Depinning Transition in Material Failure
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1. Introduction
Failure of inhomogeneous materials has been a &etiye field of research
during the last decades (see Ref. [1] for a repmriew). A great research effort
in this field has been dedicated to the study attflations: Fluctuations of
velocity around the average motion of cracks whendtudies were devoted to
their highly intermittent dynamics [2-5], or vai@is to a straight trajectory
when the works were dedicated to the rough geonwétfsacture surfaces [6-8].
In both cases, these fluctuations were shown t@lalisremarkably robust
properties suggesting that crack propagation irordeyed systems could be
described on a general manner by relatively singéistical models able to
capture the competition between the two antagoeiifscts occurring during
failure of inhomogeneous materials: Disorder aras$tedity. Very recently, main
statistical features of fluctuations of both trépeg and velocity for cracks
propagating in brittle materials were captured fogisastic models of elastic lines
driven in random media [9, 10] that mimic the maotiof cracks through the
microstructural disorder of materials. However, teevance of this theoretical
framework for fracture problems is still a mattérdebate: On the one hand, the
ability of these models to describe the averageweh of the crack such as its
mean velocity, or the critical external loadingfaiture, more interesting from a
mechanical or an engineering point of view, id atil open question. On the other
hand, a direct experimental observation of thecalitdynamic transition from a
crack pinned by the heterogeneities of the matérial 0) to a propagating crack
(v > 0), as predicted by this theory at the on$enaterial failure (driving force G
= G) is still lacking. The investigation of this deping transition on an
experimental example is the central point of thisdg. The variations of the
average crack velocity with the external drivingct corresponding to the elastic
energy release rate G as fracture occurs [11] awesured for a brittle rock. They

are shown to exhibit two distinct regimes. Belowritical threshold @ the crack
C

velocity is well described by an exponential law e <> | characteristic of a
subcritical propagation, while for larger valuedioé external loading G >(Gthe
velocity evolves as a power law v ~ (G 5)Gwith 6 = 0.80 + 0.15. This behavior
is fully captured by a stochastic model rigorousigrived from Fracture
Mechanics and extended to inhomogeneous systeme wheck propagation is
analogous to the motion of an elastic line drivea random medium.



2. Experiment
2.1. Choice of the material and experimental metho

Sandstone is chosen as an archetype of heterogeredastic materials. A
Botucatu sandstone, extracted in the central regfi@razil, has been used for the
experiments. It is made of quartz grains with arditer d = 23Qum = 30um and

a porositye = 18 + 2 %, that results in highly inhomogeneouechanical
properties at the grain scale. This South Americak is consolidated thanks to
iron oxide cement providing to the rock a red calimn. As a result, its fracture
energy Ge= 140 Jm-2 as measured in the following is relayivegh compared
to other sandstones [12]. Its intrinsic tensileesfth measured by splitting
cylinders submitted to uniaxial compression [13foignd to besy = 80 MPa + 10
MPa while its Young’s modulus is found to be E =2% GPa. This leads to an
estimate of the size of the process zone nextdatack tip where damage and
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dissipative processes are localiZed = ry °

5= 200um [14]. The comparison
Y

with the grain size d *$p; suggests that crack propagation in the Botucatld ro
can almost be assimilated to the motion of a ciackn ideal brittle material
where the quartz grains play the role of the baswrostructural feature. A new
experimental setup has been developed in ordere@sune variations of crack
velocity from slow to very fast propagation in bHatmaterials. Contrary to the
torsion tests classically used to measure the e(@®yes in rocks [12, 15], the
Tapered Double Cantilever Beam specimens as usehleirexperiments (Fig.
1(a)) result in a slight and controlled acceleratd the crack that is produced by
the tapered shape of the samples. As a consequiensepossible to measure
crack velocities up to w 1 ms—-1 not achieved by classical fracture tests. |
addition, the external tensile loading produceglcfaonts with macroscopically
straight shapes, so that the local velocity andetiergy release rate are roughly
constant along the crack line. This will allow tbe derivation of a rather simple
model to interpret the experiments. Finally, a oolfed crack propagation along a
straight trajectory has been obtained in the spegwithout the help of lateral
guide grooves, known to produce a large scatteoihghe experimental v(G)
curves [15].
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Figure 1: Experimental setup. (a) Sketch of theefeg) Double Cantilever Beam
geometry; (b) picture of the specimen during crackpagation.
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An initial notch ¢ = 35 mm is machined in 100 mm long samples wiitktiess
e = 30 mm. They are submitted to a uniaxial tractlwy increasing the
displacemensF = vyt at constant velocity 0.2m S™* < Vex < 4 um S * between
two rods previously inserted in the drilled speamsie The experiments are
performed at room temperature with a humidity o%76 4%. During the test, a
force gauge measures the applied tension F whidipagage measures the
opening displacemeidt between the two lips of the crack with a precisadri00
nm (see Fig. 1(b)). A typical force-crack openingpthcement curve obtained
during a fracture test of a Botucatu specimenesg@nted in Fig. 2.
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Figure 2: Mechanical behavior of the specimenT¢gical load-crack opening
displacement curve; (b) corresponding evolutiothefaverage position of the
crack front.

The initial linear part of the curve — prior cragkitiation — allows for an
estimation of the Young's modulus E = 25 + 1 GP#hefsandstone, in agreement
with the value obtained from the measurement afatapressive and shear waves
speed. After crack initiation, the average positbithe crack front ¢ = <c(z)3s
measured using Finite Element (FE) simulations rofelastic specimen in the
same geometry: we run several simulations withousrivalues of the crack
length ¢ to measure the variations of the specim@mplianceirg(c). This
function is then compared to the experimental caampkA(t) = 6/F in order to
measure the crack length c(t) at each time stéphé variations of c(t) are
represented in inset of Fig. 2. Other techniqua#téd to the free surface of the
sample based either on image analysis of the e¢ration at the surface or on the
resistance measurement of a thin conductive filpoditked on the sample side
have led to similar, however less precise measurenw the crack length.



From the evolution of the crack length, it is nowasgible to measure the crack
dc - . .
speed v =a as well as the driving force G imposed to theaystluring the test.

Using the load-displacement curve to measure thek widV of the tensile
machine during the spait, one gets G(t) ®3W(t)/e[c(t+ot)—c(t)] [16]. On the
other hand, the driving force is estimated indepetigt using the relation

G(t) = [F(O)F geelc(t)] where the geometrical partgof the energy release rate is
provided by the FE simulations. Both methods leasimilar results within 2 %.

2.2. Variations of the crack velocity with the emerelease rate
The variations of the crack velocity with the dngiforce as observed on the
sandstone specimens are represented in Fig. 3mnlegarithmic coordinates.
Velocity measurements are achieved over almost @ixgers of magnitude,
corresponding to a relatively small variation oé ttiriving force. Irrespective of
the external loading rate vext, the failure behawb the rock is found to be
systematically characterized by two very differexgimes defining Gc. Near, but
above this critical loading, a slight change in tliving force results in a strong
variation in the crack velocity. This high senstgils studied in more detail in the
bottom right inset of Fig. 3, where v is plotted a$unction of the net driving
force G—-G in logarithmic coordinates. The linear behaviothis representation
suggests a power law variation of the crack veyoecit (G — G)°. The value of
G: = 140 + 3 Jm-2 is found to optimize this scalimgation, and leads to an
exponent) = 0.80 = 0.15 where the error bars are calculétet the variations
measured from sample to sample. The variation®licity at low driving forces
G < G are now studied. Contrary to the previous regist@y crack propagation
in rocks has been largely investigated and showudeend crucially on the
E E,-bG

temperature [12, 15]. Analytical forms as-ve *'G"?[17]orv~ e *' [18]
are usually used to describe the experimental d&d¢éh formulas reproduce
correctly the measurements reported here as f& @s120 Jm-2. The first one,
largely used because of its rather simple and cotrfpam characterised by one
subcritical crack growth index, leads te=n34 that compares well with the other
experimental findings for sandstone [12]. The seclmmmula leads to b= 0.68 .
10 % m* which is also in agreement with the other measargsnmade on rocks

with a similar microstructure [15]. This last daption is based on the Arrhenius
— Ea
kgT

law v ~ e where the activation energy E By — b G represents the typical
barrier along the energy landscape of the systiked tby the external force G.
Resulting in high tensile forces on the interatotmnds next to the crack tip, a
large driving force G favors naturally the therraativated processes leading to
their rupture, as e.g. thermal stress fluctuatj@®$ and chemical reactions [20].
However, this theoretical approach supposes that tyipical energy barrier
remains independent of the geometry of the craoktfrThis assumption is
perfectly fair as far as one considers the motiom @ack tip in a 2D medium, but
in the more realistic situation of a 3D inhomogarematerial, the crack line can
take advantage of its elasticity to deform and esphbn energy landscape rather



different from the raw fluctuations produced by tnaterial heterogeneities. In

this context, one can show that Ea(% as justified in the next section.
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Figure 3: Average dynamics of a crack propagatmngatucatu sandstone. The
variations of the crack velocity are plotted indoighmic scale with respect to the
external loading. The subcritical regime G gvBth G, = 140 J i is studied in

__C
the top-left inset. Solid line corresponds to tlestlit of the data in v e <>
obtained for €> = 63 J m?. Bottom right inset shows the velocity variatiavish
the net loading G — @n a logarithm representation for G 3. Gtraight line

corresponds to a power law fit with exponénrt 0.81.
— Ea
keT

The Arrhenius law v~ e provides then a good description of the
experimental data for the full subcritical regime<G5, as shown in Fig. 3. The
upper left inset represents the best fit obtainedF> = 63 + 5 J it

3. Discussion
The observation of two very different regimes wath exponential variation of v
with the external loading for G <;@nd a power law behavior for G % @veals
a fundamental aspect of the dynamics of cracks gmajng in brittle
inhomogeneous media. Let's derive an equation ofiamofor the crack to
understand more quantitatively this behavior. Agtaating point, we assume that
the local velocity v(M) of a point M along the ckafront is proportional to the
excess of energy G(M) F(M) locally released by the system whéreefers to
the local fracture energy. This corresponds to mp#l dynamics where the
inertial effects are neglected. In a disorderedenmdt such as sandstone, the
fracture energy can be described as a stochast&€IfiM) = < T > + 6I"' n(M)



wheren is a short range correlated random term with reean value and unit
second order moment. The heterogeneities of therrahinduce perturbations of
the crack front — parallel in average to the z-axid propagating along the x-axis
— both in the mean fracture plane (x, z) (in-plaeeturbations c(z, t)-<c(z, )

and in the perpendicular direction y (out-of-plgrerturbations h(z, t)). They in
turn lead to variations in the local value of thdeenal driving force G(M).

Interestingly, for small perturbations, G(M) is prdepending on the in-plane
deviations of the crack front [22, 23], and is gve

byG(z,t) =G +EJ'—C(Z ) = cz(z,t)
T (Z-2)

driving force applied by the tensile machine to sipecimen. Using the previous
expressions of the local driving force and mateinatture energy, one gets the
following equation of motion for a 2D crack frontgpagating in a 3D brittle
inhomogeneous material

oc(z,t) P +EJ- c(z',1) —cgz,t)

ot T (Z-2)
As the out-of-plane perturbations h behave indeeetiygl of ¢, the stochastic term
in this equation is analogous to a 2D random pa@kdépending only on ¢ and z.
Therefore, the crack motion is described by an gguaf pinning/depinning of
an elastic line driven in a random medium compardblthose proposed in the
context of interfacial cracks propagating in inh@moeous weak planes [25, 26]:
if the driving force G exceeds a given threshold
G, =<l >+m(d)*/<T >, (2)
the crack propagates, while the front is pinnedhgymaterial heterogeneities if G
< G [27]. Above the threshold, the mean velocity @l crack front is expected
to scale as (G — Ge)whereo is called the velocity exponent. Ertas and Kardar
have studied equation (1) using functional renoatibn group technique [28].
To first order in perturbation, they find = 0.78. Recent direct numerical
simulations resulted i =~ 0.63 [29]. As a consequence, the power law behavio
measured experimentally with exponeht= 0.80 suggests that a depinning
transition from a pinned to a moving crack as dbsdrin Eq. (1) occurs at G =
G.. Below the threshold at zero temperature, thereatedriving force is not
sufficient to make the crack propagate and thekcfaont is pinned by the
material heterogeneities. However, at room tempesatthermally activated
processes can enable a subcritical propagatiorthigh regime, described by
adding an annealed noigg(z, t) to Eq. (1), one expects also a collectiveiomo
of the line characteristic of glassy systems, agldaity variations are predicted to
_( 1 jz <[>2
- H

follow the so-called creep lawv € 77 T (G=<T) wherep = 1 for the long-
range elasticity of the crack front [30, 31]. Tkigpression, first proposed for the
subcritical crack dynamics in Ref. [21] and theseved in the context of paper
peeling [4], describes rather well the experimentabsurements presented here
over the whole range of subcritical loading G & IBading to activation energies

dz [24] where G refers to the macroscopic

dz+d n(c,h,2). (2)



2 2
in the range Ez(ﬁj <> . 0.20 - 0.35 eV, one order of magnitude larger
m) G-<I >

than the thermal energysk . Interestingly, the expression of the activation
energy provides an estimate of the topothesy — alizbe basic feature of the
crack front —¢ = 0.10 nm, compatible with the interatomic distandéis
suggests that thermally activated crack propagatiod critical failure might
involve processes defined at two very differentgtenscales, atomic and grain
size, respectively. Finally, let us note that usw (2), the experimental values
of the critical driving force @and the average fracture energly><allow an

G, -<Il>
<[ >
fracture energy in the Botucatu rock, slightly Erdgout comparable with an

¢

estimate of this quantit 1-4 =~ 0.5 for an ideal porous material made of an

estimation of the normalized quctuations?r— = = 0.62 + 0.06 of
< >

homogeneous solid with constant fracture energy wsods, with volume
fractions 1 -p = 0.82 andp = 0.18, respectively.

4. Conclusion
The average dynamics of a crack propagating intédebinhomogeneous rock has
been experimentally investigated. The velocity ateons with the external
driving force display two very different regimediave a threshold Gv evolves
as a power law (G- with exponen® = 0.80 + 0.15 while for G < Gthese

Ea
variations are described by an Arrhenius lawe e’

Ea

with typical energy barriers

~m. This behavior can be quantitatively explaineceaging Fracture

Mechanics to disordered systems. In this descriptite resistance to failure of a
material is interpreted as the critical force tgidethe crack front from the
material heterogeneities. Below this pinning traosi the line can also
propagate, but at much smaller velocities throdnginhal activated processes, and
the velocity variations are provided by a creep Esvobserved experimentally.
The experimental results presented here and thearétical interpretation open
new perspectives for the prediction of macroscgpi@ntities of direct interest for
Engineering and Applied Science. They make the libktween the
microstructural properties of a material and itacfure energy or the crack
velocity. This bridge might help to design strongeaterials with increased
lifetimes.
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