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a b s t r a c t

The compressive response of fully dense and 10 vol% porous Ti2AlC MAX phase materials

subjected to quasi-static uniaxial and cyclic loading including their repeatable hysteretic

behavior is presented. Damage accumulation in the form of kink bands and microcracking

is characterized using ultrasonics and scanning electron microscopy under different levels

of compressive loading. The observations and measurements are correlated quantitatively

using a model based on friction between the crack faces, which is the main dissipation

process. The model is shown to capture the hysteretic behavior of Ti2AlC MAX phase and

quantitatively reproduce the experimentally measured stress–strain curves.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The MAX phases, with the chemical composition Mnþ1AXn, where nA{1,2,3}, M is an early transition metal, A is a
A-group element (mostly IIIA and IVA) and X is C or N. MAX phases have received considerable attention in the recent years for
their unique properties, namely soft, machinable, thermally and electrically conductive like a metal, yet heat tolerant, light and
strong like a ceramic (Barsoum and El-Raghy, 2001; Barsoum et al., 2003; Sun et al., 2005; Zhen et al., 2005; Zhou et al., 2006).
This family of materials has considerable potential in many novel applications (Barsoum and El-Raghy, 2001).

Ti2AlC is a particular member of the family of MAX phases with all their outstanding material properties (Barsoum et al., 1997,
2000, 2002; Wang and Zhou, 2003; Zhou et al., 2006). Considering Ti2AlC as a candidate material for structural applications, its
mechanical behavior, both under quasi-static and dynamic loading, have to be well described and understood. The first study
devoted to its quasi-static behavior has been reported (Zhou et al., 2006), where uniaxial compression and spherical nano-
indentation tests were conducted. Ti2AlC was observed to possess qualities similar to the other MAX phases characterized in
particular by a repeatable hysteretic behavior under cyclic loading. These results were interpreted using a model developed
recently to account for the behavior of a broader family of materials with similar mechanical properties and referred to as kinking
nonlinear elastic (KNE) solids (Barsoum et al., 2005; Kalidnindi et al., 2006). In this approach, the formation and evolution at the
atomic scale of dislocation-based kink bands is proposed to explain such reversible hysteresis behavior. Though this theoretical
description explains the main qualitative features of the macroscopic response of MAX phases (reversibility, hysteresis), it cannot
capture their constitutive behavior. Continuum damage mechanics (CDM) description based on microstructural observations
provides an avenue for developing a model to capture the quantitative response of this new class of materials.
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The present paper addresses the compressive response of fully dense and 10 vol% porous Ti2AlC subjected to quasi-
static uniaxial and cyclic loading. Careful strain measurements in both axial and transverse directions were carried out to
fully characterize the repeatable hysteretic behavior of Ti2AlC. New features suggesting the formation and evolution of
damage processes during the tests are reported. These results are combined with post-mortem ultrasonic measurements
aimed at assessing the extent of damage accumulation during the experiments. Scanning electron microscopy (SEM)
characterization of the MAX phase under different levels of compressive loading is also used to observe directly the
damage processes and their evolution. The ultrasonic technique reveals a weak degradation of both Young’s modulus and
Poisson’s ratio during the compressive test that is likely produced by the formation of kink bands observed in the SEM
micrographs. The SEM characterization allows one to identify the presence of a large number of delamination cracks
within the MAX phase grains. The crack density is measured and shown to increase with the external loading, suggesting
that these cracks might be responsible for the hysteretic behavior of Ti2AlC observed also to be more pronounced with
increasing compressive loading. Both these observations are related more quantitatively using a theoretical description of
the experiments inspired by Walsh (1965) and Lawn and Marshall (1998) in which friction between the delamination
crack faces is the main dissipation process during the compressive test. This simple model, based only on the observable
damage mechanisms, not only mimics the hysteretic behavior of Ti2AlC, but also reproduces quantitatively the
experimental stress–strain curves. To check the consistency of the model, the crack density used in the model is
compared with that obtained directly from SEM images, showing a good agreement between the two.

2. Materials and methods

The uniaxial compressive tests under quasi-static loading were conducted using a servo-hydraulic Materials Testing
System (MTS 358 series) under displacement control at a nominal strain rate ranging from 10�5 to 10�3 s�1. Rectangular
blocks of Ti2AlC (7�7�17 mm3) were made using wire electro-discharge machining (EDM). Special attention was given
to the surface finish and extent of parallelism between the two loaded surfaces (7�7 mm2 faces), with a tolerance of
0.02 mm. Strain measurements were made using 350 O strain gages (Vishay, EA-06-062AQ-350/LE) that were attached to
the sides of the specimen along directions parallel and perpendicular to the loading axis.

The effect of the uniaxial compressive loading on Young’s modulus and Poisson’s ratio of Ti2AlC were investigated using
ultrasonic wave speed measurements performed on the specimens after they were unloaded. The longitudinal and shear wave
speeds were measured using 5 MHz piezoelectric longitudinal and shear transducers (#V129 and #V157, Parametrics, Inc.),
in pulse-echo mode setup. The pulse was generated using Parametrics Pulse Generator model #5052A, with a peak output
voltage of 300 V. The signals were acquired using a Hewlett Packard digitizing oscilloscope model #50510A, with a sampling
rate of 1 GSa s�1.

Finally, Ti2AlC specimens submitted to different levels of compressive loading were mounted and polished to mirror
finish for microstructural characterization. The specimens were then slightly etched using a solution of hydrofluoric acid,
nitric acid and water in equal amounts to reveal the microstructure. Scanning electron microscopic observations were
performed on these specimens as well as on the fracture surfaces of broken specimens using a LEO 1550VP FE SEM.

3. Results

3.1. Stress–strain behavior

The typical stress–strain behavior of Ti2AlC under compression is shown in Fig. 1(a) and (b) for dense and porous
samples, respectively. The specimens were incrementally loaded and unloaded to failure as evidenced by the final cycle.
During the last cycle, the stress increases almost monotonically until abrupt failure of the specimen. The solid and dashed
lines represent the loading–unloading cycles performed on a single specimen. The first cycle begins at the origin, and each
subsequent cycle begins at the residual strain left from the previous one. By connecting the part of each loop prior to
unloading, one obtains the strain–strain curve of a specimen that is loaded monotonically to failure. This curve is well
described by a power-law relationship between stress and strain, classically used to describe the effects of plasticity and
damage in quasi-brittle systems before abrupt failure. The unloading curve shows irreversibility with a compressive
residual strain when compressive loading is zero. This macroscopic nonlinear behavior will be related in the next section
with microscopic mechanisms such as irreversible damage accumulation during the loading phase of the specimen.
These experiments were observed to be highly repeatable. Such incremental tests were not reported in the previous study
(Zhou et al., 2006), and they provide the information to be used for the characterization of damage accumulation in
this material.

In the experiments presented in Fig. 1, specimens of dense and porous specimens have been submitted to cycles with
increasing maximum strain until full failure obtained around 0.91 and 0.48 GPa, respectively. Young’s modulus for dense
and 10 vol% porous Ti2AlC measured from the linear part of stress–strain curves is found to be approximately 250 and
205 GPa, respectively. Poisson’s ratio of dense and porous Ti2AlC obtained from the measurement of the transverse strain
during the uniaxial compression (Fig. 2) is found to be approximately 0.17 and 0.3, respectively. For sake of simplicity, we
have expressed the compressive axial stress and strain as positive quantities.
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Fig. 1. Stress–strain curves for (a) dense and (b) porous Ti2AlC, under repeated compressive loading.
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From Fig. 1, a yield point can be distinctly identified for both dense and porous Ti2AlC. Dense Ti2AlC is observed to yield
at approximately 0.54 GPa, whereas porous Ti2AlC yields at approximately 0.13 GPa. In the initial linear regime, the
loading and unloading part of the stress–strain curves coincides for both the dense and porous Ti2AlC, as expected for a
linearly elastic material. Beyond the yield point, hysteresis loops are observed, similar to those described in Barsoum and
El-Raghy (2001), Zhen et al. (2005) and Zhou et al. (2006). These cycles are highly repeatable and independent of the strain
rates at which the specimen was loaded within the range of strain rates considered here. The unloading and reloading
curves differ when the accumulated strain is beyond the yield point and also there is residual strain upon unloading whose
magnitudes increases with increasing applied strain.

These observations suggest that while the virgin material is initially linearly elastic, damage is accumulated beyond yield and
the stress–strain behavior is no longer linear. The occurrence of hysteresis loops points to damage accumulation beyond yield.

The failure stress of the dense Ti2AlC is approximately 0.89 GPa while the porous ceramics breaks around 0.44 GPa.
The corresponding strain at failure is approximately 1.2% and 1.0%, respectively. As shown in Fig. 3, the fracture plane is
oriented at 45o with respect to the axis of loading, suggesting that Ti2AlC fails by a shear mechanism. As described in detail
in the following, catastrophic failure can be entailed to the nucleation and growth of microcracks in the specimen that
coalesce and form a macroscopic shear crack just prior failure.

3.2. Stress–strain behavior under cyclic loading

In order to study in detail the behavior of Ti2AlC under cyclic loading, a dense and a porous specimen were submitted to
100 cycles at a frequency of 0.5 Hz. Their mechanical response is plotted in Fig. 4. For both samples and beyond the first
cycle, the hysteresis loop is almost stabilized. A slight cyclic hardening can be observed for both the fully dense and the
porous specimen, with somehow slightly larger amplitude for the dense ceramics. These results confirm and extend the
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Fig. 3. Fractured Ti2AlC specimens under uniaxial compressive loading. Note the fracture plane at 451 with respect to the direction of loading.
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experimental results reported by Zhou et al. (2006) on the same material submitted to 3–5 cycles to a large number of
cycles. The microscopic origin of this effect is discussed in Section 4.

3.3. Effects of strain rate and relaxation

In order to investigate the effect of strain rate and the presence of visco-elastic relaxation in dense and porous Ti2AlC,
two different experiments have been conducted. In the first experiment, uniaxial compressions were carried out at
different strain rates, ranging from 10�5 to 10�3 s�1. No strain rate effects were observed on the recorded stress–strain
curves. In another experiment, the specimens were loaded sequentially under displacement control, as shown in Fig. 5(a).
Between rest phases, the displacement was imposed at the same strain rate all along the experiment. The corresponding
stress–strain curves plotted in Fig. 5(b) do not show any noticeable effect, suggesting that both dense and porous Ti2AlC do
not exhibit any stress relaxation or visco-elastic response.

3.4. Effects of the compressive loading on Young’s modulus and Poisson’s ratio

Ultrasonic wave speed measurements were used to investigate changes in the Ti2AlC microstructure induced by the
compressive loading of various levels. In this series of experiments, only the dense specimens were considered since wave
speed measurements in porous specimens were difficult due to significant wave scattering by the voids.
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Fig. 4. Stress–strain curves for cyclically loaded (a) dense and (b) porous Ti2AlC.
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Four dense Ti2AlC specimens were compressed to different strain levels (0.15%, 0.19%, 0.4% and 0.76%) and the
corresponding stress–strain curves are shown in Fig. 6. We extracted Young’s modulus of each specimen by a linear fit of
the data in the unloading part, just after the maximum stress has been reached, and found values of 250, 245, 235 and
213 GPa, respectively. This part of the stress–strain response is governed by the elastic response of the damaged specimen,
as we will show in Section 4 (see also Fig. 13 for more details on the fit procedure). As a result, one can compare these
values with elastic properties obtained by acoustic techniques: the longitudinal and shear wave speeds were measured
after the experiments and their values are shown in Table 1. The waves propagated along a direction perpendicular to the
symmetry axis of the cylindrical specimens, and hence perpendicular to the direction of the compression loading. As a
result, Young’s modulus extracted from the mechanical test and the acoustic measurements corresponds to two
perpendicular directions. From the acoustic measurements, we see a small, however, a clear trend that indicates that
the wave speed is lower for specimens submitted to higher strains, which accumulated more damage. In order to estimate
the relevance of this observation, let us assess the accuracy of the measurement: we consider a typical precision of 10 mm
for the length and 1 ns for the time measurements. For a typical specimen thickness of 7 mm and measurement duration of
1 ms, the uncertainty for velocity measurement is of the order of 0.14%. This value is smaller than the measured differences
in wave velocities of the 4 specimens, indicating that, although small, the trend is significant.

The decrease of the longitudinal Vl and shear wave speeds Vs corresponds to changes in Young’s modulus E and
Poisson’s ratio n. These quantities for a linear elastic solid are related by the relations n¼(1/2�(Vs/Vl)

2)/(1/2þ(Vs/Vl)
2) and

E¼ 2rsV
2
s ð1þnÞ where rs¼3950 kg m�3 is the density of Ti2AlC. The elastic properties measured from this technique are

represented in Fig. 7 for different levels of external strain. At first, the value of E and n are comparable with the value
E0¼250 GPa and n0¼0.17 extracted from the stress–strain behavior of Ti2AlC in the elastic domain (see Figs. 1 and 2). It
also compares with the values obtained from the stress–strain response in the unloading part of the cycle (see Fig. 6).
Investigating now the effect of the compressive loading, one observes a slight decrease of Young’s modulus obtained both
from the acoustic measurement and the mechanical test. This seems to correspond to a steady degradation of the stiffness
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Table 1
Longitudinal and shear wave speeds measured on the specimens submitted to different

levels of strain once unloaded.

emax (%) Vl (km s�1) Vs (km s�1)

0.15 8.385 5.137
0.19 8.313 5.111
0.4 8.321 5.159
0.76 8.143 5.088
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of the specimen as damage develops within the ceramics, somehow less important when extracted from the acoustic
technique. This effect might be explained by some anisotropy in the elastic properties of the solid resulting from the
development of damage in a preferential direction given by the loading axis—mechanic and acoustic measurements
provide information parallel and perpendicular to the loading axis, respectively. The variations of Poisson’s ratio are shown
in the main panel of Fig. 7. One observes also a rather significant decrease of n with the level of applied strain. Both trends
strongly suggest an evolution of the Ti2AlC microstructure during the test. Damage produced by the high level of
compression in the specimen is likely to produce such alteration in the elastic properties of Ti2AlC. These suggested
damage processes are studied in more detail in the following section using direct observations of the microstructure of
Ti2AlC on the fracture surfaces of broken specimens.

3.5. Fractographic analysis

The fracture surfaces of the dense Ti2AlC specimens were examined using the SEM. Fig. 8 shows the macroscopic
fracture surface, with the direction of crack propagation indicated. The lack of distinctive features at this low magnification
does not point to a specific fracture mechanism. Upon larger magnification, as shown in Fig. 9, damage mechanisms such
as kink bands, delamination cracks between the nanolayers, and inter-granular cracks are readily observed.

The fracture surfaces of the porous samples were observed under the SEM as well (Fig. 10). As expected, more voids are
observed as compared to the dense specimens. Larger magnification (Fig. 11) reveals the same overall damage mechanisms,
namely kink bands, delamination and inter-granular cracks. In the following, these observations are used to interpret the
mechanical response of Ti2AlC specimens under compressive loading.

4. Discussion

Ti2AlC is a member of the MAX phases, which have been commonly modeled as kinking nonlinear elastic (KNE) solids
(Barsoum et al., 2005; Kalidindi et al., 2006; Sun et al., 2005). The characteristics of KNE solids is that the hysteresis loop is
fully reversible, and rate-independent. The model for KNE solids, discussed in detail by Sun et al. (2005), considers these
reversible hysteresis loops as resulting from the reversible formation and annihilation of incipient kink bands (IKB) and
dislocation pileups (DP). This microscale model, which builds on the Frank and Stroh (1952) model for kink bands
formation, provides a good estimate of the dissipated energy (Sun et al., 2005), but not the actual stress–strain
relationship. By combining this approach to the assumption that the probability of kinking is given by Weibull statistics,



Fig. 9. Fracture surface of fully dense Ti2AlC (high magnification).

Fig.10. Fracture surface of porous Ti2AlC (low magnification).

Fig. 8. Fracture surface of fully dense Ti2AlC (low magnification).
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a macroscale constitutive model was presented (Kalidindi et al., 2006). The results derived from this model were then
demonstrated to capture the general stress–strain behavior of KNE solids that is measured experimentally, though not
quantitatively.

In the subsequent section, an alternative micromechanical model for the behavior of MAX phases is presented. Unlike the
existing models for the MAX phases, the proposed model does not consider a reversible dislocation based mechanism. The
proposed micromechanical model attempts to explain the features observed in the experimentally measured stress–strain



Fig. 11. Fracture surface of porous Ti2AlC (high magnification).
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curves using only the damage mechanisms observed in the SEM images. The interesting additional information derived from
this model is of analysis of the estimation of the crack density in the material, which can and will be verified quantitatively
using a statistical technique on the SEM images. While this study considers Ti2AlC as the material of interest, it should be noted
that this model can be used as a means of estimating the crack density in similar composites or brittle solids containing closed
cracks.

4.1. Micromechanical model

The SEM pictures for preloaded Ti2AlC reveal three types of damage mechanisms (i) kink bands, (ii) delamination cracks
between nanolayers and (iii) inter-granular cracks. It is also rather clear from the uniaxial stress–strain behavior that
damage accumulation begins when the stress exceeds the yield stress (s4sy) since, as long as the latter is not exceeded,
(i) there is no degradation of Young’s modulus and (ii) there are no hysteresis loops and the specimen behaves like a linear
elastic material. Two simplifying assumptions are made in this micromechanical model:
1.
 The degradation of Young’s modulus is attributed to the kink bands.

2.
 The hysteresis of the stress–strain curve is attributed to the sliding of the cracks.
The first assumption can be justified as follows. The kink bands as observed in the SEM images resemble buckled
nanolayers. Their contribution to the degradation of the elastic modulus Eo may be qualitatively understood on the basis
that an unbuckled beam is stiffer than a buckled one. On the other hand, the cracks observed on the SEM images that
develop in the specimens during the compression test remain closed during the experiments. These closed cracks do not
contribute to the degradation of Eo measured by acoustic measurements. Indeed, the shearing forces imposed by the
acoustic waves on crack surfaces are not sufficiently large to overcome their resistance to sliding induced by friction. It is
worth noting that most of the kink bands will be oriented along the loading axis of the uniaxial compression leading to
anisotropic degradations of the elastic properties of the specimens. This might explain why the change in Young’s modulus
assessed by acoustic measurements performed along a direction perpendicular to this axis is found to be relatively weak
compared to the effective Young’s modulus decrease measured along the loading direction from the stress–strain curves (see
Section 3.4). On the other hand, Poisson’s ratio degradation measured using acoustic techniques are significant because they
correspond to deformations parallel to the loading axis along which most of kink bands are expected to be aligned.

The second assumption can also be justified by rather simple arguments. Once a kink band has buckled, additional
loading and unloading will not give rise to a hysteretic behavior. One may also expect that their individual mechanical
response remains mainly linear, if the compressive load is not increased further. Therefore, the response of the Ti2AlC
samples submitted repeatedly to a given compressive load cannot be explained by the presence of kink bands, and their
effects on the nonlinear behavior of Ti2AlC within one cycle can be neglected as a first approximation. We will show
further that sliding of closed cracks can account for these nonlinearities, and the accompanying friction processes are
responsible for energy dissipation in the system.

Finally, let us note that the accumulation of damage in the specimen during the test is made possible due to the
material microstructure. Generally, for compressive tests without lateral confinement, the first shear crack transects the
specimen leading to catastrophic failure without damage accumulation. But for the Ti2AlC samples, as it will be clear later
by investigating the material microstructure and the damage processes using SEM images, microcracks are stopped by
grain boundaries, so they are confined to one single grain. This is also important to note that the shear cracks in Ti2AlC
samples do not kink to develop tensile cracks at their tip, as observed on the SEM images. This allows us to describe
relatively simply the effect of microcracks on the overall mechanical response of the material.
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As a result, the physical description for the micromechanical behavior under uniaxial compressive loading is expected
to be as follows: as the virgin specimen is loaded, cracks and kink bands are created; upon unloading, the specimen is
unloaded elastically until the resolved shear stress on the crack face overcomes the frictional threshold so that the crack
faces then begin to slide relative to each other. As more cracks begin to slide, the effective modulus of the material
becomes significantly smaller than its initial elastic Young’s modulus, Eo. Upon reloading, the frictional force changes its
direction, thus the material is loaded elastically before its resolved shear stress overcomes again the frictional threshold
and sliding begins in the opposite direction. It is important to note that the elastic stiffness Eo of the material at any stage is
dependent on the density of kink bands in the specimen. This results in the hysteresis loops observed in the experimental
stress–strain data. The subsequent discussion in this section will focus on dense Ti2AlC however a similar treatment can be
applied to porous specimens as well.

The proposed model first considers randomly distributed cracks whose density is dependent on the maximum strain
achieved by the specimen during prior loadings. The hysteresis in the unloading and reloading stress–strain curves is
attributed to the frictional dissipation from the sliding of the closed cracks inside the material as previously proposed
(Kachanov, 1982; Lawn and Marshall, 1998; Lehner and Kachanov, 1995; Walsh, 1965).

4.1.1. Friction law

In this model, the frictional stress, tf, at the crack faces is modeled by Coulomb’s friction law:

tf ¼ mssin2b, ð1Þ

where m is the coefficient of friction, s is the uniaxial compressive stress and b is the crack orientation as illustrated in
Fig. 12. In the following, we will consider a random orientation of the embedded microcracks in the specimen.

4.1.2. General unloading and reloading stress–strain relationships

The general unloading and reloading stress–strain relationships is derived using the same approach as that employed
by Kachanov (1982), Lawn and Marshall (1998), Lehner and Kachanov (1995) and Walsh (1965). The basis of the derivation
considers the complementary energy density for the cracked body as a linear summation of the complementary energy
density of a body without crack and the crack density energy, W. Considering non-interacting cracks, the general stress–
strain relation can be expressed as (Lawn and Marshall, 1998)

e¼ s
Eo
þ

dW

ds : ð2Þ

Since the specimens were tested in compression, the cracks are likely to remain closed. The crack energy is given by the
sum of the work done on each individual sliding crack, for all activated orientations b. The sliding displacement is
proportional to the difference between the shearing force and friction for each b. By considering non-interacting cracks
and a friction law given by (1), the crack energy for the unloading segment is given by (Lawn and Marshall, 1998)

WunloadingðsÞ ¼
r
Eo

Z arctanððsmax�sÞ=ðmðsmaxþsÞÞÞ

0
ðsinbcosbþmsin2bÞsinbcos2b

smaxðsinbcosb�msin2bÞ
sinbcosbþmsin2b

�s
 !2

db, ð3Þ
Fig. 12. Illustration of a closed crack in the material under uniaxial compression (after Lawn and Marshall, 1998).
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where smax is the maximum stress attained prior to unloading, m is the friction coefficient on the crack face and r is the
crack configuration coefficient which contains information on the size, shape and density of the cracks, and is given by
(Lawn and Marshall, 1998)

r¼OZnvc3 , ð4Þ

where nv is the number of cracks by unit volume, c is the characteristic crack dimension to give a crack area of A¼Oc2,
where O is a dimensionless constant, and Z is a dimensionless crack geometry constant. The bar in the expression c3

denotes the average over all the cracks in the solid. For penny-shaped cracks considered here, O¼p, c is the crack radius
and Z¼8(1�n)/3p. It is important to note from Eq. (3) that during unloading, the range of b of activated cracks depends on
the stress the material is bearing, thus not all the cracks begin to slide at the same time—cracks with small b have a
smaller friction force and are more likely to start sliding before cracks with larger b do. Using the same approach, the crack
energy for the reloading segment is given by (Lawn and Marshall, 1998)

WreloadingðsÞ ¼
r
Eo

Z arctanð1=mÞ

0
ðsinbcosb�msin2bÞsinbcos2bs2db: ð5Þ

Note that for the reloading segment, the range of angles b corresponding to sliding microcracks – defining the
integration domain in both Eqs. (3) and (5) – is only a function of m which, unlike the unloading segment, remains
independent of the magnitude of s and smax. As a result, one will obtain a linear relationship between stress and strain
during the reloading phase, while cracks are sliding. By taking advantage of this property, we can now propose a rather
simple procedure to measure the crack density from the shape of the reloading stress–strain curve.

4.1.3. Determination of the damage parameter nvc3 from the reloading stress–strain curves

The damage parameter nvc3 introduced in Eq. (4), is expected to depend on the maximum strain emax attained by the
specimen in previous cycles. We will make here the assumption that the crack network configuration (density, shape, size, etc.)
depends only on this parameter, and does not evolve as far as the applied strain remains inferior to emax. As a result, the
proposed model does not describe how the cracks are being created but how the material behaves for a given crack
configuration. We will use it as a way to extract r, using the shape of the reloading stress–strain curves, as explained here.

Following the previous discussion, the stress–strain response for the reloading segment with crack sliding is simply
obtained by integrating Eq. (5) then substituting into Eq. (2)

e¼ s
15E0

15þ2r 2þ3m2þ2m4

ð1þm2Þ
3=2
�2m

 ! !
: ð6Þ

Note that (6) gives a linear relationship between stress s and strain e, since for a given maximum strain emax attained in
prior loadings, m, r and Eo are constants. Thus, the effective modulus due to crack sliding Eeff is given by

Eeff ¼
s
e
¼

15Eo

15þ2rððð2þ3m2þ2m4Þ=ð1þm2Þ
3=2
Þð�2mÞÞ

: ð7Þ

Thus, the ratio between Eeff and Eo is given by

Eo

Eeff
¼ 1þ

2r
15

2þ3m2þ2m4

ð1þm2Þ
3=2

 !
: ð8Þ

Approximating the microcracks in the MAX ceramics by penny-shaped cracks, one can use Eq. (4) and express the
damage parameter nvc3 as a function of the ratio Eo/Eeff

nvc3
¼

45

16ð1�nÞ
ð1þm2Þ

3=2

2þ3m2þ2m4

Eo

Eeff
�1

� �
: ð9Þ

In the following, we will use this expression to characterize the development of the damage in the ceramics as a
function of the applied strain: for each cycle with maximum applied strain emax, the measurement of the ratio Eo/Eeff in the
reloading curve will be used with Eq. (9) to obtain the dimensionless parameter nvc3 . This ratio is obtained from
the experiments by taking the average slope of the first segment of the reloading curve over that of the second segment.
The presence of two stages during the reloading phase corresponding to a linear response without crack sliding followed
by another linear response with different slope accompanied by crack sliding is clear on the experimental curves, as
illustrated in Fig. 13. This figure summarizes also the predictions of the models and the proposed interpretation of the
different regimes of the reloading–unloading cycle.

The ratio Eo/Eeff is represented as a function of emax in Fig. 14 and is found to vary linearly with the applied maximal
strain. The slope Eeff of the second segment is determined by the tangent modulus of the segment of the curve closer to the
maximum stress achieved from prior loadings. The dotted line in Fig. 14 shows the best linear fit for the experimental data

Eo

Eeff
¼ 103emaxþ0:907: ð10Þ
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Let us note that this relationship does not hold for small values of emax. Indeed, for emaxoey¼0.18%, experimental
stress–strain data show linear elastic behavior, so Eeff is equal to Eo for this range of applied strains.

Using the theoretical prediction of Eq. (9), one can now obtain the damage parameter nvc3 at different levels of applied
strain. In Eq. (9), nvc3 is expressed as a function of the ratio Eo/Eeff and the parameters m and n. The friction coefficient m is
expected to be independent of emax and we will first assume m¼0.1. This choice will be discussed subsequently when we
will reconstruct the stress–strain curve in the unloading phase and will compare it with the experimental data. As shown
in Fig. 7, Poison’s ratio n varies only weakly with the applied strain—from 0.20 to 0.18 in the range investigated. As a result,
the parameter 1/(1�n) changes by less than 2% between both values, and we take a constant Poisson’s ratio with n¼0.20,
corresponding to its value before any loading. Combining Eqs. (9) and (10), one obtains the dimensionless quantity nvc3

characterizing the geometrical properties of the damage in the MAX ceramics as a function of the applied strain

nvc3 ðemaxÞ ¼ 201emax�0:182: ð11Þ

This relationship will be compared in the subsequent section with direct measurements of the crack density and crack
size made on the actual specimens loaded to different emax, and obtained from the analysis of SEM images of their
microstructure.

The damage parameter nvc3 is found to be relatively large for specimens tested up to high level of strain. For example, at
emax¼0.75% corresponding to about half of the failure strain, c3=v is found to be as large as 1.3. The question remains whether
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the assumption of non-interacting cracks is valid at such densities. Approximate schemes, such as self-consistent scheme (SCS)
(Budiansky and O’Connell, 1976) and differential scheme (DS) (Hashin, 1988) were developed to capture the effects of crack
interactions. However, these schemes always assume that crack interactions result in stress-amplifying configurations, which
Kachanov (1992) has proven that may not always be the case. Using numerical simulations, Kachanov generated randomly
oriented and parallel cracks with varying crack densities (up to nvc3 ¼ 0:35) in different 2D specimens. The crack interactions
were then considered using stress superposition at each crack. He found that both SCS and DS misrepresent the actual crack
interactions and that the non-interacting scheme provides the most accurate description up to the largest crack density
ðnvc3 ¼ 0:35Þ that was tested. Kachanov concluded that the non-interacting cracks scheme remains accurate for larger values of
crack density than expected because of the negating effect of stress shielding effect which is overlooked in both the SCS and DS
schemes. Liu and Nakamura (2008) investigated the role of crack interaction by comparing the theoretical predictions of
models neglecting this effect with finite element calculations for very large crack densities (up to density of the order of one),
and found surprisingly good agreement between both approaches.

In the case of Ti2AlC, a significant part of the relevant range of nvc3 is larger than 0.35 and even beyond 1 for the largest
value of applied strain. The cracks usually occur between the laminates of each grain (see Figs. 9 and 19), creating parallel
cracks within each grain, but randomly oriented cracks within the material itself since the grains are randomly oriented.
Kachanov (1992) demonstrated that the stress shielding interaction is more pronounced in parallel cracks arrays, and that
crack interactions are found to be much weaker in 3D specimens (Kachanov and Laures, 1989). Therefore, while the
specific case of nvc3 40:35 remains to be studied, it is felt that the non-interacting crack scheme can be used confidently as
a first step in developing a model.
4.1.4. Construction of the unloading stress–strain curves

The crack characteristic coefficient r and friction coefficient m are constant during unloading. Thus the unloading
stress–strain relationship with crack sliding can be obtained by first integrating Eq. (3) numerically for various values of
sosmax and then substituting the crack energy into Eq. (2) to obtain the stress–strain relationship. We use here the value
of r obtained from the stress–strain response in the reloading part of the cycle. The tangent modulus of the resulting
stress–strain curve is then determined by numerical differentiation and compared with the experimental results as shown
in Fig. 15 for two different maximal strain levels.

It is observed that the model is able to predict Et rather accurately for these two values, i.e. emax¼0.55% and 0.71%.
Eqs. (2) and (3) define the stress–strain relationship beyond the onset of crack sliding, corresponding to the segment of the
unloading curve with the smallest value of Et. In the model, the initial slope in the unloading phase corresponds to Eo

(before the initiation of crack sliding) and is provided by the analysis of the reloading phase for small applied strain, before
the cracks start to slide. As a consequence, the location for onset of sliding, marked by the discontinuity of Et in Fig. 14, is
obtained by the intersection between the elastic unloading curve (Et¼Eo) starting from (emax, smax), and the curve obtained
using (2) and (3) (to describe the stress–strain behavior with crack sliding) starting from (eres, 0). This location cannot be
identified by our model and the residual strain eres has been taken equal to its experimental value.

The full stress–strain behavior is shown in Fig. 16. The figure shows that the predicted stress–strain relationship agrees
well with the experimentally measured curve. The reloading curve is the same whatever the value of m is, since the
reloading curve was used to obtain r by solving (10) and (11). Hence, a different choice of m will simply result in a different
value for r, but does not change the resulting stress–strain curve during reloading. The shape of the unloading curve
however, is dependent on the value of m. In particular, the position of the crossover between the regime with crack sliding
and no sliding strongly depends on the choice of m as shown in Fig. 16. As a result, it can be used as a means to determine
the appropriate value for the friction coefficient. Fig. 17 shows the values of m that minimize the difference between the
theoretical and experimental unloading stress–strain curves for specimens loaded to various emax. The friction coefficient m
is found to be independent on emax, as expected. Fig. 17 validates a posteriori our initial choice m¼0.1 used to extract the
crack density from the reloading curve. This value is consistent with the low value of m reported in other MAX phases
(Barsoum and El-Raghy, 2001).

Finally, we checked the stress–strain predictions of the model on other experimental results for specimens tested to various
emax as well, as exemplified in Fig. 18. It is again observed that the predicted and measured behavior of Ti2AlC agree quite well.

On the very same figure, we have analyzed the effect of a more complex friction law on the overall mechanical behavior
of the specimens, as proposed e.g. by Lawn and Marshall (1998). Introducing a cohesive stress tc between the opposite
faces of microcracks, the friction law used in our model in Eq. (1) becomes tf ¼ tcþmssin2b. Taking the value tc ¼ 45MPa,1

one obtains the dot curve represented in Fig. 18 that one can compare with the predictions obtained taking tc¼0. Since
both curves are quite close in both the loading and unloading part of the stress strain curve, the value of tc does not
influence the crack density extracted from it. As a result, we considered only a friction law of the type given in Eq. (1)
taking tc¼0. This has two important consequences: (i) the use of such a simplified friction law results in an explicit
relationship between the crack density and the ratio of effective Young’s modulus observed in the reloading phase (see
Eq. (8)). This represents the basis for the simple procedure proposed here to characterize damage spreading within MAX
1 This value has been determined by comparing predictions of the model using the friction law with non-zero cohesive stress with the experimental

data. In particular, with m¼0.1, it leads to a the value sc¼0.2 GPa for the onset of crack sliding in the reloading phase, as observed experimentally.



0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350
εmax = 0.55%

E
t (

G
P

a)

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

350
εmax = 0.71%

E
t (

G
P

a)

ε (%)

ε (%)

Fig. 15. Comparison between predicted (solid) and experimental (dot) tangent modulus Et for the unloading curves for two specimens loaded to different

maximum strains emax. The experimental results correspond to the smoothed signal of the raw variations in red of the tangent modulus. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

σ 
(G

P
a)

μ = 0.6

μ = 0.1

ε (%)

Fig. 16. Effect of m on the unloading curve (dashed lines—model, solid lines—experiment).

B. Poon et al. / J. Mech. Phys. Solids 59 (2011) 2238–2257 2251



0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.04

0.08

0.12

0.16

μ

εmax (%)

Fig. 17. Values for m that minimize the difference between the theoretical and experimental unloading stress–strain curves for specimens tested to

different emax. Note the average value of m¼0.1.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

σ 
(G

P
a)

τc = 0

τc = 45 MPa

Experiment

ε (%)

Fig. 18. Comparison of the predicted and experimentally measured stress–strain curves (dashed lines—model, solid lines—experiment).

B. Poon et al. / J. Mech. Phys. Solids 59 (2011) 2238–22572252
ceramics from their stress–strain behavior; (ii) the reloading part is piecewise linear and has been constructed the
following way: an initial linear segment with slope E0 is plotted until s¼sc corresponding to the onset of crack
sliding—we found sc¼0.2 GPa from the experimental stress–strain curves.2 A second linear segment with slope Eeff as
measured from the experimental stress–strain reloading curve (see Section 4.1.3) is then plotted.

Finally, let us note that a microcracks friction based model was also recently successfully applied to interpret
experimental measurements, here in the context of thermally sprayed ceramics coating (Liu and Nakamura, 2008). As in
the present study, comparison between theoretical predictions and experimental data provided interesting insights on the
evolution of the material microstructure and damage with the external loading conditions.

4.2. Validation of the model: measurement of crack density using SEM images

In the previous section, the mechanical behavior of Ti2AlC has been interpreted using a micromechanics model where the
friction between the two opposite surfaces of cracks is responsible for the energy dissipation and the hysteresis loops observed
2 In strict accordance to the model with tc¼0, there should be no initial elastic segment in the reloading regime—crack sliding occurs immediately at

the very onset of loading. However, to account for the experimental observations, such a regime is introduced artificially for 0ososc¼0.2 GPa. The

choice of tc¼0 in our theoretical description is justified by the observation that the cohesive stress has a negligible influence on the theoretical stress–

strain curve. In particular, the extracted crack density from the stress–strain curve is not affected by the choice of tc.



Fig. 19. SEM images 60�43 mm2 of the microstructure of dense Ti2AlC at different strain levels. Note both inter-granular and delamination cracks.
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for this material under cyclic loading. In this approach, the width of the hysteresis loops is directly related to the density of
cracks through the parameter nvc3 that characterizes the geometry of the damage in the material. As a result it was possible to
deduce this parameter from the shape of the stress–strain curves. In this section, the crack density obtained from the stress–
strain measurements are now compared directly with the measured crack density from the SEM images.

Typical images 60�43 mm2, corresponding to four different maximum applied strains are shown in Fig. 19. Their
corresponding stress–strain response during the compression is shown in Fig. 6. Cracks can be clearly identified on the
images. Many of them have propagated from a grain boundary to another, remaining confined to a single grain. It is also
interesting to note that they are almost all oriented along the largest (longitudinal) dimension of the anisotropic grains,
suggesting delamination between the weak planes (transverse) of the Ti2AlC single crystals.

From Fig. 19, a qualitative estimation of the geometry of the crack network at different strain levels suggests that the
damage is more extensive at larger strains. To study more quantitatively the damage accumulation, a procedure has been
developed whose result is shown in Fig. 20, taking as an example the SEM image presented in Fig. 19 with emax¼0.40%.
Here, the position and orientation of the cracks were first identified manually. It was not possible to perform this process
using an automated procedure because of the presence of the grain boundaries that could be misinterpreted as cracks.
Therefore, this task was first performed reproducing the crack network on a semitransparent paper, followed by digitizing
the drawing (see the left panel of Fig. 20). The geometry of the damage and its density were then analyzed defining the
surrounding area of each individual crack, as represented on the right part of Fig. 20. This was done by applying a Voronoi
tessellation based algorithm on the crack network. This procedure enables a precise measurement of the properties of the
crack network, because it is possible to exclude the crack – and their surrounding area – close to the edges of the image,
and for which full crack length and its environment are partly unknown. The selected cracks, sufficiently far away from the
edges, are represented in dotted lines in Fig. 20.

With the above described procedure, it is now possible to measure precisely the typical area /SS surrounding a single
crack on the images. Selecting only the cracks sufficiently far from the edges, one can get an unbiased estimate of the
number of cracks ns¼1//SS per unit surface. The variation of the crack density by unit surface with the maximum applied
strain is represented on the left hand side of Fig. 21. As observed qualitatively in Fig. 19, the crack density increases with
the loading. The error bars are defined from the variations of densities obtained from one image to another (at least two
sets of two images of size 60�40 and 30�20 mm2 were analyzed for each strain level). Note that such a quantity defined
on the SEM images is related to but different from the effective crack density in the ceramics corresponding to the number
of cracks by unit volume. Their relation is provided later in Appendix. The average half-length cs of cracks, as measured on
the SEM images, is then computed for each strain level. This typical crack length is found to remain almost constant with
the external loading, as shown on the right hand side of Fig. 21.



Fig. 20. Left: crack network as observed on the 60�43 mm2 SEM image corresponding to emax¼0.4%, i.e. the bottom right SEM image of Fig. 18. Right: the

corresponding Voronoi diagram of the cracks that defines the surrounding surfaces. Only the cracks represented by dotted lines, sufficiently far from the side of

the image, are considered in the calculation. (In order to compute the number ns of cracks by unit surface, the ones close to the side of the images are excluded

from the calculation. As a result, ns¼1//SS¼Ncrack/Scrack where Ncrack is the number of cracks on the image after exclusion, and Scrack is the total area surrounding

these cracks, as defined by the Voronoi tessellation (see Fig. 19). Without such a procedure, Scrack would be underestimated (since some part of the surface

surrounding the excluded crack is outside of the image), and so ns would be overestimated).
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Strictly speaking, the damage parameter involved in the theoretical description of the MAX ceramics is defined from the
product of c3 – the average of the cube of the crack length – with the number of cracks nv by unit volume. Obtaining these
quantities from SEM images – two dimensional cut of the 3D crack network – is not straightforward. Using stereological
relationships detailed in Appendix, one can however relate our 2D observations presented in Fig. 20 with the damage
parameter as defined in the micromechanics model:

nvc3 � 1:36nsc
2
s : ð12Þ

This quantity is then computed on each image, and after averaging over those corresponding to a same level of strain,
one obtains its variations with emax as presented in Fig. 22. Error bars are computed from the fluctuations from one image
to another. The comparison with the value obtained from the analysis of the hysteresis loops of the samples under cyclic
loading using the micromechanics model presented in Section 4.1.4 is also shown on the same figure. The agreement with
the analytically predicted value is good over the full range of strain investigated.

The results shown in Fig. 22 can be viewed as a validation of the proposed model, including the underlying
assumptions, such as non-interacting and randomly oriented cracks (Section 4.1.4) for Ti2AlC. It is important to note
that the crack density is the only relevant adjustable parameter of the model since the value of m has been deduced directly
from the stress–strain curve. The present results suggest that sliding of cracks, whose density increases with the maximum
applied strain, is the main dissipative mechanism which gives rise to the hysteresis loops observed for Ti2AlC. This differs
from the interpretation proposed by Barsoum et al. (2003) where a dislocation based mechanism was invoked to explain
the hysteretic response. The dislocation-based mechanism was postulated, with emphasis on the value of the dissipated
energy without looking into detail at the stress–strain relationship during both loading and unloading. In addition,
no direct observation of such a reversible microscopic mechanism was reported. The present work used a single
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micromechanical model based on measurable parameters (stress, strain) and one dominant dissipation mechanism,
friction between faces of microcracks that are evidenced on SEM images of the Ti2AlC microstructure. It accurately
reproduces the stress–strain behavior during loading and unloading (thus predicting the correct dissipated energy), while
providing an accurate estimation of the crack density at every stage of the loading. As such, the present results and their
micromechanical interpretation are not only restricted to the MAX phases, but can be applied to other classes of quasi-
brittle materials for which microcracking is an important failure mechanism.

5. Conclusions

The mechanical behavior of Ti2AlC, a MAX phase material, was examined and modeled. The hysteretic stress–strain
behavior during unloading–reloading cycles (a unique characteristic of the MAX phases) was observed for Ti2AlC as well.
It was observed through careful experimentation that this material behaves like a linearly elastic solid before its yield
point, beyond which, its stress–strain behavior (for monotonic loading) resembles a power-law relationship and hysteresis
loops can be observed during the unloading and reloading cycles.

The specimens, both fractured and intact, were examined using the SEM. Damage mechanisms such as delamination
and inter-granular cracks and kink bands were observed. Based on these mechanisms, a damage model was proposed to
describe the mechanical behavior observed in the uniaxial experiments. This model considered the damage accumulation
to be a function of the maximum strain attained by the material. The kink bands likely reduced the elastic modulus of the
material while the sliding of the cracks likely resulted in the hysteretic unloading–reloading stress–strain behavior.

The micromechanical model for crack sliding used to describe the unloading and reloading of Ti2AlC is based on the
model proposed by Lawn and Marshall (1998). Assuming Coulomb frictional law between the crack faces, it was
demonstrated that the crack density can be easily determined using the ratio between the elastic modulus and the ‘sliding
modulus’ (slope of the stress–strain curve corresponding to crack sliding) of the reloading curve, while the frictional
coefficient can be obtained using the corresponding unloading curve. The model was found to be able to describe the
stress–strain behavior of Ti2AlC. In addition, SEM images for four specimens loaded to various maximum strains were
analyzed to obtain the quantitative measure for the crack density. The predicted and measured crack densities at each
maximum strain attained by the material were compared and found to be in reasonably good quantitative agreement.

To conclude:
�
 Experimental results show evidence of crack accumulation in Ti2AlC when loaded beyond its yield point.

�
 The micromechanical model used to describe the stress–strain behavior relies only on two ‘‘unknown’’ parameters, the

crack density and friction coefficient.

�
 The crack density can be determined from the ratio between the elastic and sliding modulus.

�
 The friction coefficient can be computed using the unloading stress–strain curves.

�
 The predicted crack density using this model was found to be in good agreement with that measured quantitatively

using statistical analysis of the SEM images.

�
 The good agreement between the experimental results and model predictions suggests that the main dissipative mechanism

responsible for the hysteretic unloading reloading curves, is friction between the microcrack faces in the material.

�
 This model can be used as a simple technique to obtain crack densities and friction coefficient in other brittle or quasi-

brittle materials with microcracks as well.
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Appendix. Stereological model: computing the 3D damage parameter nvc3 from 2D SEM images

As a test of the micromechanical model proposed to account for the hysteretic behavior of Ti2AlC ceramics under cyclic
loading, the damage parameter nvc3 predicted theoretically from the mechanical response of the ceramic is compared with
the values obtained from a direct observation of the ceramic microstructure (see Fig. 22). The information on the crack
network as obtained experimentally being limited to SEM images that correspond to 2D cut of the 3D crack network, one
needs first to relate the quantity nvc3 involved in the micromechanics model to quantities directly measurable on the
images, such as the density ns of cracks by unit surface and the average crack length cs observed on SEM images.

As a starting point, we use the classical relation of stereology that relates the total crack length by unit surface LA

(in mm/mm2) to its total area by unit volume Sv (in mm2/mm3) (Russ and Dehoff, 2000; Nemati and Stroeven, 2001)

Sv ¼
4

p LA: ðA:1Þ

LA can be measured on the SEM images and is related to the average crack half-length and the crack density, both given in
Fig. 21 as a function of emax, by LA ¼ 2nscs. The same kind of relation holds for Sv leading to Sv ¼ pnvc2 where nv is the
number of cracks by unit volume and c is the radius of the cracks, assumed to have a penny shape as also assumed in the
micromechanics model.

It is now possible to express c2 as a function of these quantities as

c2 ¼
8

p2

csns

nv
: ðA:2Þ

To obtain an expression for c3 , it is necessary to make an assumption on the distribution of crack sizes. Assuming a
Gaussian distribution of normalized standard deviation sn ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�c2

p
=cÞ, the average of c, c2 and c3 are related by

c3 ¼ 3c2�2c3: ðA:3Þ

Expressions that relate c and nv to quantities measured on the SEM images are still lacking. These are provided by

c¼ a0cs, ðA:4Þ

nv ¼ b0

ns

cs
, ðA:5Þ

where a0 and b0 are constants depending on sn only. Using Eqs. (A.2)–(A.4) with the definition of sn allows to relate
b0 to a0

a0b0 ¼
8

p2ð1þs2
nÞ
: ðA:6Þ

It is now possible to express the damage parameter nvc3 as a function of quantities one can measure on the SEM
images, using successively Eq. (A.3), (A.2) and (A.4), and finally Eqs. (A.5) and (A.6):

c3

v
¼

24

p2
a0nsc

2
s 1�

2

3ð1þs2
nÞ

� �
: ðA:7Þ

The constant a0 is measured numerically by simulating a network of penny-shaped cracks distributed in a Gaussian
distribution with standard deviation sn and computing the properties of images obtained from cuts of the 3D networks,
and after averaging over a large number of configurations. a0 is found to decrease slightly with sn, taking the value 1.678
for a homogeneous distribution of cracks, corresponding to sn¼0. As the term in bracket in expression (A.7) of the damage
parameter increases faster with sn, the overall behavior of the ratio nvc3 corresponds to an increase with the standard
deviation of the crack size distribution, as expected from its numerator. However, this increase is small, e.g. of the order of
10% for sn¼0.5 with respect to sn¼0. As a result, we will neglect here the effect of sn on the value of the damage
parameter, and will take a0(sn¼0)¼1.678 and sn¼0 in Eq. (A.7). This provides Eq. (12) used in Section 4 to compute the
damage parameter nvc3 involved in our micromechanics model from the geometrical properties of the crack network as
measured on the SEM images.
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