviation can
be characterized at order 1 by the quantity

φ̃1(a; z) ≡ φ1(a; z)− φ1(a; 0) =
2

π

∫ +∞

0

sin(kd)

k
[
2kX(kh)− dG0

G0da
(a)
] [1− cos(kz)] dk . (40)

This quantity has a well-defined limit φ̃1(z) for dG0

da
(a)→ 0− given by

φ̃1(z) ≡ 1

π

∫ +∞

0

sin(kd)

k2X(kh)
[1− cos(kz)] dk . (41)

At order 2, equations (36) and (39) yield, since the function ĝc(x, k) is independent of x:

φ2(a; z) =
1

π2

∫ +∞

−∞

∫ +∞

−∞
S(a;h; k, k′)

sin(kd)

k
[
2|k|X(kh)− dG0

G0da
(a)
] sin(k′d)

k′
[
2|k′|X(k′h)− dG0

G0da
(a)
]

× ei(k+k
′)z

2|k + k′|X((k + k′)h)− dG0

G0da
(a)

dkdk′

=
2

π2

∫ ∫
k+k′≥0

S(a;h; k, k′)
sin(kd)

k
[
2|k|X(kh)− dG0

G0da
(a)
] sin(k′d)

k′
[
2|k′|X(k′h)− dG0

G0da
(a)
]

× cos[(k + k′)z]

2(k + k′)X((k + k′)h)− dG0

G0da
(a)

dkdk′

where we have grouped the terms (k, k′) and (−k,−k′) in the double integral and ac-
counted for the fact that S(a;h;−k,−k′) = S(a;h; k, k′), see equation (30).

Again, we are interested only in the deviation of the crack front from straightness, char-
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acterized at order 2 by the quantity

φ̃2(a; z) ≡ φ2(a; z)− φ2(a; 0) =
2

π2

∫ ∫
k+k′≥0

S(a;h; k, k′)
sin(kd)

k
[
2|k|X(kh)− dG0

G0da
(a)
]

× sin(k′d)

k′
[
2|k′|X(k′h)− dG0

G0da
(a)
] cos[(k + k′)z]− 1

2(k + k′)X((k + k′)h)− dG0

G0da
(a)

dkdk′.
(42)

This quantity has a well-defined limit φ̃2(z) for dG0

da
(a)→ 0− given by

φ̃2(z) ≡ 1

4π2

∫ ∫
k+k′≥0

S0(h; k, k′)
sin(kd)

k|k|X(kh)

sin(k′d)

k′|k′|X(k′h)

cos[(k + k′)z]− 1

(k + k′)X((k + k′)h)
dkdk′

(43)
where

S0(h; k, k′) ≡ lim
dG0/da→0−

S(a;h; k, k′)

= −1

2

[
|k + k′|X((k + k′)h)− |k|X(kh)− |k′|X(k′h)

]2
+ 2|k||k′|X(kh)X(k′h).

(44)
The integral in equation (43) is convergent because the function S0(h; k, k′) verifies the
properties S0(h; k, 0) = S0(h; 0, k′) = 0.

Since the function S0 is obviously invariant upon interchange of k and k′, the integral in
Eq. (43) can be simplified by reducing the integration domain {(k, k′), k + k′ ≥ 0}: this
domain consists of two sub-domains, where k ≥ k′ and k′ ≥ k respectively, which yield
equal contributions; hence the integral is equal to twice the integral over the first sub-
domain. This sub-domain consists of two sub-sub-domains, {(k, k′), k ≥ 0, 0 ≤ k′ ≤ k}
and {(k, k′), k ≥ 0, −k ≤ k′ ≤ 0}; re-noting k′ as −k′ in the integral over the second sub-
sub-domain, one finally gets

φ̃2(z) =
1

2π2

∫ +∞

0

{∫ k

0

[
S0(h; k, k′)

cos((k + k′)z)− 1

(k + k′)X((k + k′)h)

+S0(h; k,−k′) cos((k − k′)z)− 1

(k − k′)X((k − k′)h)

]
sin(kd)

k2X(kh)

sin(k′d)

k′2X(k′h)
dk′
}
dk.

One may now write k′ ≡ λk, 0 ≤ λ ≤ 1 and use the variables of integration (k, λ) instead
of (k, k′); the preceding equation then becomes

φ̃2(z) =
1

2π2

∫ +∞

0

{∫ 1

0

[
S0(h; k, λk)

cos((1 + λ)kz)− 1

(1 + λ)X((1 + λ)kh)

+S0(h; k,−λk)
cos((1− λ)kz)− 1

(1− λ)X((1− λ)kh)

]
sin(kd)

X(kh)

sin(λkd)

λ2X(λkh)
dλ

}
dk

k4
.

Introducing the notation

T 0(kh, λ) ≡ S0(h; k, λk)

k2X(kh)X(λkh)X((1 + λ)kh)
(45)

in the preceding integral and changing the order of integration, one gets the final expres-
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sion of φ̃2(z):

φ̃2(z) =
1

2π2

∫ 1

0

{
J [h;λ; d, λd, (1 + λ)z]− J(h;λ; d, λd, 0)

1 + λ

+
J [h;−λ; d, λd, (1− λ)z]− J(h;−λ; d, λd, 0)

1− λ

}
dλ

λ2

(46)

where

J(h;λ;α, β, γ) ≡
∫ +∞

0
T 0(kh, λ) sin(αk) sin(βk) cos(γk)

dk

k2
. (47)

5.3 Limiting cases of infinite and infinitesimal thickness

In the limit of an infinite body (h → +∞), for which X(kh) → 1
2
, the integrals in Eqs.

(41), (46) and (47) may be calculated analytically, and the final results for φ̃1 and φ̃2 read
(Chopin et al., 2011; Vasoya et al., 2013):

lim
h→+∞

φ̃1(z) =
d

π

[
(1 + u) ln (|1 + u|) + (1− u) ln (|1− u|)

]

lim
h→+∞

φ̃2(z) =


− d

2π

[
(1 + u) ln(1 + u) + (1− u) ln(1− u)

]
if |u| ≤ 1

− d

2π

[
(|u| − 1) ln

(
|u|+ 1

|u| − 1

)
+ 2 ln 2

]
if |u| ≥ 1

, u ≡ z

d
.

(48)

On the other hand, for an infinitely thin plate (h → 0), X is multiplied by a factor of 4

with respect to the case h→ +∞, so that by Eqs. (41), (44), (45), (46) and (47), φ̃1 and

φ̃2 are simply divided by a factor of 4; that is,

lim
h→0

φ̃1(z) =
d

4π

[
(1 + u) ln (|1 + u|) + (1− u) ln (|1− u|)

]

lim
h→0

φ̃2(z) =


− d

8π

[
(1 + u) ln(1 + u) + (1− u) ln(1− u)

]
if |u| ≤ 1

− d

8π

[
(|u| − 1) ln

(
|u|+ 1

|u| − 1

)
+ 2 ln 2

]
if |u| ≥ 1.

(49)

5.4 Numerical solutions for arbitrary values of the thickness

For arbitrary values of h, the integrals appearing in Eqs. (41), (46) and (47) may be

calculated numerically. Instead of plotting both φ̃1(z) and φ̃2(z), we choose to plot the
sole perturbation of the front defined by 2 :

δa(z) = εφ̃1(z) + ε2φ̃2(z) (50)

2 It should be noticed that the definition is not equal to εφ1 + ε2φ2 as in §4. Here the reference
straight line is chosen at z = 0 whereas the former was chosen at the position obtain from eq.
(34). This new definition will also be used further in §6.4.

17



In the following figures, aiming at validating these numerical calculations, its normalized
value is displayed without any lack of generality, for ε = 1.

Figure 5 first compares, in the two limiting cases h → +∞ and h → 0, the value of
δa(z)
d

obtained numerically (full lines) and analytically (dotted lines). The agreement is
excellent in both cases, which shows that the numerical calculation of the integrals is
correct and accurate.
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Numerical: h/d A + '
Analytical: h/d A + '
Numerical: h/d A 0
Analytical: h/d A 0 

Fig. 5. Equilibrium shape of a crack front penetrating into a single obstacle of normalized
toughness contrast ε = 1, in plates of infinite and infinitesimal thicknesses.

Figure 6 now shows the same quantity as a function of the normalized plate thickness
h/d, for the same normalized toughness contrast ε of unity. The dependence of δa(z)/d
upon h/d is quite clear here: when the plate becomes thinner, the deformation of the
crack front decreases, that is, this front becomes “stiffer”. Note that although ε = 1 is
here admittedly high, the perturbation of the front remains reasonably small.

It is worth noting that the effect of the finite thickness of the plate on the crack front
geometry is more pronounced in the thick plate regime, h � d, than in the thin plate
regime, h � d. Indeed the solution for an infinitely thick plate provides an acceptable
approximation (within 10% in the domain |z/d| ≤ 6) for values of h/d exceeding 100,
whereas that for an infinitely thin plate remains acceptable (with the same error on the
same domain) up to values of h/d of the order of 0.4. This observation suggests that the
finite thickness of the specimen may have had a significant impact on the experimental
front geometries reported in the works of Delaplace et al. (1999) and Dalmas et al. (2008).

Another interesting feature is that the range of validity of the first order linear approxi-
mation is independent of the specimen thickness, and extends (within 10% for all values
of z) up to contrasts ε ' 0.2. Indeed, in both limiting cases of intinitely thin and thick
plates, first and second order contributions are proportional to each other by a factor 4
(see Eqs. (48) and (49)).
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Fig. 6. Equilibrium shape of a crack front penetrating into a single obstacle of normalized
toughness contrast ε = 1, in plates of various thicknesses.

6 Experimental investigation of crack pinning by strong designed obstacles

We shall now explore experimentally the process of crack pinning by strong hetero-
geneities. We shall focus on the infinitely thin plate limit h/d → 0, and investigate the
relevance of the second-order formula derived in the previous section to describe the de-
formation of cracks due to a single obstacle. For this, we investigate experimentally the
peeling of a thin film (F) from a patterned substrate (S) (see fig. 7).

6.1 Experimental setup

The specimen preparation follows the procedure detailed in Xia et al. (2012). To introduce
an obstacle of controlled geometry and toughness and permit a quantitative comparison
with the predictions of Section 5, an obstacle of width 2d aligned with the peeling direction
is printed on a transparency using a standard commercial printer. The neat side of the
transparency is subsequently glued onto a glass plate to form the substrate. The thin film
is then spin-coated directly over the printed face from a liquid solution of PDMS obtained
by mixing an elastomer and a curing agent of PDMS (Sylgard 184, Dow Corning Co.) at
a weight ratio of 10:1 by spinning the machine at a rate of 300 rpm during 20 s. This
procedure produces homogeneous thin films with thickness h = 400 µm. This phase is
followed by curing of the thin film and its substrate at a temperature of 60◦C for two
hours. Both curing temperature and time control the cross linking of PDMS and lead to a
Young’s modulus E and a Poisson’s ratio ν of 1.2 MPa and 0.5 (a value characteristic of
incompressible elastomers), respectively. The heat treated samples are then kept at room
temperature for 48 hours prior to the test. This two-stage curing treatment is used to
minimize the residual stress in cured PDMS.
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wavelength of the perturbation, the crack front becomes “stiffer” as the thickness of the
plate decreases.

−6 −4 −2 0 2 4 60

0.2

0.4

0.6

0.8

1

1.2

 

 

h/d → 0
h/d =1
h/d =10
h/d =100
h/d → +∞

δa
(z

)/
d

z/d

Fig. 6. Equilibrium shape of a crack front penetrating into a single obstacle in plates of various
thicknesses, for a normalized toughness contrast of unity.

6 Experimental setup

6.1 Material system

To explore the interaction of a crack front with strong heterogeneities on experimental
examples, thin film peeling experiments are carried out (Fig. 7). In the following, we show
that under some specific loading conditions, the deformation of peeling fronts under the
effect of obstacles of large adhesion energy can be described by the theoretical model
derived previously in the context of crack fronts pinning by tough heterogeneities, when
the zero thickness limit h → 0 is considered (Fig. 3).

F

s

2b

h

x

z

y

2d

vy

vx

θp

Fig. 7. Schematic diagram of the peeling test.
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Fig. 7. Experimental setup: (a) Schematic representation of the peeling test. The substrate is
moved horizontally at the velocity vx in order to maintain a constant peeling angle θp. (b)
Snapshot of the experiment.

A standard peel test configuration is employed to measure the peel force required to peel
off the PDMS thin film. As shown in Fig. 7, the free end of the PDMS thin film is peeled
off at a constant speed, vp = 1.65 mm.s−1, and at a peel angle θp = 45◦, from the ink-
patterned rigid substrate. For ease of experimental implementation, the film is always
peeled upwards, and the rigid substrate is rotated about its hinge to obtain any desired
peel angle. In order to maintain a constant peel angle θp during the test, the substrate
is moved in the horizontal direction at a speed vx = vy sin θp/(1 − cos θp). In this way, a
stationary regime of propagation is reached.

6.2 Compatibility with the theoretical framework

The defect width 2d is chosen to be small enough so that d � 2πrb where the bending

length rb =
√
Eh3/[24(1− ν2)Gc] represents the thin film radius of curvature near the

peeling front, but large enough so that d & h. The first condition ensures that the non-
linear effects arising from the large displacements of the film can be neglected and the
LEFM approach developed in the previous sections applies (Xia et al., in preparation). The
second condition ensures that the geometry of the detachment front can be described by
the previous calculations in the limit h/d→ 0. In practice, d = 1 mm while rb = 1.4 mm,
so that h/d = 0.4 and d/(2πrb) ' 0.1. Finally, the choice of the relatively large peeling
angle θp = 45◦ is motivated by the occurence of large stretching deformations for small
peeling angles that dominate over the bending mode of deformation of the film considered
in our calculation. This transition from a peeling mode governed by stretching to a mode

governed by bending occurs for a peeling angle θcp ' 4

√
Gc/Eh ' 15◦ (Ponson et al., in

preparation).

It is now necessary to explain why, in the limit of very thin plates h/d → 0, the LEFM
analysis of a crack lying at the interface between two elastic plates (see Fig. 3) applies to
the peeling of an elastic plate from a rigid substrate. It so occurs that for the problem
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considered in Fig. 3, the replacement of the bottom elastic plate by a rigid one does not
affect the calculation, as long as the limit h/d→ 0 is considered. Indeed in this limit, as a
result of the Love-Kirchhoff theory of thin plates, all components of the displacement are
identically zero on the unbroken part of the interface between the two plates, irrespectively
of the elasticity of the bottom plate; hence the boundary conditions imposed onto the top
plate by the bottom one are exactly the same as if the latter were rigid 3 . Note that
for a given front geometry, the perturbation δG of the elastic energy-release-rate is twice
larger when the upper plate is bonded onto another elastic plate rather than on some rigid
substrate, since the same amount of elastic energy is released from both plates; but since
the same argument also holds for the elastic energy-release-rate G0 for a straight crack
front, Eqs. (49) derived above using only the value of the ratio δG/G0 apply indifferently
to both cases.

6.3 Characterization of the adhesion energies

To introduce defects pinning the detachment front, we take advantage of strong adhesion
of PDMS on ink, characterized by the high interfacial fracture energy GO

c , as compared to
that on neat transparency, characterized by the lower energy GM

c . To vary the strength of
these defects, we tune their grayscale cgray (cgray = 0 without any obstacle and cgray = 1
for a black obstacle).

The first task is to measure the interfacial fracture energies of PDMS with the trans-
parency (GM

c ), and with the printed obstacle (GO
c ) as a function of cgray. To do so, we first

deduce the mean interfacial fracture energy Gc from Rivlin (1944)’s equation

Gc =
Fp
2b

(1− cos θp) (51)

where Fp is the steady-state peel force measured and b (= 24 mm in the tests) the half-
width 4 of the adhesive (see Fig. 7). An alternative, more refined equation due to Kendall
(1973) incorporating the elasticity of the film is also used, without significantly changing
the results obtained (see Fig. 8). The inset (a) of Fig. 8 shows the peel force Fp as a function
of the peel displacement, for various values of the width 2d of the obstacle. One sees that
the force quickly increases to reach a stationary value. This reflects the stationary loading
conditions imposed to the adhesive that is peeled with an angle maintained constant
during the experiment.

To now deduce the values of GM
c and GO

c from that of Gc, we perform peel strength
measurements of samples with defects with the same gray level cgray but various widths

3 This does not remain true for elastic plates of finite thickness, because as a result of the
theory of 3D elasticity, the horizontal components of the displacement are no longer zero on the
unbroken part of the interface.
4 This width is kept constant during the first set of experiments discussed here, but will be
varied in a second set discussed in Section 6.5 below.

21



2d, and use the equation

Gc =

(
1− d

b

)
GM
c +

d

b
GO
c (52)

expressing the “mixture rule’” for the effective fracture energy of heterogeneous interfaces
invariant along the propagation direction. This procedure is illustrated in Fig. 8 where the
best linear fit of the experimental curve is used to determine the values of GM

c and GO
c .

The adhesion energy of the PDMS-transparency interface found, GM
c = 2.2±0.1 J.m−2, is

confirmed independently through additional peel tests performed on homogeneous speci-
mens. Note that the values of fracture energy are found to slightly vary with the velocity
of the peeling front. In the experiments reported in this paper, the velocity is therefore
fixed to a value of vp = 1.65 mm.s−1.
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Fig. 8. Effective adhesion energy of the interface as a function of the half-width d of the obstacle,
for cgray = 0.4. Inset (a): Peel force versus displacement curves for the same grayscale but
different obstacle half-widths. Inset (b): Contrast of interfacial fracture energy versus grayscale
of the obstacle.

This procedure provides accurate values of the normalized toughness contrast. The con-
trast defined by

ε(cgray) = [GO
c (cgray)−GM

c ]/GM
c

is represented as a function of cgray in the inset (b) of Fig. 8. One observes that ε(cgray)
evolves linearly with cgray, according to the law ε(cgray) = 1.8 cgray. The maximum value of
1.8 corresponding to black ink permits to explore crack pinning by rather strong obstacles,
beyond the range of validity ε . 0.2 of the first-order theory determined by Vasoya et al.
(2013).

6.4 Deformation of the front pinned by a stronger obstacle

A digital camera equipped with a high-magnification lens is positioned above the sub-
strate surface, perpendicularly to it, and used to record in situ images of the peel-front
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configuration. An example of the picture obtained is shown on Fig. 9(c). Using a proper
lighting device, the front shape appears as a thin bright line. The other, thicker bright line
that appears on the raw image results from the reflection of the light on the curvy part of
the debonded thin film and is discarded in the analysis. Image processing is then used to
enhance the contrast and discrete positions of the front are obtained by manual selection
on a zoomed image. In the stationary experimental regime, G0 does not depend on the
crack size a, hence it is not possible to define a mean position using Eq. (34). Instead,
from now on, we take as reference the straight line which intersects the front in z = 0 and
denote δa the front perturbation from this new reference in agreement with Eq. (50). The
result is plotted on Fig. 9(a) with an amplification in the y−direction. One immediately
recognizes the characteristic shape of a crack front pinned by an isolated obstacle of larger
toughness, as has been observed by Dalmas et al. (2008); Patinet et al. (2013a); Budzik
et al. (2013); Chopin et al. (2011).
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Fig. 9. (a) Equilibrium shape of a crack front pinned by a single obstacle of contrast ε = 0.66, and
comparison with the first- and second-order theoretical predictions (Eqs. (49)). (b) Variations
of the amplitude δa(d)/d of the crack front deformation as a function of the contrast, and
comparison with the predictions of the first- and second-order theories. (c) Typical snapshot of
the peeling front as it crosses an obstacle.

The first- and second-order approximations (Eqs. (49)), corresponding to the limit h/d→
0 , are also plotted in Fig. 9(a) using the contrast value ε = 0.66 measured independently
from peel force measurements. It is observed that the second-order theory brings a sig-
nificant correction to the first-order one, by predicting a less deformed (“stiffer”) crack
front, and considerably improves the agreement between experiment and theory.

The “tunability” of the printed obstacles may be exploited to explore other contrasts.
Fig. 9(b) shows the normalized amplitude of the crack front perturbation, defined as the
amplitude of this deformation within the obstacle, that is the difference of position δa(d)
of the front at the edge and center of this obstacle, normalized by the defect half-width d.
This quantity depends only on the contrast, and varies linearly with it according to the
first-order theory. In contrast, the experiments exhibit some “saturation” of the amplitude
as the contrast increases. This saturation is correctly predicted by the second-order theory.

This quantitative comparison with experiments permits to define the practical limits of the
first- and second-order theories. We retrieve experimentally that the first-order calculation
provides an accurate prediction (within 10%) of the deformation of the front of a pinned
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crack for low contrasts, ε . 0.2 (see Section 5.4). The second-order calculation extends
this range of validity to at least ε = 0.7, as shown experimentally (Fig. 9(b)). For larger
contrasts, the second-order theory underestimates the deformation of the front; either a
higher-order development or a numerical approach (see Bower and Ortiz (1991); Lazarus
(2003)) would be needed to accurately describe the geometry of the crack front in such
situations.

6.5 Effect of the sample width on the deformation of the front

In the previous set of experiments, we limited our analysis to the region |z/d| ≤ 5. Beyond
this domain, we observe deviations from the theoretical predictions that suggest that the
effect of the finite width neglected in the calculations may begin to play a significant role.

To investigate this question, we measure the crack front deformation for a fixed con-
trast ε = 0.66 and a fixed defect half-width d = 1 mm, but various specimen widths 2b.
Fig. 10(a) shows the results obtained 5 . The comparison with the first- and second-order
theories (strictly valid in the limit b/d → +∞) displayed in Fig. 10(a) shows that the
specimen width has a negligible effect on the crack front deformation if b/d & 12 in the
peeling test geometry used in this study. Provided this condition is met, the second-order
expansion captures the front geometry fairly well, confirming the results of the previous
section and the relevance of the second-order correction for strong obstacles.
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Fig. 10. Effect of the specimen width on the front perturbation: (a) Geometry of the pinned front
for ε = 0.66 for various specimen widths 2b. (b) Geometry of the pinned front after correction
by the unpinned front geometry.

For the smallest sample having b/c = 8, the crack front geometry is clearly influenced
by the finite width of the specimen. To account for this effect, Patinet et al. (2013a)
proposed to correct the crack front deformation δa(z) observed by subtracting the de-
formation δahom(z) measured for a homogeneous interface, before comparing it to that

5 Because of the symmetry (z → −z) of the peeling test geometry, we only show one half of the
front and represent the mean value of the deformations δa(z) measured in the regions z < 0 and
z > 0
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predicted theoretically for an infinitely wide specimen. This procedure is tentatively ap-
plied to our experiments: first, the crack front geometry was measured in homogeneous
specimens of various widths 2b, as shown by the discrete points in the inset of Fig. 10(b).
The parabolas δahom(z) = 0.037 z2/b also represented there by straight lines provide a
good description of the experimental points. Then this deformation was subtracted from
the original deformation and the corrected crack front geometry was compared to the theo-
retical predictions in Fig. 10(b). One observes that this procedure degrades the agreement
between experimental and theoretical values.

The apparent inappropriateness of this procedure might be due to the fact that it makes
the implicit assumption that the zeroth-order crack front shape (for a homogeneous inter-
face) is influenced by the finite width of the specimen, but that the first- and second-order
corrections (due to the presence of the obstacle) are less, since the corrected crack front
deformation δa(z) − δahom(z) is compared to the sum of these corrections calculated in
the limit b/d → +∞. There is no clear reason why this assumption should be correct,
especially considering the large influence of the thickness 2h of the specimen upon the
first- and second-order corrections.

A discussion of the results of Patinet et al. (2013a) is finally possible. These authors
performed similar measurements of the crack front deformation when pinned by a single
obstacle, and concluded that the predictions of the first-order theory were quantitatively
correct over a much larger range of values of the contrast than found here. Since this range
of validity was shown to be independent of the specimen thickness, we might attribute
this discrepancy to the finite width of the specimen: Patinet et al. (2013a) used specimen
widths in the range 9 . b/d . 13, for which the effect of the finite width of the specimen
was significant in our setup, and used the procedure of correction of the observed crack
front geometries depicted above. Now in the double cantilever beam they used, the sign
of the curvature of the crack front for a homogeneous interface was opposite to that of
the same curvature in our peeling test. As a result, the subtraction of δahom(z) from δa(z)
resulted in an increase of the crack front deformation instead of a decrease like in our case
(see Figs. 10(a) and (b)). If, as suggested by the above results, the procedure of correction
of the observed crack front shapes was in reality inappropriate, it might have led to an
overestimation of the crack front deformation bringing it closer to the predictions of the
first-order theory, and thus giving the impression of correctness of this theory beyond its
real range of applicability.

While the effect of the specimen thickness on the pinning of crack fronts can now be
quantitatively taken into account, the role played by the specimen width is less obvious
and deserves further investigations. To circumvent this difficulty in our experiments, we
used thin films of sufficiently large width b & 12d with respect to the heterogeneity size
d. Note however that this range of validity might vary with the employed test geometry.
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7 Conclusion

The primary objective of this work was to provide a quantitative description of the process
of crack pinning by heterogeneities (i) taking into account the finite size of the specimens
and (ii) going beyond the linear first order approximation.

The problem was addressed theoretically by calculating the second-order expansion of
the stress intensity factor resulting from some small, but otherwise arbitrary coplanar
perturbation of the front of a semi-infinite crack lying on the mid-plane of a plate of finite
thickness and subjected to general mode I loading conditions. The results obtained were
used to predict the equilibrium geometry of the crack for a given slightly heterogeneous
distribution of fracture energy within its plane. Specializing to the pinning by a single
infinitely elongated obstacle, we found a formula for the shape of the crack front accurate
to second order in the toughness contrast. This formula was fully explicit in all cases, and
entirely analytic (i.e. did not require the numerical evaluation of any integrals) in the two
extreme limits of infinitely thick and infinitely thin plates.

The remainder of the paper focused on experiments performed in the latter limit, using
peeling test with fully controlled fields of local fracture energy. The experimental crack
front deformations were observed to be in good agreement with the theoretical formulas
and the second order term to (i) greatly improve the agreement and (ii) broaden their
range of applicability in terms of admissible values of the toughness contrast.

This work highlights the following generic features of crack pinning in samples of finite
size:

• For a given distribution of obstacles, the thinner the sample, the smaller the deformation
of the front. In the limit of a very thin specimen, this deformation is exactly four times
smaller than in the limit of an infinitely thick one.
• The second-order correction relevant for large toughness contrasts shows that the crack

front stiffens under the action of strong obstacles; in other words, the first-order ap-
proximation overestimates the deformation of the crack pinned by such obstacles. This
approximation is sufficient for normalized contrasts up to ε ' 0.2, whereas the second-
order one correctly predicts the crack front deformation up to ε ' 0.7, irrespective of
the specimen thickness.
• Although the effect of specimen thickness can now be quantitatively taken into account,

the finite width of the specimen might play a significant role and deserve further inves-
tigations. In practice, we found that in peeling tests, films at least 12 times wider than
the defect size are necessary in order to apply the theory developed in this paper under
the hypothesis of infinite width.
• Generally speaking, the non-linear correction arising from large contrasts of toughness

is expected (Delaplace et al., 1999; Xia et al., 2012) to play a significant role in various
experimental situations and should be taken into account to predict the failure behavior
of engineered heterogeneous materials with new and improved properties. We have
shown that the second order approximation is useful to increase the accuracy. However
numerical methods become unavoidable to consider strong heterogeneities. Iteration on
the perturbation approaches is then an promising method (Vasoya et al., 2014).
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A Appendix : Calculation of integrals I1 and I2

A.1 Integral I1

This integral is given by

I1(h; k, k′; z1) = PV
∫ +∞

−∞

∫ +∞

−∞

f( z−z1
h

)f( z
′−z
h

)

(z − z1)2(z′ − z)2

×
(
eik(z−z1) − 1

) (
eik
′(z′−z) − 1

)
eik
′(z−z1)dzdz′.

Quite remarkably, one may express it in terms of the sole function X defined by Eq.
(9). To do so, the first step consists in performing the changes of variables z − z1 = ζ,
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z′ − z = ξ; one thus gets

I1(h; k, k′; z1) ≡ I1(h; k, k′) = PV
∫ +∞

−∞

∫ +∞

−∞

f( ζ
h
)f( ξ

h
)

ζ2ξ2

(
eikζ − 1

) (
eik
′ξ − 1

)
eik
′ζdζdξ

= PV
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−∞

f( ζ
h
)

ζ2

(
ei(k+k

′)ζ − eik′ζ
)
dζ . PV

∫ +∞

−∞

f( ξ
h
)

ξ2

(
eik
′ξ − 1

)
dξ.

Writing then ei(k+k
′)ζ − eik′ζ as ei(k+k

′)ζ − 1 + 1− eik′ζ , performing the changes of variables
ζ/h = u and ξ/h = v, and using the definition (9) of X, one gets Eq. (23)1 of the text.

A.2 Integral I2

This integral is given by

I2(h; k, k′; z1) = PV
∫ +∞

−∞

∫ +∞

−∞

f( z
′−z1
h

)f( z
′−z
h

)

(z′ − z1)2(z′ − z)2
×[

eik(z
′−z1) − 1− eik(z−z1) − 1

z − z1
(z′ − z1)

] [
eik
′(z−z1) − 1

]
dzdz′.

Again, one may express it in terms of the sole function X. Indeed, one may first perform
the changes of variables z′ − z1 = ζ, z − z′ = ξ; one gets

I2(h; k, k′; z1) ≡ I2(h; k, k′) = PV
∫ +∞

−∞
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h
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)
dζdξ.

Now, “symmetrizing” the integrand with respect to the variables of integration ζ and ξ,
one gets

I2(h; k, k′) =
1

2
PV
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Reasoning then like for integral I1, one gets Eq. (23)2 of the text.
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