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1. Introduction 
Failure of inhomogeneous materials has been a very active field of research 
during the last decades (see Ref. [1] for a recent review). A great research effort 
in this field has been dedicated to the study of fluctuations: Fluctuations of 
velocity around the average motion of cracks when the studies were devoted to 
their highly intermittent dynamics [2–5], or variations to a straight trajectory 
when the works were dedicated to the rough geometry of fracture surfaces [6–8]. 
In both cases, these fluctuations were shown to display remarkably robust 
properties suggesting that crack propagation in disordered systems could be 
described on a general manner by relatively simple statistical models able to 
capture the competition between the two antagonist effects occurring during 
failure of inhomogeneous materials: Disorder and elasticity. Very recently, main 
statistical features of fluctuations of both trajectory and velocity for cracks 
propagating in brittle materials were captured by stochastic models of elastic lines 
driven in random media [9, 10] that mimic the motion of cracks through the 
microstructural disorder of materials. However, the relevance of this theoretical 
framework for fracture problems is still a matter of debate: On the one hand, the 
ability of these models to describe the average behavior of the crack such as its 
mean velocity, or the critical external loading at failure, more interesting from a 
mechanical or an engineering point of view, is still an open question. On the other 
hand, a direct experimental observation of the critical dynamic transition from a 
crack pinned by the heterogeneities of the material (v = 0) to a propagating crack 
(v > 0), as predicted by this theory at the onset of material failure (driving force G 
= Gc) is still lacking. The investigation of this depinning transition on an 
experimental example is the central point of this study. The variations of the 
average crack velocity with the external driving force corresponding to the elastic 
energy release rate G as fracture occurs [11] are measured for a brittle rock. They 
are shown to exhibit two distinct regimes. Below a critical threshold Gc, the crack 

velocity is well described by an exponential law v ~ >Γ<−
−

G

C

e  , characteristic of a 
subcritical propagation, while for larger values of the external loading G > Gc, the 
velocity evolves as a power law v ~ (G − Gc)

θ with θ = 0.80 ± 0.15. This behavior 
is fully captured by a stochastic model rigorously derived from Fracture 
Mechanics and extended to inhomogeneous systems where crack propagation is 
analogous to the motion of an elastic line driven in a random medium. 
 



 2

2.  Experiment 
 2.1. Choice of the material and experimental method 
Sandstone is chosen as an archetype of heterogeneous elastic materials. A 
Botucatu sandstone, extracted in the central region of Brazil, has been used for the 
experiments. It is made of quartz grains with a diameter d = 230 µm ± 30 µm and 
a porosity φ = 18 ± 2 %, that results in highly inhomogeneous mechanical 
properties at the grain scale. This South American rock is consolidated thanks to 
iron oxide cement providing to the rock a red coloration. As a result, its fracture 
energy Gc ≃ 140 Jm−2 as measured in the following is relatively high compared 
to other sandstones [12]. Its intrinsic tensile strength measured by splitting 
cylinders submitted to uniaxial compression [13] is found to be σY = 80 MPa ± 10 
MPa while its Young’s modulus is found to be E = 25 ± 1 GPa. This leads to an 
estimate of the size of the process zone next to the crack tip where damage and 

dissipative processes are localized ℓPZ = 
8

π
2
Y

cEG

σ
≃ 200 µm [14]. The comparison 

with the grain size d > ℓPZ suggests that crack propagation in the Botucatu rock 
can almost be assimilated to the motion of a crack in an ideal brittle material 
where the quartz grains play the role of the basic microstructural feature. A new 
experimental setup has been developed in order to measure variations of crack 
velocity from slow to very fast propagation in brittle materials. Contrary to the 
torsion tests classically used to measure the v(G) curves in rocks [12, 15], the 
Tapered Double Cantilever Beam specimens as used in the experiments (Fig. 
1(a)) result in a slight and controlled acceleration of the crack that is produced by 
the tapered shape of the samples. As a consequence, it is possible to measure 
crack velocities up to v ≃ 1 ms−1 not achieved by classical fracture tests. In 
addition, the external tensile loading produces crack fronts with macroscopically 
straight shapes, so that the local velocity and the energy release rate are roughly 
constant along the crack line. This will allow for the derivation of a rather simple 
model to interpret the experiments. Finally, a controlled crack propagation along a 
straight trajectory has been obtained in the specimens without the help of lateral 
guide grooves, known to produce a large scattering of the experimental v(G) 
curves [15]. 

 
Figure 1: Experimental setup. (a) Sketch of the Tapered Double Cantilever Beam 

geometry; (b) picture of the specimen during crack propagation. 
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An initial notch c0 = 35 mm is machined in 100 mm long samples with thickness 
e = 30 mm. They are submitted to a uniaxial traction by increasing the 
displacement δF = vext t at constant velocity 0.2 µm s−1 ≤ vext ≤ 4 µm s−1 between 
two rods previously inserted in the drilled specimens. The experiments are 
performed at room temperature with a humidity of 76% ± 4%. During the test, a 
force gauge measures the applied tension F while a clip gage measures the 
opening displacement δ between the two lips of the crack with a precision of 100 
nm (see Fig. 1(b)). A typical force-crack opening displacement curve obtained 
during a fracture test of a Botucatu specimen is presented in Fig. 2. 
 

 
Figure 2: Mechanical behavior of the specimen. (a) Typical load-crack opening 
displacement curve; (b) corresponding evolution of the average position of the 

crack front. 
 
The initial linear part of the curve – prior crack initiation – allows for an 
estimation of the Young’s modulus E = 25 ± 1 GPa of the sandstone, in agreement 
with the value obtained from the measurement of its compressive and shear waves 
speed. After crack initiation, the average position of the crack front c = <c(z)>z is 
measured using Finite Element (FE) simulations of an elastic specimen in the 
same geometry: we run several simulations with various values of the crack 
length c to measure the variations of the specimen compliance λFE(c). This 
function is then compared to the experimental compliance λ(t) = δ/F in order to 
measure the crack length c(t) at each time step t. The variations of c(t) are 
represented in inset of Fig. 2. Other techniques limited to the free surface of the 
sample based either on image analysis of the crack motion at the surface or on the 
resistance measurement of a thin conductive film deposited on the sample side 
have led to similar, however less precise measurements of the crack length. 
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From the evolution of the crack length, it is now possible to measure the crack 

speed v = 
dt

dc
 as well as the driving force G imposed to the system during the test. 

Using the load-displacement curve to measure the work δW of the tensile 
machine during the span δt, one gets G(t) = δW(t)/e[c(t+δt)−c(t)] [16]. On the 
other hand, the driving force is estimated independently using the relation 
G(t) = [F(t)]2 gFE[c(t)] where the geometrical part gFE of the energy release rate is 
provided by the FE simulations. Both methods lead to similar results within 2 %. 
 
 2.2. Variations of the crack velocity with the energy release rate 
The variations of the crack velocity with the driving force as observed on the 
sandstone specimens are represented in Fig. 3 in semi-logarithmic coordinates. 
Velocity measurements are achieved over almost five orders of magnitude, 
corresponding to a relatively small variation of the driving force. Irrespective of 
the external loading rate vext, the failure behavior of the rock is found to be 
systematically characterized by two very different regimes defining Gc. Near, but 
above this critical loading, a slight change in the driving force results in a strong 
variation in the crack velocity. This high sensibility is studied in more detail in the 
bottom right inset of Fig. 3, where v is plotted as a function of the net driving 
force G−Gc in logarithmic coordinates. The linear behavior in this representation 
suggests a power law variation of the crack velocity v ∼ (G − Gc)

θ. The value of 
Gc = 140 ± 3 Jm−2 is found to optimize this scaling relation, and leads to an 
exponent θ = 0.80 ± 0.15 where the error bars are calculated from the variations 
measured from sample to sample. The variations of velocity at low driving forces 
G < Gc are now studied. Contrary to the previous regime, slow crack propagation 
in rocks has been largely investigated and shown to depend crucially on the 

temperature [12, 15]. Analytical forms as v ∼ 2/

*

nTk

E

Ge B

−
[17] or v ∼ Tk

bGE

Be
−

− 0

[18] 
are usually used to describe the experimental data. Both formulas reproduce 
correctly the measurements reported here as far as G < 120 Jm−2. The first one, 
largely used because of its rather simple and compact form characterised by one 
subcritical crack growth index, leads to n ≃ 34 that compares well with the other 
experimental findings for sandstone [12]. The second formula leads to b ≃ 0.68 . 
10−20 m2 which is also in agreement with the other measurements made on rocks 
with a similar microstructure [15]. This last description is based on the Arrhenius 

law v ∼ Tk

E

B

a

e
−

 where the activation energy Ea = E0 – b G represents the typical 
barrier along the energy landscape of the system tilted by the external force G. 
Resulting in high tensile forces on the interatomic bonds next to the crack tip, a 
large driving force G favors naturally the thermal activated processes leading to 
their rupture, as e.g. thermal stress fluctuations [19] and chemical reactions [20]. 
However, this theoretical approach supposes that the typical energy barrier 
remains independent of the geometry of the crack front. This assumption is 
perfectly fair as far as one considers the motion of a crack tip in a 2D medium, but 
in the more realistic situation of a 3D inhomogeneous material, the crack line can 
take advantage of its elasticity to deform and explore an energy landscape rather 
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different from the raw fluctuations produced by the material heterogeneities. In 

this context, one can show that Ea ∼ 
>Γ<−G

1
 as justified in the next section. 

 
Figure 3: Average dynamics of a crack propagating in Botucatu sandstone. The 

variations of the crack velocity are plotted in logarithmic scale with respect to the 
external loading. The subcritical regime G < Gc with Gc = 140 J m−2 is studied in 

the top-left inset. Solid line corresponds to the best fit of the data in v ∼ >Γ<−
−

G

C

e  
obtained for <Г> = 63 J m−2. Bottom right inset shows the velocity variations with 

the net loading G − Gc in a logarithm representation for G > Gc. Straight line 
corresponds to a power law fit with exponent θ = 0.81. 

The Arrhenius law v ∼ Tk

E

B

a

e
−

 provides then a good description of the 
experimental data for the full subcritical regime G < Gc as shown in Fig. 3. The 
upper left inset represents the best fit obtained for <Г> = 63 ± 5 J m−2. 
 

3. Discussion 
The observation of two very different regimes with an exponential variation of v 
with the external loading for G < Gc and a power law behavior for G > Gc reveals 
a fundamental aspect of the dynamics of cracks propagating in brittle 
inhomogeneous media. Let’s derive an equation of motion for the crack to 
understand more quantitatively this behavior. As a starting point, we assume that 
the local velocity v(M) of a point M along the crack front is proportional to the 
excess of energy G(M) − Г(M) locally released by the system where Г refers to 
the local fracture energy. This corresponds to a damped dynamics where the 
inertial effects are neglected. In a disordered material such as sandstone, the 
fracture energy can be described as a stochastic field Г(M) = < Г > + δГ η(M) 
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where η is a short range correlated random term with zero mean value and unit 
second order moment. The heterogeneities of the material induce perturbations of 
the crack front – parallel in average to the z-axis and propagating along the x-axis 
– both in the mean fracture plane (x, z) (in-plane perturbations c(z, t)−<c(z, t)>z) 
and in the perpendicular direction y (out-of-plane perturbations h(z, t)). They in 
turn lead to variations in the local value of the external driving force G(M). 
Interestingly, for small perturbations, G(M) is only depending on the in-plane 
deviations of the crack front [22, 23], and is given 

by '
)'(

),(),'(
),(

2
dz

zz

tzctzcG
GtzG ∫ −

−+=
π

 [24] where G refers to the macroscopic 

driving force applied by the tensile machine to the specimen. Using the previous 
expressions of the local driving force and material fracture energy, one gets the 
following equation of motion for a 2D crack front propagating in a 3D brittle 
inhomogeneous material 

                              ),,('
)'(

),(),'(),(
2

zhcdz
zz

tzctzcG
G

t

tzc ηδ
π

Γ+
−
−+=

∂
∂

∫ .                 (1) 

As the out-of-plane perturbations h behave independently of c, the stochastic term 
in this equation is analogous to a 2D random potential depending only on c and z. 
Therefore, the crack motion is described by an equation of pinning/depinning of 
an elastic line driven in a random medium comparable to those proposed in the 
context of interfacial cracks propagating in inhomogeneous weak planes [25, 26]: 
if the driving force G exceeds a given threshold 
                                           >Γ<Γ+>Γ=< /)( 2δπcG ,                                      (2) 

the crack propagates, while the front is pinned by the material heterogeneities if G 
< Gc [27]. Above the threshold, the mean velocity v of the crack front is expected 
to scale as (G − Gc)θ where θ is called the velocity exponent. Ertas and Kardar 
have studied equation (1) using functional renormalization group technique [28]. 
To first order in perturbation, they find θ = 0.78. Recent direct numerical 
simulations resulted in θ ≃ 0.63 [29]. As a consequence, the power law behavior 
measured experimentally with exponent θ ≃ 0.80 suggests that a depinning 
transition from a pinned to a moving crack as described in Eq. (1) occurs at G = 
Gc. Below the threshold at zero temperature, the external driving force is not 
sufficient to make the crack propagate and the crack front is pinned by the 
material heterogeneities. However, at room temperature, thermally activated 
processes can enable a subcritical propagation. In this regime, described by 
adding an annealed noise ηT(z, t) to Eq. (1), one expects also a collective motion 
of the line characteristic of glassy systems, and velocity variations are predicted to 

follow the so-called creep law v ∼ 
µ

B GTke )(

22

>Γ<−
>Γ<








−
π
l

 where µ = 1 for the long-
range elasticity of the crack front [30, 31]. This expression, first proposed for the 
subcritical crack dynamics in Ref. [21] and then observed in the context of paper 
peeling [4], describes rather well the experimental measurements presented here 
over the whole range of subcritical loading G < Gc, leading to activation energies 
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in the range Ea =
>Γ<−

>Γ<









G

22

π
l

≃ 0.20 − 0.35 eV, one order of magnitude larger 

than the thermal energy kBT . Interestingly, the expression of the activation 
energy provides an estimate of the topothesy – size of the basic feature of the 
crack front – ℓ ≃ 0.10 nm, compatible with the interatomic distance. This 
suggests that thermally activated crack propagation and critical failure might 
involve processes defined at two very different length scales, atomic and grain 
size, respectively. Finally, let us note that using Eq. (2), the experimental values 
of the critical driving force Gc and the average fracture energy <Г> allow an 

estimation of the normalized fluctuations 
>Γ<

>Γ<−
=

>Γ<
Γ cGδ

= 0.62 ± 0.06 of 

fracture energy in the Botucatu rock, slightly larger but comparable with an 

estimate of this quantity 
ϕ

ϕ
−1

≃ 0.5 for an ideal porous material made of an 

homogeneous solid with constant fracture energy and voids, with volume 
fractions 1 − φ = 0.82 and φ = 0.18, respectively. 
 

4. Conclusion 
The average dynamics of a crack propagating in a brittle inhomogeneous rock has 
been experimentally investigated. The velocity variations with the external 
driving force display two very different regimes: above a threshold Gc, v evolves 
as a power law (G−Gc)

θ with exponent θ = 0.80 ± 0.15 while for G < Gc, these 

variations are described by an Arrhenius law v ∼
Tk

E

B

a

e
−

with typical energy barriers 

Ea ∼
>Γ<−G

1
. This behavior can be quantitatively explained extending Fracture 

Mechanics to disordered systems. In this description, the resistance to failure of a 
material is interpreted as the critical force to depin the crack front from the 
material heterogeneities. Below this pinning transition, the line can also 
propagate, but at much smaller velocities through thermal activated processes, and 
the velocity variations are provided by a creep law as observed experimentally. 
The experimental results presented here and their theoretical interpretation open 
new perspectives for the prediction of macroscopic quantities of direct interest for 
Engineering and Applied Science. They make the link between the 
microstructural properties of a material and its fracture energy or the crack 
velocity. This bridge might help to design stronger materials with increased 
lifetimes. 
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