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We derive here a linear elastic stochastic description for slow crack growth in heterogeneous materials.
This approach succeeds in reproducing quantitatively the intermittent crackling dynamics observed
recently during the slow propagation of a crack along a weak heterogeneous plane of a transparent
Plexiglas block [K. J. Måløy et al., Phys. Rev. Lett. 96, 045501 (2006)]. In this description, the quasistatic
failure of heterogeneous media appears as a self-organized critical phase transition. As such, it exhibits
universal and to some extent predictable scaling laws, analogous to that of other systems such as, for
example, magnetization noise in ferromagnets.
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Driven by both technological needs and the challenges
of unresolved questions in fundamental physics, the effect
of material heterogeneities on their failure properties has
been extensively studied in the recent past (see [1] for a
recent review). So far, many efforts have been focusing on
the morphology of fracture surfaces (see [2] for a review).
In particular, crack surface roughness was recently shown
to exhibit anisotropic morphological scaling features [3,4]
that could be understood for brittle materials [4].

Here we will focus our study on the dynamics of cracks.
In heterogeneous materials under slow external loading,
this propagation displays a jerky dynamics with seemingly
random sudden jumps spanning over a broad range of
length scales [5]. Such a complex dynamics, also called
‘‘crackling noise’’ [6], has also been suggested from the
acoustic emission accompanying the failure of various ma-
terials [7] and the seismic behavior accompanying earth-
quakes [8] characterized by power-law energy distribution
with an exponent around 1.3–1.5. These distributions can
be qualitatively reproduced in phenomenological models
such as fiber bundle models [9] (respectively, random fuse
models [10]) which schematize materials as a set of brittle
fibers loaded in parallel with random failure thresholds and
a rule for load redistribution after each failure event (re-
spectively, as a network of electrical fuses with constant
resistance and a randomly distributed threshold). However,
these simple approaches yield an exponent around 1.9–2.5
significantly higher than the experimental observations.
Moreover, they rely on important simplifications which
makes quantitative comparisons with experiments difficult.

We will demonstrate here that this crackling dynamics
can be fully reproduced through a stochastic description
rigorously derived from linear elastic fracture mechanics
(LEFM) [11] extended to disordered materials. In particu-

lar, this model succeeds in reproducing quantitatively the
intermittent crackling dynamics observed recently during
the steady slow crack growth along a weak heterogeneous
plane within a transparent Plexiglas block [12]. In this
description, quasistatic failure of heterogeneous brittle
elastic media can be interpreted as a self-organized critical
dynamic phase transition and—as such—exhibits univer-
sal behaviors. We will then show how one can use univer-
sality and previous calculations performed on different
systems belonging to the same universality class, here the
motion of domain walls in disordered ferromagnets, to
derive predictive laws for the failure of materials.

Theoretical description.—LEFM is based on the fact
that—in an elastic medium under tensile loading—the
mechanical energy G released as a fracture occurs is
entirely dissipated within a small zone at the crack tip.
Defining the fracture energy � as the energy needed to
create two crack surfaces of a unit area, under the quasi-
static condition, we assume that the local crack velocity v
is proportional to the excess energy locally released:

 

1

�
v � G� �; (1)

where � is the effective mobility of the crack front.
In a homogeneous medium, � � �0 is constant, and an

initially straight crack front will be translated without
being deformed. LEFM allows the determination of the
energy released G in any geometry. In particular, for the
experimental configuration chosen in Ref. [12], considered
here and depicted in Fig. 1, where a crack grows at the
interface between two elastic plates by lowering the bot-
tom plate at constant velocity V, G is given by [13]

 G0�f�t�� �
1

3
E�3 ��0 � Vt�2

�c0 � f�t��
4 ; (2)
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where c0 � f�t� is the instantaneous crack length, E the
Young modulus, � the thickness of the lowered plate, �0

the initial opening, and c0 the initial crack length. Then,
considering a slow driving velocity such as Vt� �0, one
can show from Eqs. (1) and (2) that, after a short transient
regime, the crack front propagates at a constant velocity:

 f�t� ’ vmt; with vm �
Vc0

2�0
and c0 �

�
E�3�2

0

3�0

�
1=4
:

(3)

In a heterogeneous material, defects induce fluctuations
in the local toughness: ��x; y� � �0�1� ��x; y��, where
the noise term ��x; y� captures these fluctuations and x
and y denote the coordinates in the propagation and crack
front directions, respectively. These fluctuations induce
local distortions of the crack front f�x; t�, which in turn
generate local perturbations in G [14]. To linear order in f,
one can show that [15]

 G�x;f�x;t��	G0�hf�x;t�ix�

�
1

2�
G0�hf�x;t�ix�

Z 1
�1

f�x0;t��f�x;t�

�x0 �x�2
dx0:

(4)

Finally, by replacing this expression in Eq. (1), using the
expression of G0 for the homogeneous case, and introduc-
ing the quantities defined in Eq. (3), we get

 

1

��0

@f
@t
� F�t; ffg� �

1

2�

Z 1
1

f�x0; t� � f�x; t�

�x0 � x�2
dx0 � ��x; f�x; t��; where F�t; ffg� �

4

c0
�vmt� hf�x; t�ix�: (5)

Strictly speaking, this equation describes the interfacial
crack growth according to the geometry depicted in
Fig. 1. But the very same equation—with different
prefactors in the expression of F�t;ffg�� 4

c0
�vmt�

hf�x;t�ix�—would have been obtained for the quasistatic
stable crack growth of the in-plane component of the crack
front within a three-dimensional solid independently of the
tensile loading conditions and the system geometry.

Variants of this equation with constant force F have
been extensively studied in the past to model crack propa-
gation in solids [14] but also to describe other systems as
diverse as interfaces in disordered magnets [16,17] or
contact lines of liquid menisci on rough substrates
[18,19]. In this case, the interface remains stationary,
pinned by the heterogeneities, unless this constant force
F is larger than a threshold value Fc. A key feature of these
systems is that the so-called depinning transition at Fc
belongs to the realm of collective critical phenomena
characterized by universal scaling laws [20]. In particular,
at Fc, the interface moves through scale-free avalanches, in
both space and time.

Equation (5) denotes a rather different situation where
the effective force F�t; ffg� is not constant anymore but
given by the difference between the mean front position
and the one that would have been observed within the
homogeneous case: When F�t; ffg�<Fc, the front remains
pinned, and F�t; ffg� increases with time. As soon as
F�t; ffg�>Fc, the front propagates, F�t; ffg� increases,
and, as a consequence, F�t; ffg� is reduced until the front
is pinned again. This retroaction process keeps the crack
growth close to the depinning transition at each time, and,
within the limit vm ! 0 and c0 ! 1, the system remains
at the critical point during the whole propagation, as for
self-organized critical systems [21].

Spatiotemporal intermittent dynamics.—Predictions of
this stochastic description are now confronted by the ex-
perimental observations reported in Ref. [12]. Using a
fourth-order Runge-Kutta scheme, Eq. (5) is solved for a
front f�x; t� propagating in a 1024
 1024 uncorrelated 2D
random Gaussian map ��x; y� with zero average and unit
variance [note that the crackling dynamics statistics de-
tailed thereafter do not depend on the precise distribution
of � as far as it remains short-range correlated]. The
parameter ��0 was set to unity, while the two parameters
c0 and vm were varied from 2.5 to 250 and 10�2 to 5

10�1, respectively. In order to characterize the scaling
features of the crack front local dynamics, we adopt the
analysis procedure recently proposed in Ref. [12] and
compute at each point �x; y� of the recorded region the
time w�x; y� spent by the crack front within a small 1

1 pixel2 region as it passes through this position. A typical
gray-scale image of this so-called waiting-time map are
presented in Fig. 2(a). The numerous and various regions
of gray levels reflect the intermittent dynamics and look
very similar to those observed experimentally [Fig. 1(b) of
Ref. [12]]. From the inverse value of the waiting-time map,
we compute a spatial map of the local normal speed
velocity v�x; y� � 1=w�x; y� of the front as it passes
through the location �x; y�. Avalanches are defined as clus-
ters of velocities v larger than a given threshold vc � C �v,
where �v denotes the crack velocity averaged over both time
and space within the steady regime. Their area is power-
law distributed with an exponent �0 � �1:65� 0:05
[Fig. 2(c)]. These clusters exhibit morphological scaling
features since their width—measured along the direction
of crack growth—is shown to go as a power law with
respect to their length—measured along the direction of
the crack front—with an exponent H � 0:65� 0:05

c0+f(x,t)

x

∆
0 +

V
t

δ

FIG. 1. Crack growth along the inhomogeneous interface be-
tween two elastic plates loaded according to the geometry used
in Ref. [12]: sketch and notations.
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[Fig. 2(d)]. All of these results are in perfect agreement
with those measured experimentally in Ref. [12]. Contrary
to what was conjectured in Ref. [12], H is significantly
different from the value of the roughness exponent � ’
0:39 expected for the interface at the depinning point of
Eq. (5) [14,22]. It is worth mentioning that recent experi-
mental results [23] report a roughness exponent � ’ 0:35 at
a large scale, in agreement with this theoretical prediction.

To complete the characterization of the avalanche sta-
tistics, we measure a new observable, the avalanche dura-
tion—defined as the difference between the times when
the crack front leaves and arrives at the considered ava-
lanche cluster [Fig. 2(b)]. The distribution of the avalanche
duration is plotted in Fig. 2(e). For durations D smaller
than the average avalanche duration hDi, this distribution
clearly depends on vm, c0, and the clipping threshold C,
while forD� hDi all of the distributions seem to collapse
onto a single power-law behavior characterized by an
exponent �> � �2:1� 0:2 [Fig. 2(e)]. Finally, the mean
avalanche duration is found to go as a power law with the

mean avalanche size, characterized by an exponent � �
0:4� 0:05 [Fig. 2(f)].

Spatially averaged dynamics.—As for other critical sys-
tems, very different physical systems that belong to the
same universality class will display similar scaling behav-
ior with the same scaling exponents. In particular, it was
shown that the Barkhausen noise [16,17] accompanying
the motion of domain wall driven by an external magnetic
field through soft disordered ferromagnets can be de-
scribed by an equation with a shape similar to Eq. (5). In
this respect, we analyze the global crack front dynamics
by computing the spatially averaged instantaneous velocity
v�t� � h@f@x �x; t�ix of the crack interface, as in Refs. [16,17].
We observe once again a jerky dynamics really similar to
Barkhausen noise [16,17]. We then impose a given refer-
ence level vc � Cmax�v� and define bursts as zones where
v�t� is above vc. The duration T of a given burst is defined
as the interval within two successive intersections of v�t�
with vc, while the size S is defined as the integral of v�t�
between the same points. For the Barkhausen noise, this
analysis leads to power-law distributions P�T� / T�� and
P�S� / S�� [16,17] and a power-law relation between the
duration and size of the avalanches T / Sa, with critical
exponents that can be predicted by using functional renor-
malization group (FRG) calculations [17,18] leading to
� 	 1:25, � 	 1:43, and a 	 0:58. We show in
Figs. 3(b)–3(d) that all of these scaling relations as well
as the values of the exponents are found to be in good
agreement with the ones observed here for the average
interfacial crack growth.

Conclusion.—We have derived a description for planar
crack growth in a disordered brittle material which suc-
ceeds in capturing the statistics of the intermittent crack-
ling dynamics recently observed experimentally [12]. In
particular, we have shown that material failure appears as a
critical system, where the crack front progresses through
scale-free avalanches, a signature of a dynamic depinning
phase transition. As for other critical systems, microscopic
and macroscopic details do not matter at large length and
time scales, and this simple linear elastic stochastic de-
scription contains all of the ingredients needed to capture
the scaling statistical properties of more complex failure
situations. This conjecture is strongly supported by a recent
analysis [24] that has shown that the laboratory experiment
described here of crack growth within Plexiglas under
tension shares many characteristics with geological
faults—although this latter results from external shear
loading—since they exhibit seismicity catalogs with simi-
lar statistical features: time of occurrence, epicenter loca-
tion, and energy parameter. FRG calculations performed
on a different system belonging to the same universality
class—the motion of domain walls in disordered ferro-
magnets—have been used to predict scaling laws for the
statistics of the spatially averaged instantaneous crack
velocity. Experimental checks of these predictions are
currently under progress [25]. Let us note finally that this
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FIG. 2 (color online). (a) Typical gray-scale map of the
waiting-time matrix w�x; y� obtained from the solution of
Eq. (5) with c0 � 4000 and vm � 0:01. (b) Spatial distribution
of clusters corresponding to velocities v�x; y�>C �v, with C �
4. The quantity �v refers to the crack velocity averaged over both
time and space within the steady regime. The cluster duration is
given by the cluster color according to the color scale given in
the inset. The distribution of the cluster area A, the scaling
between the width Ly and the length Lx of clusters, the
distribution of the cluster duration D, and the scaling between
D and A are plotted in (c), (d), (e), and (f), respectively. The
various symbols correspond to various values of vm, c0, and C
as specified in the inset in (e). The straight lines correspond to
P�A� / A��0 , Ly / LHx , P�D� / D��> , and D / A�, with �0 �

�1:65, H � 0:65� 0:05, �> � �2:1, and � � 0:4.
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description has been derived within the quasistatic ap-
proximation. To understand how to include the dynamic
stress transfers through acoustic waves occurring as a
dynamically growing crack is interacting with the material
disorder [26] will represent interesting challenges for fu-
ture investigations.
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FIG. 3. (a) Typical time evolution of the spatially averaged
crack front velocity v�t� � hv�t; x�ix. The dashed-dotted hori-
zontal line corresponds to vr � Cmax�v�, with C � 0:1 used to
define the bursts. Distribution of the normalized burst duration
T, normalized burst size S, and the scaling of T with S are
plotted in (b), (c), and (d), respectively. The various symbols
correspond to various values of vm, c0, and C as specified in the
inset in (b). In these three graphs, the straight lines correspond to
P�T� / T��, P�S� / S��, and T / Sa with the critical expo-
nents � � 1:43, � � 1:25, and a � 0:58 predicted by the FRG
approach.
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