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a b s t r a c t

Three dimensional calculations of ductile fracture under mode I plane strain, small scale
yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a pro-
gressively cavitating solid with two populations of void nucleating second phase particles.
Larger inclusions that result in void nucleation at an early stage are modeled discretely while
smaller particles that require large strains to nucleate voids are homogeneously distributed. Full
field solutions are obtained for eight volume fractions, ranging from 1% to 19%, of randomly
distributed larger inclusions. For each volume fraction calculations are carried out for seven
random distributions of inclusion centers. Crack growth resistance curves and fracture surface
roughness statistics are calculated using standard procedures. The crack growth resistance is
characterized in terms of both JIC and the tearing modulus TR. For all volume fractions con-
sidered, the computed fracture surfaces are self-affine over a size range of nearly two orders of
magnitude with a microstructure independent roughness exponent of 0.53 with a standard
error of 0.0023. The cut-off length of the scale invariant regime is found to depend on the
inclusion volume fraction. Consideration of the full statistics of the fracture surface roughness
revealed other parameters that vary with inclusion volume fraction. For smaller values of the
discretely modeled inclusion volume fraction (r7%), there is a linear correlation between
several measures of fracture surface roughness and both JIC and TR. In this regime crack growth
is dominated by a void-by-void process. For greater values of the discretely modeled inclusion
volume fraction, crack growth mainly involves multiple void interactions and no such
correlation is found.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Two fundamental questions in the mechanics and physics of fracture are:
1.
 What is the relation between observable features of a material's microstructure and its resistance to crack growth?

2.
 What is the relation between observable features of a material's microstructure and the roughness of the fracture surface?

An obvious corollary question is: What is the relation, if any, between a material's crack growth resistance and the
roughness of the corresponding fracture surface?
All rights reserved.
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Here, we report on calculations of ductile crack growth aimed at addressing these questions. At room temperature,
ductile fracture of structural metals generally occurs by the nucleation, growth and coalescence of micron scale voids.
The voids nucleate either by debonding or cracking of inclusions and/or second phase particles. This process was identified
by Tippur (1949) and subsequently documented by Puttick (1959), Rogers (1960) and Gurland and Plateau (1963).
Micromechanical modeling of this process of ductile fracture initiated with the work of McClintock (1968) and Rice and
Tracey (1969). Reviews from a range of perspectives and with extensive references are available from Goods and Brown
(1979), Garrison and Moody (1987), Tvergaard (1990) and Benzerga and Leblond (2010).

In a variety of structural alloys, the distribution of void nucleating particles can be idealized as involving two size scales;
larger inclusions that nucleate voids at relatively small strains and smaller particles that nucleate voids at much larger
strains. The size of the void nucleating particles is typically between 0:1 μm and 100 μm, with volume fractions of no more
than a few percent. It is well appreciated that the distribution of void nucleating particles plays a major role in setting the
crack growth resistance in such materials. We idealize such a microstructure by modeling the larger inclusions discretely (e.
g. MnS inclusions in steels) to introduce a length scale, while the smaller particles (e.g. carbides in steels) are taken to be
homogeneously distributed. This type of idealized microstructure has been used in a variety of 2D and 3D ductile fracture
studies, e.g. Needleman and Tvergaard (1987), Mathur et al. (1996), Tvergaard and Needleman (2006). However, it is only
recently that the computational capability has been available, e.g. Needleman et al. (2012), Tang et al. (2013), to compute
ductile crack growth of sufficient extent and in sufficient detail to quantify fracture surface roughness as in Needleman et al.
(2012), Ponson et al. (2013, submitted for publication).

Although the qualitative study of fracture surface morphology dates back to the sixteenth century, technological
advancements (ASM Handbook, 1987) and advancements in the description of complex scale invariant geometries (Feder,
1988) in the twentieth century have made quantitative statistical fractography possible. In particular, Mandelbrot et al.
(1984) were the first to quantitatively characterize the scale invariant properties of fracture surfaces and termed them
fractal (Mandelbrot, 1983). Subsequently, the distinction between self-similar and self-affine objects was appreciated
(Mandelbrot, 1985). A function y¼ hðxÞ is said to exhibit self-similar (or fractal) properties if it remains statistically invariant
under a uniform dilatation in the x and y directions, while a self-affine function is statistically invariant under the
anisotropic scaling hðλxÞ ¼ λHhðxÞ. A self-affine function with Hurst exponent H is a fractal object with dimension D¼ 2�H
(where D is the box or Minkowski–Bouligand dimension, see e.g. Moreira et al., 1994) when viewed at sufficiently small
length scales but is an ordinary one dimensional object (D¼1) when viewed over a sufficiently large length scale, see for
example Barabasi and Stanley (1995) or Feder (1988). Fracture surfaces have been shown to be self-affine, not self-similar.
The self-affine nature of the roughness of fracture surfaces can be characterized by the Hurst exponent of the correlation
function of the fracture surface profile, also referred to as the roughness exponent. The self-affine nature of the roughness of
fracture surfaces has been observed over a range of size scales in a wide variety of materials (metals, ceramics, glasses,
rocks) and under a wide variety of loading conditions (quasi-static, dynamic, fatigue), see for example Underwood and
Banerji (1986), Dauskardt et al. (1990), Cherepanov et al. (1995), Bouchaud (1997), Charkaluk et al. (1998).

In Mandelbrot et al. (1984) a negative correlation was found between what they termed the fractal dimension of the
fracture surface roughness and the corresponding impact energy (equivalent to a positive correlation with the roughness
exponent). This gave rise to the hope that the fractal dimension of the fracture surface roughness could be related to the
material's toughness. Subsequent studies have been inconclusive, with some studies reporting a positive correlation, Wang
et al. (1988), Ray and Mandal (1992), others a negative correlation, Mu and Lung (1988), Su et al. (1991), Carney and
Mecholsky (2013) reported a positive or negative correlation depending on the fracture mechanism, and still others
reported no correlation, Pande et al. (1987), Richards and Dempsey (1988), Davidson (1989). Charkaluk et al. (1998) argued
that the discrepancy between these results is related to the methods used to calculate the fractal dimension.

Bouchaud et al. (1990) proposed that the exponent characterizing the scale invariance of the fracture surface roughness
is universal, i.e. independent of the material and its toughness as long as the fracture mechanism remains fixed.
Alternatively, a multifractal characterization of fracture surface roughness has been suggested as discussed at length by
Cherepanov et al. (1995). Dauskardt et al. (1990) suggested that the scaling properties of the fracture surface may depend on
the fracture mechanism and/or the range of length scales considered. Ponson et al. (2006) characterized the roughness
scaling in terms of two exponents, one for the roughness in the direction of crack propagation and the other for the
roughness parallel to the crack front. Bonamy et al. (2006) (see also Bonamy and Bouchaud, 2011) argued that there are two
roughness regimes, one pertaining to length scales smaller than the fracture process zone and the other to length scales
larger than the fracture process zone, with each regime characterized by different values of scaling exponents. More
recently, Bouchbinder et al. (2006), Vernède et al. (submitted for publication), Ponson et al. (2013) have stressed the
importance, particularly for ductile fracture, of considering the full fracture surface statistics, not just the correlation
function. The full roughness statistics of the calculated ductile fracture surfaces in Ponson et al. (2013) were found to vary
with the fracture parameters.

A variety of models have been introduced aimed at understanding and simulating the scaling characteristics of fracture
surfaces, e.g. Ramanathan et al. (1997), Dauskardt et al. (1990), Bouchbinder et al. (2004), Afek et al. (2005), but these have
only focused on the value of the roughness exponent and do not provide a basis for calculating crack growth resistance as
well as roughness. Here, as in Needleman et al. (2012), Ponson et al. (2013, submitted for publication), we report on 3D finite
deformation calculations of ductile crack growth under small scale yielding conditions with imposed monotonically
increasing mode I remote loading. The analyses are based on a constitutive framework for a progressively cavitating ductile
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solid stemming from the work of Gurson (1975). An advantage of such simulations, presuming that they are physically
realistic, is that one feature of the microstructure can be varied with all other material characteristics fixed and the fracture
process can be constrained to involve only one mechanism. This is difficult, if not impossible, to do in experiments.

In the calculations reported here, the material and fracture properties are fixed and only the volume fraction of, or
equivalently the mean spacing between, the larger void nucleating inclusions is varied. Fracture toughness and fracture
surface roughness results are reported for eight volume fractions, ranging from 1% to 19%, of fixed size inclusions. For each
inclusion volume fraction seven realizations were analyzed. The results presented here extend those in Ponson et al.
(submitted for publication). The crack growth resistance is quantified both in terms of JIC (ASTM E1820-11, 2011) and the
tearing modulus, TR (Paris et al., 1979). Quantities characterizing the fracture surface roughness statistics along the direction
of crack growth were computed. For the correlation function, these include the Hurst exponent and a cut-off length of the
scale invariant regime. We also go beyond the characterization of fracture surface roughness by the correlation function and
investigate the scaling of the full statistics of the fracture surface roughness which suggests other possible characterizing
parameters. Possible connections between quantitative measures of crack growth resistance and quantitative measures of
fracture surface roughness are explored and related to the nature of the ductile crack growth process.

2. Problem formulation and numerical method

A mode I small scale yielding boundary value problem is analyzed for a slice of material having dimensions hx � hy � hz
and with an initial crack as shown in Fig. 1. The boundary value problem analyzed here is the same as in Needleman et al.
(2012), Ponson et al. (2013) and, for completeness, will be briefly described. Further details and additional references are
given in Tvergaard and Needleman (2006), Needleman et al. (2012), Ponson et al. (2013). However, here the three
dimensional analyses of ductile fracture are carried out using a data parallel implementation.

A convected coordinate Lagrangian formulation is used and all field quantities are taken to be functions of the convected
coordinates and time. A Cartesian frame is used in the reference configuration with the coordinates denoted by x0, y0 and z0.
Also, x, y and z are used to denote Cartesian coordinates of material points in the deformed configuration. The initial velocity
and remote displacement boundary conditions correspond to an isotropic elastic mode I singular field. In addition,
symmetry conditions u3 ¼ 0, T1 ¼ 0, T2 ¼ 0 are imposed on z0 ¼ 0;hz where u is the displacement vector and T is the traction
vector. The finite element calculations are based on the dynamic principle of virtual work written in tensor notation asZ

V
τijδEij dV ¼

Z
S
Tiδui dS�

Z
V
ρ
∂2ui

∂t2
δui dV ð1Þ

Here, τij are the contravariant components of the Kirchhoff stress on the deformed convected coordinate net (τij ¼ Jsij,
with sij being the contravariant components of the Cauchy stress and J being the ratio of the current to reference volume),
Eij is the Lagrangian strain tensor, ρ is the mass density, V and S are the volume and surface of the body in the reference
configuration.

The block dimensions are hx ¼ hy ¼ 0:4 m and hz¼0.005 m, with an initial crack tip of opening b0 ¼ 1:875� 10�4 m.
The finite element mesh consists of 428,256 twenty node brick elements giving 1,868,230 nodes and 5,604,690 degrees
of freedom. Ten uniformly spaced elements are used through the thickness hz. A uniform 208�64 in-plane (x0�y0 plane)
mesh is used in a 0.02 m � 0.006 m region immediately in front of the initial crack tip with in-plane elements of dimension
9:62� 10�5 m by 9:38� 10�5 m. The element dimension ex ¼ 9:62� 10�5 m serves as a normalization length.

Displacements corresponding to the quasi-static mode I isotropic elastic singular displacement field are imposed on the
remote boundaries of the region analyzed. Also, the initial velocity field in the region analyzed corresponds to that of the
mode I singular field. These initial and boundary conditions aim at providing an approximation to quasi-static response. For
quasi-static response, only the ratio of geometric lengths matter, not their absolute magnitude.
Fig. 1. Sketch of the initially cracked block analyzed and the finite element mesh in the vicinity of the initial crack tip.
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The constitutive framework is the modified Gurson constitutive relation (for more details see Tvergaard, 1990) with the
rate of deformation tensor written as the sum of an elastic part, de ¼ L�1 : r̂, a viscoplastic part, dp, and a part due to
thermal straining, dΘ ¼ α _ΘI, so that

d¼ L�1 : r̂þα _ΘIþdp ð2Þ
Here, r̂ is the Jaumann rate of Cauchy stress, Θ is the temperature, α¼ 1� 10�5/K is the thermal expansion coefficient and L
is the tensor of isotropic elastic moduli.

The plastic part of the strain rate, dp, is given by Pan et al. (1983)

dp ¼ ð1� f Þs
_ε

r : ∂Φ∂r

" #
∂Φ
∂r

ð3Þ

with the flow potential having the form (Gurson, 1975)

Φ¼ s2e
s2þ2q1f

n cosh
3q2sh
2s

� �
�1�ðq1f nÞ2 ¼ 0 ð4Þ

where q1¼1.25, q2¼1.0 are parameters introduced in Tvergaard (1981, 1982a), f is the void volume fraction, s is the matrix
flow strength, and

s2e ¼
3
2
r′ : r′; sh ¼

1
3
r : I; r′¼ r�shI ð5Þ

The function fn, introduced in Tvergaard and Needleman (1984), is given by

f n ¼
f ; f o f c
f cþð1=q1� f cÞðf � f cÞ=ðf f � f cÞ; f Z f c

(
ð6Þ

where the values fc¼0.12 and ff¼0.25 are used.
The matrix plastic strain rate, _ε , is given by

_ε ¼ _ε0
s

gðε;ΘÞ

� �1=m
; g ε;Θð Þ ¼ s0G Θð Þ½1þε=ε0�N ð7Þ

with ε ¼ R
_ε dt and ε0 ¼ s0=E. In Eq. (7) the values of _ε0 ¼ 103 s�1, m¼0.01, N¼0.1, s0 ¼ 300 MPa and ε0 ¼ s0=E¼ 0:00429

where E¼70 GPa. The value of Poisson's ratio, ν¼ 0:3, is used in the calculations.
Adiabatic conditions are assumed so that

ρcp
∂Θ
∂t

¼ χτ : dp ð8Þ

with ρ¼ 7600 kg=m3 ¼ 7:6� 10�3 MPa=ðm=sÞ2, cp¼465 J/(kg 1K), χ ¼ 0:9, and the temperature-dependence of the flow
strength is given by

GðΘÞ ¼ 1þbG expð�c½Θ0�273�Þ½expð�c½Θ�Θ0�Þ�1� ð9Þ
with bG¼0.1406 and c¼0.00793/K. In Eq. (9), Θ and Θ0 are in K and Θ0 ¼ 293 K. Also, the initial temperature is taken to be
uniform and 293 K.

The initial void volume fraction is taken to be zero and the evolution of the void volume fraction is governed by

_f ¼ ð1� f Þdp : Iþ _f nucl ð10Þ
where the first term on the right hand side of Eq. (10) accounts for void growth and the second term accounts for void
nucleation.

Eight point Gaussian integration is used in each twenty-node element for integrating the internal force contributions and
twenty-seven point Gaussian integration is used for the element mass matrix. Lumped masses are used so that the mass
matrix is diagonal. The discretized equations are integrated using the explicit Newmark β-method (β¼ 0) (Belytschko et al.,
1976). The constitutive updating is based on the rate tangent modulus method in Peirce et al. (1984), while material failure
is implemented via the element vanish technique in Tvergaard (1982b). When the value of the void volume fraction f at
an integration point reaches 0:9f f , the value of f is kept fixed so that the material deforms with a very small flow strength.
The entire element is taken to vanish when three of the eight integration points in the element have reached this stage.

3. Inclusion distributions

In the calculations the material microstructure is characterized by two populations of void nucleating second phase
particles: (i) uniformly distributed small particles that are modeled by plastic strain controlled void nucleation; and (ii)
large, low strength inclusions that are modeled as “islands” of stress controlled nucleation. In each case, void nucleation is
assumed to be described by a normal distribution (Chu and Needleman, 1980).
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For plastic strain nucleation

_f
strain
nucl ¼D _ε ; D¼ f strainN

sstrainN

ffiffiffiffiffiffi
2π

p exp �1
2

ε�εN
sstrainN

 !2
2
4

3
5 ð11Þ

with f strainN ¼ 0:04, εN ¼ 0:3 and sstrainN ¼ 0:1.
For stress controlled nucleation

_f
stress
nucl ¼ A _sþ _sh

� �
; A¼ f stressN

sstressN

ffiffiffiffiffiffi
2π

p exp �1
2

sþsh�sN
sstressN

� �2
" #

ð12Þ

if ðsþshÞZðsþshÞmax, where the maximum is taken over the previous mechanical history, and ∂ðsþshÞ=∂t40. Otherwise
A¼0.

The value of f stressN in Eq. (12) at a point (x0; y0; z0) in the initial undeformed configuration, for an inclusion of radius rc
centered at (xc; yc; zc) is

f stressN ¼
f N for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0�xcÞ2þðy0�ycÞ2þðz0�zcÞ2

q
rrc

0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0�xcÞ2þðy0�ycÞ2þðz0�zcÞ2

q
4rc

8><
>: ð13Þ

The values f N ¼ 0:04, sN=s0 ¼ 1:5 and sstressN =s0 ¼ 0:2 are used in the calculations. In Eq. (10) _f nucl ¼ _f
strain
nucl þ _f

stress
nucl .

The inclusion radius rc ¼ 1:5ex (where ex is the in-plane element dimension) is kept fixed and the number of inclusions,
Nincl, in the uniform mesh region in front of the initial crack tip is varied. In terms of ex the volume, Vu, of the uniform mesh
region in front of the initial crack tip is Vu ¼ 200ex �60ex �50ex. The inclusion volume fraction, n, and the mean inclusion
spacing, ℓ0, are given in terms of ex by n¼ Nincl � 4

3πr
3
c

	 

=Vu and ℓ0 ¼ ðVu=NinclÞ1=3. The location of the inclusion centers

within the uniform mesh region in front of the initial crack tip is determined using a random number generator with the
restriction that the center to center distance of two neighboring inclusions is at least twice the inclusion radius.

4. Numerical results

A monotonically increasing stress intensity factor, KI(t), with _K I=ð_ε0s0
ffiffiffiffiffi
ex

p Þ¼ 1359:4, is prescribed and calculations
continue until the crack approaches the boundary of the uniform mesh region. The calculations are carried out for eight
inclusion volume fractions n¼0.012, 0.024, 0.036, 0.048, 0.071, 0.095, 0.143 and 0.19 corresponding to mean inclusion
spacings ℓ0 ¼ 10:6ex, 8:41ex, 7:35ex, 6:68ex, 5:83ex, 5:3ex, 4:63ex and 4:21ex, respectively. For each inclusion volume fraction,
n, calculations are carried out for seven random distributions of inclusion centers (i.e., seven realizations). For n¼0.012 crack
growth did not occur under small scale yielding conditions for two distributions because no inclusions were sufficiently
close to the initial crack front. Hence, for n¼0.012 results are presented for five random distributions. A random distribution
of inclusions on z0 ¼ 0 and z0 ¼ hz is shown in Fig. 2 for n¼0.024 (ℓ0 ¼ 8:41ex) while Fig. 3 shows a random distribution for
n¼0.143 (ℓ0 ¼ 4:63ex).

Curves of normalized crack opening displacement, b=b0�1, versus normalized applied J, J=ðs0b0Þ, for one realization of
each volume fraction, n, are shown in Fig. 4. Here, b is the current crack opening at x0 ¼ �2:82ex and z0 ¼ hz (there is little
dependence of the value of b on z0). The value of J is computed from the applied stress intensity factor KI using the small
scale yielding relation (Rice, 1968),

J ¼ K2
I
ð1�ν2Þ

E
ð14Þ

In ductile materials significant crack opening and crack tip blunting occurs before crack growth. Under quasi-static mode
I small scale yielding conditions, the theoretical value of the slope of the crack opening ðb=b0�1Þ versus J=ðs0b0Þ curve for a
blunting crack with the strain hardening parameters used here is about 1/2. The dashed line in Fig. 4 is
ðb=b0�1Þ ¼ 0:5J=ðs0b0Þ and agrees very well with the computed J versus crack opening relation prior to the onset of crack
growth. This provides an indication that in our dynamic calculations quasi-static loading conditions are reasonably well
approximated, at least prior to the onset of crack growth.

In Fig. 5a the white region in x040 corresponds to f Z0:1 on the planes along z0 ¼ hz=10, hz=2 and hz for one random
distribution of inclusions with n¼0.024 at J=ðs0exÞ ¼ 32:6 while Fig. 5b shows a similar plot for n¼0.143 at J=ðs0exÞ ¼ 17:9. The
extent of the f Z0:1 region along x-axis is defined as the projected crack length in a plane. Subsequently, the overall amount of
crack growth, ΔaðtÞ, is defined as the mean projected crack length for ten uniformly spaced planes through the thickness.
Although f¼0.1 has no special significance in the constitutive relation, it gives a representative picture of the current crack tip
as noted by Needleman and Tvergaard (1987), Becker et al. (1989). In Fig. 5a, for n¼0.024, Δa� 178ex and in Fig. 5b, for
n¼0.143, Δa� 175ex. In all six plots in Fig. 5 the extent of the frame is x0 ¼ 200ex which is the end of the fine mesh region.

For n¼0.024, where inclusions are relatively far away from each other (ℓ0 ¼ 8:41ex) shear localization plays a significant
role in linking voids nucleated from the larger inclusions as evident from the extent of zig-zag in the crack path shown in
Fig. 5a. For n¼0.143 (ℓ0 ¼ 4:63ex) the abundance of inclusions ahead of the crack tip facilitates crack growth along the initial
crack plane and the extent of zig-zag is limited as seen in Fig. 5b.
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Fig. 3. One initial random distribution of inclusions ahead of the initial crack tip for the inclusion volume fraction n¼0.143 (ℓ0 ¼ 4:63ex). (a) z0 ¼ 0. (b)
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Fig. 2. One initial random distribution of inclusions ahead of the initial crack tip for the inclusion volume fraction n¼0.024 (ℓ0 ¼ 8:41ex). (a) z0 ¼ 0. (b)
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Fig. 4. Curves of normalized crack opening displacement, b=b0�1, versus normalized applied J, J=ðs0b0Þ, for one random distribution of inclusions for each
of the eight inclusion volume fractions n considered.
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Fig. 5. The white region for x040 corresponds to values of void volume fraction f Z0:1 on three parallel planes through the thickness (z¼ constant) for
one random distribution of: (a) an inclusion volume fraction n¼0.024 (ℓ0 ¼ 8:41ex) and (b) an inclusion volume fraction n¼0.143 (ℓ0 ¼ 4:63ex).
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4.1. Crack growth resistance

Crack growth resistance curves, J�R curves, for all seven inclusion distributions with n¼0.024 and with n¼0.143 are
shown in Fig. 6. The value of J is normalized by s0ex and the crack length Δa is normalized by ex. As seen in Fig. 6 both the
level and the slope of the J�R curve is greater for the smaller volume fraction of inclusions. The variation in the J�R curves
for the seven random distributions of inclusions for n¼0.024, Fig. 6a, mainly stems from the initial stage of crack growth.
The initiation of crack growth depends on the interaction of the initial crack front with the nearest inclusions and for fewer
inclusions as with n¼0.024 there is a significant variation among the various realizations. On the other hand, for n¼0.143,
Fig. 6b, the variation in the J�R curves for the seven random distributions of inclusions is small.

The value of JIC, a measure of crack initiation toughness, is defined by a procedure outlined in the ASTM E1820-11 (2011)
standard. Here, we use the procedure illustrated in Fig. 7a which mimics the ASTM E1820-11 (2011) standard. As shown in
Fig. 7a, a power law of the form J=ðs0exÞ ¼ AðΔa=exÞB is fit to the portion of the J�R curve in between two exclusion lines,
where the exclusion lines are J=ex ¼ 2s0ðΔa=ex�1:5Þ and J=ex ¼ 2s0ðΔa=ex�15Þ. The value of normalized fracture toughness
JIC=ðs0exÞ is defined as the intersection of the curve J=ðs0exÞ ¼ AðΔa=exÞB and the line J=ex ¼ 2s0ðΔa=ex�2Þ. The variation of
JIC=ðs0exÞ with n is shown in Fig. 7b. The error bars in Fig. 7b show the standard errors for realizations of inclusion
distributions having the same value of n. The standard error, Rs, of a variable, X, is given by

Rs ¼

1
NR�1

∑
NR

i ¼ 1
ðXi�X Þ2

 !1=2

ffiffiffiffiffiffi
NR

p ð15Þ

Here, NR is the number of realizations of the variable X. As seen in Fig. 7b, the value of JIC=ðs0exÞ decreases rapidly with
increasing n for nr0:071 and then decreases slowly, being nearly the same value for n¼0.143 and n¼0.19. The variation of
JIC=ðs0exÞ with the mean inclusion spacing, ℓ0=ex, is shown in Fig. 7c. Two distinct regions can be identified. For ℓ0o � 6ex,
the value of JIC=ðs0exÞ increases linearly with one slope while for ℓ0Z � 6ex, JIC=ðs0exÞ increases linearly with ℓ0=ex with a
much larger slope. As will be discussed subsequently, there is a qualitative change in the nature of the crack growth process
at ℓ0 � 6ex (n� 0:07).

Another quantity that characterizes crack growth resistance is the non-dimensional tearing modulus (Paris et al., 1979),

TR ¼
E
s20

 !
dJ

dðΔaÞ ð16Þ

As seen in Fig. 6, after some crack growth the J�R curves are nearly linear and the tearing modulus, TR, is calculated from the
slope of a line fit to the portion of the J�R curve 100rΔa=exr150. The variation of TR with n and ℓ0=ex is shown in Fig. 8a
and b. The error bars in Fig. 8 show the standard errors for realizations of inclusion distributions having the same value of n
and ℓ0=ex. The variation of TR with n and ℓ0=ex in Fig. 8a and b is similar to that in Fig. 7b and c for JIC=ðs0exÞ. In particular, in
Fig. 8b there is a bilinear dependence on ℓ0=ex with a transition in slope at ℓ0 � 6ex. Fig. 8c and d shows the variation of TR
with JIC normalized in two ways: in Fig. 8c JIC is normalized by ex which is a fixed length for all volume fractions n, while in
Fig. 8d JIC is normalized by the mean inclusion spacing, ℓ0 which, of course, varies with inclusion volume fraction n. In Fig. 8c
JIC and TR are linearly related for all volume fractions, whereas in Fig. 8d the linear relation between JIC and TR breaks down
for smaller values of TR that correspond to larger values of n or, equivalently, to smaller values of ℓ0. Thus, regardless of the
normalization, the dependence of TR on inclusion volume fraction n or spacing ℓ0 is the same as for JIC for smaller values of n
(lager values of ℓ0).
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4.2. Statistical analysis of fracture surfaces

To calculate the full fracture surface statistics, the deformed finite element mesh on ten z¼ constant planes is projected
onto a uniform grid in the x�y plane (with ðx; y; zÞ denoting the current positions of material points in a Cartesian frame)
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having a grid spacing of ex=2� ex=2 (for the 20-node elements in the uniform region ex=2 is the distance between mesh
points in the x-direction in the undeformed configuration). This uniform grid was superimposed on top of the deformed
finite element mesh and the value of the void volume fraction f on a grid point was interpolated from the four nearest
neighbors taken from each of the four quadrants around that grid point. The fracture surface is then defined by a continuous
f¼0.1 contour connected to the initial crack tip on all ten z¼ constant planes. The fracture surface roughness, hðx; zÞ, is
computed when there are continuous f¼0.1 contours of projected length Z170ex in the x-direction in all ten planes (as
noted in Ponson et al., 2013 the fracture surface scaling is not sensitive to the value of f used to define the fracture surface).
For each calculation there are two fracture surfaces, top and bottom, in the x�z plane having dimensions 170ex � hz. In each
of the ten planes, the top fracture surface roughness, htopðx; zÞ, is the y coordinate at a point (x, z) above the crack for which
f¼0.1 and hbotðx; zÞ is the y coordinate at a point (x, z) below the crack for which f¼0.1. This procedure mimics a profilometer.

Attention is confined to calculating fracture surface roughness in the direction of crack propagation, the x-direction,
because the slab analyzed is too thin to allow a statistical analysis of roughness parallel to the crack front. The height
fluctuations of the fracture surface are characterized by the correlation function, Δh, defined as

ΔhðδxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈½hðxþδx; zÞ�hðx; zÞ�2〉x;z

q
ð17Þ

Here, 〈 〉x;z denotes the average over x and z. The quantity ΔhðδxÞ can be interpreted as the typical difference of height
between two points separated by a distance δx along the mean fracture plane. The correlation function is computed for both
top and bottom fracture surfaces and the final correlation function is obtained by averaging over both surfaces.

Log–log plots of the correlation function ΔhðδxÞ for seven random distributions of inclusions with an inclusion volume
fraction n¼0.024 are shown in Fig. 9a and corresponding plots for n¼0.143 are shown in Fig. 9b. The correlation functions
exhibit power law behavior

ΔhðδxÞpδxβ ð18Þ

where β is the Hurst exponent. The Hurst exponent β lies between 0 and 1, with β¼ 1=2 corresponding to a random walk.
For β41=2, an increase (decrease) is likely to be followed by an increase (decrease); for βo1=2 an increase (decrease) is
likely to be followed by a decrease (increase).
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The value of β is calculated as the slope of the dashed line fit to the range δxo4ex to the Δh versus δx curve on the log–log plot
as illustrated in Fig. 9. The computed values of β for various values of inclusion volume fraction n are shown in Fig. 9c. The average
value is β¼ 0:53 with an standard error of 0.0023. For all values of n, the power law behavior holds for nearly two orders of
magnitude of size scale and then breaks down for δx4ξ as seen in Fig. 9. Thus, the correlation function ΔhðδxÞ exhibits two
regimes, β� 0:53 for δxoξ and β� 0 (on average) for δx4ξ. The value of the cut-off length, ξ, is defined as the intersection of
ΔhðδxÞ ¼Δhs line with the line fit to the linear portion of the log–log plot as illustrated in Fig. 9.

The dependence of the cut-off length, ξ, and the saturation value of the correlation function, Δhs, on the inclusion volume
fraction n and mean inclusion spacing ℓ0=ex is shown in Fig. 10. As can be seen in the figures the values of ξ and Δhs do vary
with n or equivalently with ℓ0=ex. The error bars shown in Fig. 10 are the standard errors for realizations of inclusion
distributions having the same n and ℓ0=ex. The variation of both ξ and Δhs with n, Fig. 10a and c, and with ℓ0=ex, Fig. 10b and
d, is qualitatively similar to the variations of JIC, Fig. 7b and c, and TR, Fig. 8a and b, with both n and ℓ0=ex at least for
no � 0:07 or equivalently ℓ04 � 6ex.

In Vernède et al. (submitted for publication) the full statistics of fracture surface height fluctuations were obtained for
cracks in a variety of materials and it was found that the deviation from Gaussian statistics was material dependent.
Therefore, here, in order to explore possible effects of inclusion volume fraction on the predicted fracture surface
morphology the full statistics of the height variation δhðx; zÞ is investigated. The height variation δhðx; zÞ is defined as

δhðx; zÞ ¼ hðxþδx; zÞ�hðx; zÞ ð19Þ

In Eq. (19), the roughness hðx; zÞ is the average roughness of the fracture surfaces obtained for all realizations for a given
inclusion volume fraction n.

As in Ponson et al. (2013), the procedure used to compute the histogram probability density pðδh∣δxÞ is
1.
Fi
(b
The value of δx is fixed.

2.
 For each location ðx; zÞ on both the top and bottom fracture surfaces, the corresponding height variations δh are

computed. This procedure results in a set fδhgδx of height variations for the fixed scale δx.
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3.
 The histogram for this set of values is computed. The histogram of δh is calculated by placing the values of δh into ‘boxes’
½bminb2�, ½b2b3�, ..., ½bn�1bmax� where the side b1, b2 of the boxes are distributed homogeneously between bmin ¼min½δh�
and bmax ¼max½δh�.
4.
 The histogram probability density is calculated as the fraction of values of δh contained in the ith box.

This procedure is repeated for several values of δx. An important property is that the standard deviation of pðδh∣δxÞ is the
correlation function ΔhðδxÞ.

The distribution pðδh∣δxÞ is shown for three values of δx in Fig. 11a for an inclusion volume fraction n¼0.024 and in
Fig. 11b for n¼0.143. In both plots the larger the value of δx, the broader the distribution, as expected from the scaling of the
correlation function ΔhðδxÞpδxβ .

The distributions in Fig. 11 are not Gaussian, but exhibit fat tails for larger values of δh. This implies that large fluctuations
are not exponentially rare on ductile fracture surfaces as is the case for brittle fracture surfaces (Ponson et al., 2007).
However, at sufficiently large scales δx, the roughness statistics is expected to recover a Gaussian behavior, as seen in
Vernède et al. (submitted for publication). To describe this effect more quantitatively, the distributions pðδhÞ are described
using a family of probability distributions referred to as Student's t-distribution

pk;δhc δhð Þp 1
δhc

1þ1
k

δh
δhc

� �2
 !�ðkþ1Þ=2

ð20Þ

where k is a dimensionless parameter and δhc is a scale factor. Student's t-distribution function has a power law tail
pðδhÞpδh�ðkþ1Þ and approaches a Gaussian as k tends to infinity. The fits to Student's t-distribution are given by the solid
lines in Fig. 11 for three values of δx with the fitting restricted to values of δx=exo10.

The parameter k in Eq. (20) characterizes the shape of the distribution. However, it is more convenient to consider
the parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
instead of k (Ponson et al., 2013). The variation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
with δx for the smallest and

largest inclusion volume fractions, n¼0.012 and n¼0.190, considered are shown in Fig. 12a on a logarithmic scale. As shown
in Fig. 12a,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
pδx�μ with μ¼ 0:165 for n¼0.012 and with μ¼ 0:193 for n¼0.190. As k tends to infinity



Fig. 12. (a) Variations of the parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
obtained from the fit of Student's t-distribution function to p versus δh plots as shown in Fig. 11 with

length scale δx. (b) Variation of ξ2 with inclusion volume fraction n. (c) Variation of ξ2 with mean inclusion spacing ℓo=ex . The value of ξ2 is the value of δx at
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(the Gaussian limit),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
C1. Extrapolating the power law behavior

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðk�2Þ

p
pδx�μ to larger values of δx, givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=ðk�2Þ
p

ðδx ¼ ξ2ÞC1 at the cross-over length δx¼ ξ2 as shown in Fig. 12a. This suggests that for δx4ξ2 Gaussian statistics

are recovered for the fracture surface roughness. The dependence of the cross-over length ξ2 on inclusion volume fraction n
and mean inclusion spacing ℓ0=ex are shown in Fig. 12b and c. The generally decreasing trend of ξ2 with increasing inclusion
volume fraction n or equivalently decreasing mean inclusion spacing ℓ0=ex is seen in Fig. 12b and c. Figs. 12b and c show that
with increasing n (decreasing ℓ0) Gaussian statistics are recovered at a smaller cross-over length ξ2.
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5. Toughness–roughness correlation

The variation of the normalized cut-off length, ξ=ex, with the normalized fracture toughness, JIC=ðs0exÞ, and the variation
of the normalized saturation value of the correlation function, Δhs=ex, with JIC=ðs0exÞ are shown in Fig. 13a and b
respectively. The dashed lines in Fig. 13 are linear least square fits to the values for inclusion volume fractions nr0:071
(ℓ0Z5:83ex). For nr0:071 there is a linear correlation between ξ and Δhs, measures of fracture surface roughness, with JIC, a
measure of fracture toughness. This linear correlation breaks down for n40:071.

The variations of ξ=ex and Δhs=ex with the tearing modulus, TR, are shown in Fig. 14. Here also the dashed lines in Fig. 14
are linear least square fits to the values for nr0:071 (ℓ0Z5:83ex). The variations of ξ=ex and Δhs=ex with TR in Fig. 14 show a
similar trend as in Fig. 13 which stems from the fact that TR is linearly correlated with JIC=ðs0exÞ (see Fig. 8c).

The variation of the normalized cross-over length, ξ2=ex, with JIC=ðs0exÞ is shown in Fig. 15a and the variation of ξ2=ex
with TR is shown in Fig. 15b. The dashed line in Fig. 15 is a linear least square fit to the values corresponding to inclusion
volume fractions nr0:071 (ℓ0Z5:83ex) to illustrate the trend. The cross-over length, ξ2, is calculated as an average over all
realizations with the same inclusion volume fraction n. Here also the variations of ξ2=ex with JIC=ðs0exÞ and TR are
approximately linear for smaller n with the linear correlation breaking down for larger values of n.

The values of the roughness measures ξ, ξ2 and Δhs all correlate with a toughness measure, JIC or TR, for a sufficiently
small volume fraction of void nucleating inclusions, nr0:071 (or equivalently sufficiently large mean inclusion spacings
ℓ0Z5:83ex) in the calculations here. The correlation of Δhs with JIC and TR extends to somewhat smaller values of n in
Fig. 13b and 14b.

The difference in response between a relatively small fraction of void nucleating inclusions and larger volume fractions
can be understood in terms of the model of Tvergaard and Hutchinson (2002) who carried out a plane strain calculation for
a string of voids in front of an initial crack in a J2-flow theory solid. They found that for small volume fractions, crack growth
could be considered to occur by a void-by-void mechanism whereas for larger volume fractions crack growth would involve
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Fig. 17. Contours of void volume fraction f on three parallel planes through the thickness (z¼ constant planes) at J=JIC � 1:4. (a) For an inclusion volume
fraction n¼0.024 (ℓ0 ¼ 8:41ex). (b) For an inclusion volume fraction n¼0.143 (ℓ0 ¼ 4:63ex).
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multiple void interactions. They characterized the response in terms of a dimensionless parameter C ¼ JIC=ðs0ℓ0Þ. Since the
calculations in Tvergaard and Hutchinson (2002) were for a J2-flow theory solid, crack growth did not actually occur and JIC
was identified with a specified ligament reduction between the initial crack tip and the closest void. Larger values of C,
C � 1, corresponded to void-by-void crack growth and smaller values, C � 0:5, to multiple void interaction crack growth. The
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variation of C with inclusion volume fraction n in our calculations is shown in Fig. 16 where C � 1:0 for n¼0.012 and
decreases to C � 0:68 for nZ0:071. The values of C in Fig. 16 are affected by the fact that in our calculations the voids
nucleate after some deformation. Nevertheless, these values of C suggest that void-by-void crack growth is dominant for
no0:071 or ℓ045:83ex whereas multiple void interaction crack growth is dominant for n40:071 or ℓ0o5:83ex.

Fig. 17 shows contours of void volume fraction f on three planes through the thickness for two calculations, one with n¼0.024
(ℓ0 ¼ 8:41ex) and the other with n¼0.143 (ℓ0 ¼ 4:63ex), both at J=JIC � 1:4. In Fig. 17a for n¼0.024, inter-void interactions among
the voids nucleated ahead of the crack tip are limited whereas for n¼0.143, Fig. 17b, multiple voids have nucleated ahead of the
crack tip and have started to interact. This will eventually lead to the formation of micro-cracks. The transition from void-by-void
crack growth to multiple void interaction crack growth is associated with: (i) values of JIC and TR that are nearly independent of
inclusion volume fraction n, Figs. 7b and 8a; (ii) deviation from a linear correlation between crack growth resistance measures
and fracture surface roughness measures, Figs. 13–15; and (iii) a bilinear dependence of JIC and TR on ℓ0=ex with a transition in
slope at ℓ0 � 6ex as shown in Figs. 7c and 8b. Thus, our results indicate that for ductile fracture (fracture by the nucleation,
growth and coalescence of voids) a linear correlation between toughness measures and fracture surface roughness measures is
expected for void-by-void crack growth but not for multiple void interaction crack growth.

6. Discussion

Three dimensional ductile crack growth has been analyzed for fixed material and fracture properties for volume fractions
of randomly distributed void nucleating inclusions ranging from 1% to 19%. For each volume fraction, calculations were
carried out for seven realizations permitting effects of statistical variations in inclusion locations to be assessed (for n¼0.012
or ℓ0 ¼ 10:6ex crack growth occurred under small scale yielding conditions only for five of the realizations). Sufficient crack
growth was computed to: (i) calculate JIC, by a procedure mimicking the ASTM standard, and the tearing modulus TR; and (ii)
calculate the fracture surface roughness by a procedure mimicking that used in experiments, see Bouchaud (1997), Vernède
et al. (submitted for publication). To the extent that our simulations provide a physically realistic model of fracture in a
microstructure where the ductile fracture process involves two populations of void nucleating particles (larger inclusions
that nucleate voids at small strains and smaller particles that nucleate voids at larger strains), our results show the effect of
variations of a single microstructural feature, the volume fraction (or mean spacing) of inclusions, on crack growth
resistance and fracture surface roughness.

Although our focus is on the features of ductile fracture toughness and fracture surface roughness, the question arises as to
the extent to which our model provides physically realistic predictions. The values of E, ν and s0 used in the calculations are
representative of aluminum alloys (except for the density, which was taken to be greater than that for aluminum to reduce the
stable time step). The value of KIC, computed using Eq. (14) from the value of JIC in Fig. 6 depends on the value assigned to ex.
With ex taken as � 100 μm, the value of KIC ranges from � 150 MPa

ffiffiffiffiffi
m

p
for an inclusion volume fraction, n, of 1.2% to

� 80 MPa
ffiffiffiffiffi
m

p
for n¼19%. Representative values of KIC for a variety of Al alloys fall in a range of � 20 MPa

ffiffiffiffiffi
m

p
to � 40 MPa

ffiffiffiffiffi
m

p
,

Mrówka et al. (2006), Salamci (2002), Vasudevan et al. (1989). Vasudevan et al. (1989) show values of TR ranging from about 3 to
40 for Al–Li alloys. Thus, while we have not aimed at modeling any particular real material, our predicted fracture toughness
values are a factor of about 4 above the range for aluminum alloys. On the other hand, our predicted values of the dimensionless
tearing modulus, TR, are within the (broad) experimentally observed range. Also, as in our calculations, the experiments of
Lautridou and Pineau (1981) on ductile steels exhibit the decrease of a quantity proportional to TR with an increase in the
number of void nucleating sites. In addition, the general features of the computed fracture surface roughness, such as the value of
β and the deviation from Gaussian statistics via power law fat tails, are consistent with those seen in the experiments on an
aluminum alloy reported by Ponson et al. (2006) and Vernède et al. (submitted for publication).

We have presented our results in a non-dimensional form, as appropriate for quasi-static analyses. Also, the material
response is taken to be rate dependent. Hence, the results of the dynamic analyses presented may depend on loading rate
either through the effect of material inertia or the effect of material rate sensitivity. The results in Fig. 4 for the crack opening
displacement versus J curve indicate that neither inertia nor material rate sensitivity play a significant role prior to the onset
of crack growth. However, this is not necessarily the case during crack growth. The imposed non-dimensional loading rate of
_K I=ð_ε0s0

ffiffiffiffiffi
ex

p Þ¼ 1359:4 corresponds to _K I � 4� 106 MPa
ffiffiffiffiffi
m

p
=s. This rather high loading rate was chosen to reduce the

computational time. Determining the roles of inertia and rate sensitivity on the ductile fracture toughness and fracture
surface roughness predictions requires a parameter study that considers a broad range of loading rates.1

Although the material response is taken to be temperature dependent, see Eq. (9), thermal softening does not play a
significant role in the calculations here. The largest temperature increase seen was of the order of 100 K, which corresponds
to a decrease in flow strength of � 10%, and occurred within localization bands having a relatively large void volume
fraction and so near final failure. Also, a calculation was carried out with χ ¼ 0:01 in Eq. (8) and, compared with the
corresponding case with χ ¼ 0:9, the values of J as a function of crack length differed by less than 5%, the tearing modulus TR
differed by less than 2% and the roughness ΔhðδxÞ was essentially unaffected.

The results of Tvergaard and Hutchinson (2002) provide a nice framework for interpreting our calculations. For small
inclusion volume fractions, crack initiation and growth are dominated by a void-by-void process. For void-by-void
1 Such a study is underway.
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dominated crack growth processes in a J2-flow theory solid, Rice and Johnson (1970) and Aravas and McMeeking (1985)
have shown that the work of crack growth initiation is directly proportional to the spacing between voids ahead of the crack
tip. Hence, the mean spacing between void nucleation sites is the key length scale. When the volume fraction of discretely
modeled inclusions is small so there are relatively few such void nucleation sites, both the crack growth resistance and
statistical variations are large. On the other hand, when crack initiation and growth is dominated by multiple void
interactions, the spacing between void nucleation sites is not so important (as there are many of them) and statistical
variations are small.

For small inclusion volume fractions, nr0:071, both JIC and TR decrease rapidly with increasing n (by a factor of 2–3
between n¼0.012 and n¼0.071). For larger values of n, 0:095rnr0:19, JIC and TR are essentially independent of inclusion
volume fraction n. For the full range of inclusion volume fractions considered, the mean values of JIC, normalized by a fixed
length, and TR were linearly related with a larger value of JIC corresponding to a larger TR. When JIC is normalized by a
microstructural length, the mean inclusion spacing, the linear relation between the normalized value of JIC and TR only holds
in the void-by-void dominated crack growth regime. In our calculations the material and fracture properties as well as the
fracture mechanism (progressive cavitation) are fixed. The relative independence of JIC and TR of inclusion volume fraction,
for n40:095 (equivalently ℓ0o5:3ex), suggests that once there are sufficient void nucleating sites in the crack tip vicinity,
the crack growth resistance is nucleation dominated, so that the processes of void growth and coalescence do not contribute
much to the toughness. In this regime, the mean inclusion spacing does not provide the dominant length scale. Also, since a
relatively large number of void nucleating sites are activated, there is little dependence on the specific realization for a given
inclusion volume fraction.

The correlation function, ΔhðδxÞ, characterizing the fracture surface roughness in the crack growth direction exhibits
power law scaling, ΔhðδxÞpδxβ , for δxoξ while for δx4ξ, the value of ΔhðδxÞ gradually tends towards a saturation value,
Δhs, Fig. 9. By way of contrast, the Hurst exponent β extracted from the self-affine region of the correlation function is
β¼ 0:53 with a standard error of 0.0023 for the full range of inclusion volume fractions analyzed.

The value of the roughness exponent (or the fractal dimension) is sensitive to the roughness analysis procedure, in
calculations as well as in experiments (Charkaluk et al., 1998), and to the range of power law fit to the correlation function.
We note that Ponson et al. (2013) investigated the effect of varying fracture properties for a fixed inclusion distribution on
fracture surface roughness and, using an analysis procedure like the one used here, found nearly the same value of β as
obtained in the present calculations. That β is independent of inclusion spacing and fracture properties can be rationalized
by noting that the roughness in a random microstructure is close to a randomwalk (for which β¼ 0:5) but biased to a larger
value of β by the tendency of cracks (and micro-cracks) to continue growing, at least for a while, in the same direction. This
provides a possible explanation of why β is nearly constant for a wide range of materials and loading conditions.

Since the value of β is not sensitive to the microstructural variations considered, it is not a useful quantity for relating
toughness and roughness. However, the value of the cut-off size scale for power law behavior, ξ, is linearly related to JIC and
TR when the void-by-void crack growth process dominates. The corresponding roughness amplitude Δhs (see Fig. 10)
exhibits a similar variation. This indicates that, in this regime, ξ and Δhs are related to the mean spacing of void nucleating
sites in the same way as JIC and TR are. On the other hand when crack growth is dominated by the multiple void interaction
process the mean inclusion spacing does not play a significant role in the fracture process and the connection between these
quantities is lost. In the experiments of Hinojoso and Aldaco (2002) the cut-off length scale of the self-affine region of the
fracture surface roughness was shown to correlate with the largest microstructural heterogeneity, the grain size. In the
calculations of Needleman et al. (2012), ξ was found to be roughly related to the deviation of crack path from the initial crack
plane. In our results ξ and Δhs are approximately linearly correlated for nr0:071 (ℓ0Z5:83ex). Hence, a possible physical
description of ξ is that it is related to the wave length of the larger zig-zag excursions of the crack path (the self-affine
scaling of the crack path implies that zig-zags with various length scales up to size ξ are represented on the fracture surface).
We found that the values of ξ and Δhs (as defined in Fig. 9) were nearly insensitive to the details of the fracture surface
roughness analysis.

As pointed out by Vernède et al. (submitted for publication) and Ponson et al. (2013) consideration of the full statistics of
the fracture surface roughness provides additional information. The full statistics of the fracture surface roughness of the
computed ductile fracture surfaces are not Gaussian. The deviation from Gaussian statistics is conveniently quantified in
terms of Student's t-distribution, see Ponson et al. (2013), which has a power law rather than an exponential tail. This
deviation implies that large height fluctuations on the fracture surfaces are not exponentially rare as is the case for brittle
fracture surfaces, Ponson et al. (2007). Our results show that the parameter, ξ2, characterizing the cross-over from power law
statistics to Gaussian statistics can be related to JIC and TR, again as long as the fracture process is void-by-void dominated.

In the calculations here only one length scale has been varied, the mean inclusion spacing. The other length scales in the
formulation, for example the inclusion size are kept fixed. In addition to physical length scales, another length scale is the
finite element mesh spacing. It is clear that the finite element mesh spacing will dominate in two limiting cases: (i) no
inclusions (n¼0) and (ii) all material in the crack tip vicinity is an inclusion (n¼1). We cannot guarantee that the finite
element length scale does not play a role but the strong dependence of fracture toughness and roughness parameters on
inclusion volume fraction in the range 0:012rnr0:071 suggests that in this range the finite element mesh spacing does
not significantly affect at the least the qualitative response.

Our analyses pertain to a specific fracture mechanism, void nucleation and growth from a random distribution of inclusions
that nucleate voids at a relatively small strain and link up via progressive cavitation initiated at uniformly distributed particles.
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This has enabled us to isolate the effects of a single microstructural feature, the volume fraction (or mean spacing) of
inclusions. For real materials, of course, the fracture processes can be more complex. For example, the relation between JIC and
TR may depend on material and fracture properties, the active fracture mechanisms and microstructural length scales as
discussed by Ritchie and Thompson (1985). Also, cleavage can occur in ligaments with a sufficiently high stress. Even
restricting attention to porosity induced crack growth, the fracture process in polycrystalline structural metals can be
dominated by voids that nucleate and grow along grain boundaries. Such processes will affect both the fracture toughness and
the fracture surface roughness. The framework here can be extended to incorporate such effects as well as to investigate
variations in constitutive properties and variations in loading mode and rate.

7. Conclusions

We have analyzed a mode I small scale yielding for a model 3D microstructure for which crack growth occurs by the
nucleation, growth and coalescence of voids originating from: (i) larger inclusions that nucleate voids relatively early in the
deformation history and (ii) smaller particles that nucleate voids at much larger strains. The fixed size larger inclusions are
modeled discretely with all other material and fracture properties fixed. Our analyses have quantified fracture toughness
and the statistics of fracture surface roughness for eight volume fractions of inclusions and, for each inclusion volume
fraction, seven random distributions (five for the smallest inclusion volume fraction). For a sufficiently small volume fraction
of inclusions, the mean spacing between the larger inclusions serves as a characteristic length.
1.
 Two regimes of crack growth behavior occur. For small inclusion volume fractions (r0:071 for the parameters here)
crack growth is dominated by a void-by-void process and the mean spacing between inclusions serves as a characteristic
length. For larger inclusion volume fractions, crack growth involves multiple void interactions and the mean inclusion
spacing is not the dominant length scale.
2.
 For small inclusion volume fractions (the void-by-void dominated crack growth regime), the values of JIC and the tearing
modulus TR decrease rapidly with increasing inclusion volume fraction (decreasing mean spacing). For larger inclusion
volume fractions (the multiple void interaction regime), the values of JIC and the tearing modulus TR show little or no
dependence on inclusion volume fraction.
3.
 Regardless of whether JIC is normalized by a fixed length for all inclusion volume fractions or by the mean inclusion
spacing, a linear relation between the normalized value of JIC and TR is found for small inclusion volume fractions (the
void-by-void dominated crack growth regime).
4.
 For the full range of inclusion volume fractions considered, the computed fracture surfaces are self-affine over a size
range of nearly two orders of magnitude with the surface roughness correlation function exhibiting power law behavior
with a Hurst exponent � 0:53.
5.
 The computed fracture surface roughness distributions are not Gaussian but they are well fit by Student's t-distribution.
Parameters characterizing the Student's t-distribution fit depend on the inclusion volume fraction.
6.
 Parameters characterizing the fracture surface roughness, such as the cut-off length, ξ, the saturation value of the
correlation function, Δhs, and cross-over length, ξ2, are linearly related to JIC and the tearing modulus TR for small
inclusion volume fractions which is the regime in which crack growth occurs by a void-by-void process but no such
relation is found for larger inclusion volume fractions which is when crack growth involves multiple void interactions.
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