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Crack propagation through disordered materials as a depinning transition:
A critical test of the theory
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The dynamics of a planar crack propagating within a brittle disordered material is investigated numerically.
The fracture front evolution is described as the depinning of an elastic line in a random field of toughness.
The relevance of this approach is critically tested through the comparison of the roughness front properties,
the statistics of avalanches, and the local crack velocity distribution with experimental results. Our simulations
capture the main features of the fracture front evolution as measured experimentally. However, some experimental
observations such as the velocity distribution are not consistent with the behavior of an elastic line close to the
depinning transition. This discrepancy suggests the presence of another failure mechanism not included in our
model of brittle failure.
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I. INTRODUCTION17

Understanding the failure properties of heterogeneous18

materials has driven a large research effort over last few19

decades. The motivation is twofold: First, describing the role1 20

of material microstructure on the behavior of cracks is a21

prerequisite to make reliable predictions on the resistance and22

lifetime of solids. In this respect, this research can find direct23

application for the design of materials with improved fracture24

performance [1–3]. Classical concepts of fracture mechanics25

that describe failure as the propagation of a crack through a26

homogeneous elastic media miss several aspects of the failure27

of materials, such as the intermittent dynamics of cracks [4,5]28

or the scale invariant roughening of fracture surfaces [6–8].29

Predicting the overall toughness of a heterogeneous material30

remains also a challenge. Recently, many progresses were31

addressed by describing the onset of failure as a depinning32

transition [9–13]. Here, we thoroughly test this approach33

through a systematic comparison of the model prediction with34

experimental data. Second, crack propagation in disordered35

materials has been shown to exhibit puzzling scaling laws36

with universal features. As conjectured by Bouchaud et al.37

[6], this suggests that a unified theoretical framework based38

on critical transition theory may capture the failure properties39

of a large range of materials with disordered microstructures. It40

also suggests that fracturing materials could be used as a model41

system to investigate dynamic phase transition involved in a42

myriad of other phenomena such as the wetting of liquids43

on heterogeneous substrates [14], the motion of magnetic44

domain walls [15], or the dynamics of a dislocation [16]45

that are dominated by the motion of an interface or a defect46

line. Proposed in the 1990s [17–19], this connection with this47

family of critical phenomena has been recently made more48

quantitative, and various aspects of the intermittent dynamics49

of cracks [9,20], their scale invariant roughness [21], but also50

their average dynamics [22,23] could be explained by describ-51

ing the onset of material failure as a depinning transition. In52

this theoretical framework, the crack front is described as an53
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elastic line that can propagate through the random arrangement 54

of heterogeneities when the external driving exceeds some 55

critical threshold. The next step along this line of research is 56

to establish a clear separation between properties reminiscent 57

of a depinning transition and nonuniversal features specific 58

to the loading conditions or the material investigated. The 59

identification of the conditions under which criticality does 60

emerge in fracture problems is also an open question. 61

Motivated by these challenges, we proceed here to a 62

systematic comparison of the predictions of the depinning 63

model with the experimental data available. The goal is 64

to reveal to which extent depinning concepts are relevant 65

to describe the behavior of cracks in disordered materials. 66

We are interested to test the relevance of this approach to 67

capture not only the scaling properties of cracks, but also 68

some other aspects of their complex dynamics by including in 69

the theory the effect of the loading conditions, the geometry 70

of the specimen and the failure properties of the fracturing 71

material. This test of the model will be performed through 72

the comparison of the theory with characteristic features 73

of the dynamics of interfacial cracks recently evidenced by 74

Tallakstad et al. in a series of experiments [24]. We will show 75

that the model proposed captures most but not all the statistical 76

properties of the crack front. This discrepancy between theory 77

and experiment will prove to be enlightening, as it will reveal 78

physical ingredients not included in the original model that 79

will be discussed in the final part of the paper. 80

The focus of our work will be mainly on the dynamics 81

of planar cracks. In materials with a random microstructure, 82

cracks under slow external driving display a jerky dynamics 83

with sudden jumps spanning over a broad range of length 84

scales. Such a complex motion, also referred to as crackling 85

noise [25], is reminiscent of a dynamic phase transition and 86

has been observed in various systems involving the motion of 87

elastic interfaces in media with random impurities, defects or 88

heterogeneities [26,27]. These features have been investigated 89

indirectly in experimental fracturing systems through the 90

acoustic emission accompanying failure [22,28,29], even 91

though a quantitative link between acoustic bursts and sudden 92

crack motions is still missing. More recently, this intermittent 93

dynamic could be studied in great detail using a high-speed and 94
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high-resolution camera that can track a crack front propagating95

through a weak heterogeneous plane between two transparent96

Plexiglas plates [4,30]. As a result, the statistics of the97

local front velocity could be characterized extensively as a98

function of the average crack speed [24], and in this work,99

we intend to compare these statistical features with the model100

predictions.101

Contrary to previous studies that focused only on the102

scaling properties of cracks [9,31], our approach is designed103

to also capture nonuniversal features by taking into account104

the finite distance to the critical point that corresponds to a105

vanishing crack speed, as in many practical situations, the106

front moves at slow, however, finite speed. The evolution law107

for the crack used here is derived rigorously from continuum108

fracture mechanics [11,32], so it takes into account the loading109

conditions and the geometry of the fracture test actually used110

in the experiments. Thus, we expect our approach to capture111

the value of the exponents involved in the scaling laws, but112

also more subtle features such as the influence of the average113

crack growth velocity, the value of the thresholds and constants114

involved in the scaling laws, or the statistics of local crack115

growth velocity.116

In Sec. II, we describe the model used in our study and the117

numerical approach for the resolution of the equation of motion118

of the crack. In Sec. III, we present the predictions of our119

model and confront them with the experimental observations120

of Refs. [21,24,30]. The final section, Sec. IV, is a discussion121

of the success and limitations of the depinning theory for122

describing material failure and the possible improvements of123

the current model.124

II. MODEL AND METHOD125

A. Evolution equation of the crack front126

The geometry of the fracture test investigated in this study127

is inspired by the experiment setup of Refs. [21,24,30] that128

is presented schematically in Fig. 1(a). An interfacial crack129

of length c(z,t) propagates between two elastic plates that are130

separated at a constant opening rate vext = dδ/dt . We assume131

here that all the characteristic length scales of the sample132

(crack length, plate thickness, etc.) are much larger than both133

the perturbations along the crack front and the characteristic134

size of the heterogeneities. Another important assumption is135

that all the dissipative processes located near the crack tip136

(for example bond breaking, plasticity, microcracking) are137

confined in a zone much smaller than the typical heterogeneity138

size. Then, the problem of planar crack propagation within139

a three-dimensional (3D) brittle solid can be reduced to a140

2D problem where an interface, the crack front, is driven141

within a plane with heterogeneous fracture properties, as142

represented schematically in Fig. 1(b) [11,18,32,33]. The143

equation of motion of the interface can be obtained in three144

steps [9,11,32]:145

(i) The field of driving force along the crack front, i.e., the146

elastic energy release rate G(z,t), is written as a function of147

the front configuration c(z,t).148

(ii) The material disorder is described through a random149

field of fracture energy Gc(x,z) that is drawn from a statistical150

distribution.151

(a)

vext

z

x

x

y

zvm

c0

δ

δc(z, t)

c(z, t)

(b)

FIG. 1. Geometry of the fracturing system: (a) Sketch of the ex-
perimental fracture test where an interfacial crack is made propagate
at the weak interface between two elastic plates; (b) Schematic view
of the heterogeneous interface where the crack front deforms under
the effect of heterogeneities.

(iii) These two previous expressions are used into a kinetic 152

law where the local crack speed increases linearly with the net 153

driving force, ∂c
∂t

∼ G(z,t) − Gc[z,x = c(z,t)]. 154

We now provide the detailed derivation of each of these 155

steps before specializing the derived evolution equation to the 156

fracture experiment investigated in Fig. 1(a). 157

1. Elastic energy release rate 158

Material heterogeneities distort the crack line, resulting in 159

a heterogeneous distribution of driving force. To calculate this 160

distribution from the geometrical perturbations of the front, 161

consider first a reference straight configuration c(z,t) = c0 that 162

corresponds to the homogeneous distribution of elastic energy 163

release rate G(c0,δ) at the imposed displacement δ. While 164

keeping δ constant, then perturb the crack front within the 165

average crack plane, assuming an infinitely large homogeneous 166

elastic solid under tensile loading conditions. At first order in 167

the front perturbation δc(z) = c(z,t) − c0, the elastic energy 168

release rate follows [32] 169

G(z,t) = G(c0,δ) + ∂G

∂c

∣∣∣∣
c0,δ

δc(z,t)

+ G(c0,δ)
π

PV

∫ +∞

−∞

δc(z̃) − δc(z)
(z̃ − z)2

dz̃, (1)

where the principal value (PV) ensures the convergence of 170

the integral. We now take care of the driving imposed to the 171

crack in the experiment of Fig. 1(a). As the displacement δ of 172

the lower plate is increased, the driving G(c0,δ) increases too. 173

As a result, the three terms on the right-hand side of Eq. (1) 174

must be updated. However, two of them are already linear 175

in the front perturbation, so we only need to update the first 176

one that is the only one to bring a first-order contribution. 177
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Limiting this analysis to short propagation distance, the178

opening displacement δ = δ0 + v0t can be expressed as the179

sum of the initial opening with a small variation vext t $ δ0180

that increases linearly with time where vext is the opening181

rate imposed by the test machine [see Fig. 1(a)]. This leads182

to G(c0,δ) = G(c0,δ0) + ∂G
∂δ

|
c0,δ0

v0t while the two other terms183

depending on δ in Eq. (1) are replaced by ∂G/∂c|c0,δ0
and184

G(c0,δ0).185

For a stable fracture test geometry, i.e., when the external186

driving G(c0,δ) decreases with the crack length, ∂G/∂c|c0,δ0
187

is negative. Introducing the structural length L = − G(c0,δ0)
∂G/∂c|c0 ,δ0

188

and the normalized variations of the driving force189

g(z,t) = G(z,t) − G(c0,δ0)
G(c0,δ0)

, (2)

Eq. (1) can be rewritten as190

g(z,t) = vmt − δc(z,t)
L

+ PV

π

∫ +∞

−∞

δc(z̃,t) − δc(z,t)
(z̃ − z)2

dz̃.

(3)
We have introduced here the velocity vm = − ∂G/∂δ|c0 ,δ0

∂G/∂c|c0,δ0
vext191

imposed by the loading machine to the crack. For the192

fracture test of Fig. 1(a), the unperturbed driving force follows193

G(δ,c) = Eh3δ2

3c4 [34] where E is the Young’s modulus of194

the material and h the lower plate’s thickness. This leads to195

L = c0/4 and vm = c0/(2δ0) vext.196

Equation (3) calls for a few comments. The constant197

opening rate imposed to the fracturing specimen considered198

in Fig. 1 turns out to be equivalent to pull on the crack line199

with an array of springs of effective stiffness 1/L driven at the200

velocity vm. Thus, this amounts to consider that the crack line201

is trapped in a potential well moving at some constant velocity,202

as classically considered in disorder elastic interface problems203

[35,36]. The nonlocal term in (3) describes the interactions204

along the front. This effective line elasticity will compete with205

the effect of the disorder, as it tends to straighten the crack206

front.207

2. Fracture energy208

We now turn to the description of the material fracture209

properties in our model. We start by reminding the experi-210

mental procedure followed for preparing the specimen shown211

in Fig. 1(a). Before sintering both Plexiglas plates together212

through a heat treatment, one of the surface is sandblasted213

so that the interface is heterogeneously consolidated. This214

introduces variations in the fracture properties that we describe215

through a spatially varying field of fracture energy Gc(x,y).216

We then assume that this field is characterized by a correlation217

length ξ that corresponds to the typical heterogeneity size218

possibly related to the bead diameter used for the sandblasting219

[21]. The strength of each heterogeneity is subsequently drawn220

in a Gaussian distribution of average value 〈Gc〉 and standard221

deviation δGc, and introduce the normalized variations of the222

toughness field223

gc(z,x) = Gc(z,x) − 〈Gc〉
〈Gc〉

. (4)

In the remainder of the study, we keep σ = δGc
〈Gc〉 , the relative224

fracture energy fluctuations, equal to one. This ensures that225

the front is within the so-called strong pinning regime and 226

that its evolution gives rise to an intermittent dynamics that 227

is the main focus of this work. With this parameter value, 228

the Larkin length LLarkin ' ξ/σ 2 [13,37,38], that gives the 229

extent of the smallest avalanches, is of the same order than 230

the heterogeneity size ξ that is also the smallest physical 231

length scale in our model. Note that an estimation of the 232

experimental value σ exp is possible from the geometry of 233

the crack line. Indeed, its height-height correlation function 234

is expected to follow δzf (δz) ' c σ 2ζ ξ 1−ζ δzζ [13], leading to 235

δzf (ξ )/ξ ' c σ 2ζ where ζ th ' 0.39 is the roughness exponent 236

and c is a constant that can be measured numerically (see 237

Sec. III A). The experiments of Santucci et al. [21] provide 238

a satisfactory agreement with this prediction. First, the ex- 239

perimental roughness exponent ζ exp ' 0.35 is close to the 240

theoretical value. Second, the roughness δzh(ξ ) computed in 241

δz = ξ scales linearly with ξ when the characteristic size ξ 242

of the disorder is approximated by the lower bound of the 243

self-affine regime. These observations reinforce the following 244

estimation σ exp ' [δzh(ξ )/c ξ ]1/2ζ ' 0.4, where the disorder 245

strength seems to be constant while its characteristic size were 246

varied using beads of different diameters for sandblasting the 247

interface. This value is smaller than the one chosen in the 248

simulations, however, sufficiently close to unity to allow a 249

proper comparison between simulations and experiments as 250

both are in the strong pinning regime. 251

3. Kinetic crack growth law 252

To predict the evolution of the crack, its local speed is 253

generally assumed to vary linearly with the local net driving 254

force v ∼ G − Gc [9,33,39,40]. Here, we justify this linear 255

kinetic law from Griffith’s equilibrium condition G = Gc(v) 256

where the dependance of the fracture energy with the crack 257

speed v is taken into account [41,42]. Indeed, the linearization 258

of the fracture energy Gc(v) = Gc(vm) + dGc/dv|vm (v − vm) 259

around the average crack speed gives 260

v − vm

v0
= G − Gc(vm)

Gc(vm)
, (5)

where the characteristic velocity v0 = Gc(vm)
dGc/dv|vm

follows from 261

the fracture properties of the interface. This equation of motion 262

has recently been shown to capture successfully the relaxation 263

dynamics of a crack depinning from a single obstacle [43]. 264

On a general manner, v0 varies with the crack speed vm. 265

Interestingly, a fit of the experimental data of Ref. [44] 266

with the law Gc ∼ (1 + v/vc)γ , gives a rather constant value 267

v0 ' 140 µm.s−1 over the investigated range of crack speeds 268

0.4 µm.s−1 ! vm ! 40 µm.s−1 for the fitted parameters vc ' 269

5 µm.s−1 and γ ' 0.07. 270

4. Evolution equation 271

The derivation of an evolution equation for the crack is 272

now in order, as it suffices to insert the expressions (3) 273

and (4) of the elastic energy release rate and the fracture 274

energy into the kinetic law of Eq. (5). Considering small 275

enough crack perturbations δc $ c0, one can decouple the 276

zeroth-order equation G(c0,δ0) = 〈Gc(vm)〉 from the first- 277

order one ∂δc/∂t−vm
v0

= g(z,t) − gc[z,x = δc(z,t)]. After nor- 278

malization of this equation using the dimensionless quantities 279
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f (z,t) = δc(z,t)/L, u = z/L, w = x/L and τ = v0/L × t +280

1, one obtains281

∂f

∂τ
= vm

v0
τ − f + PV

π

∫ +∞

−∞

f (ũ) − f (u)
(ũ − u)2

dũ − ηc(u,f ).

(6)
This expression reveals that three independent parameters only282

govern the crack front dynamics: the correlation length ξ/L283

of the random quenched noise ηc(u,w) = gc(Lu,Lw), the284

disorder strength σ = 〈
√

ηc(u,w)2〉1/2
u,w = 〈

√
gc(z,x)2〉1/2

z,x and285

the driving parameter vm/v0.286

This evolution equation provides a powerful tool to make287

predictions on the dynamics of crack fronts that will be subse-288

quently compared with experiments. Let us note that a similar289

equation is involved in various physical situations where290

an interface is driven in a medium with random defects or291

impurities, and is known to give rise to the so-called depinning292

transition: under force-controlled loading conditions, the front293

is pinned by the disorder and remains stable up to some critical294

value Gext
c of the applied driving force. As in classical critical295

transitions, the order parameter, the macroscopic velocity of296

the interface, is then expected to increase as a power law297

vm ∼ (Gext − Gext
c )θ of the distance to the critical point, i.e.,298

the difference between the applied force Gext and the critical299

one Gext
p , with an exponent θ th ' 0.625 ± 0.005 [45–49].300

In addition, power-law-distributed fluctuations are expected301

to emerge from the front behavior, involving length and302

time scales that diverge at the depinning threshold. In crack303

propagation problems, many of these features were evidenced304

in experiments and shown to compare qualitatively, and to305

some extent quantitatively, with the predictions derived using306

the concept of depinning transition [50,51].307

However, in most experimental situations such as the one308

represented in Fig. 1, fracture is achieved under displacement309

controlled conditions. The force applied to the interface310

may then fluctuate during propagation and can be inferred311

from the elongation of the effective springs that drive the312

interface using Gext(t) = 〈Gc(vm)〉(1 + vmt−〈δc(z,t)〉z
L ). It can be313

shown that as the driving velocity vm goes to zero, the net314

applied force Gext tends toward its critical value Gext
c . In315

other words, under displacement-controlled conditions, the316

driving velocity plays the role of the control parameter and317

defines the distance to the critical point. In the evolution318

equation (6), it is controlled by the driving parameter vm/v0.319

As studying different distances to the critical point is an320

efficient way to characterize the depinning transition, we will321

investigate various crack speeds following the experimental322

procedure of Tallakstad et al. [24]. However, as the focus323

is on the local fluctuations in the crack evolution and not324

on the global avalanches, we could not evidence significant325

change in the crack behavior, similarly to the experimental326

observations [24]. To circumvent this difficulty, we will then327

use the concept of waiting time matrix introduced by Mäløy328

et al. [7] that, once thresholded at different time scales, reveals329

velocity fluctuations corresponding to different distances to330

the depinning threshold. In other words, we will show how331

scaling behaviors characterizing the evolution of the system332

towards criticality can be extracted from the system dynamics333

at some fixed and finite distance to the critical point.334

The dimensionless stiffness ξ/L of the spring driving the 335

crack line also controls the distance to the critical point. Barès 336

et al. showed a transition from a continuum to a crack-line-like 2337

dynamics as this parameter is significantly decreased. Here, we 338

choose a small parameter value ξ/L = 4ξ/c0 = 10−3 of the 339

same order than the experimental one that ensures a critical 340

behavior of the crack line. 341

Since the evolution equation (6) is strongly nonlinear due 342

to the presence of the front perturbation f as an argument 343

of the disorder term ηc, predicting analytically the detailed 344

statistical properties of the crack dynamics remains a very 345

challenging task [see for example Ref. [52] for a review of 346

the appropriate analytical methods based on the functional 347

renormalization group (FRG) theory]. In addition, analytical 348

treatments provide only approximated solutions, strictly valid 349

at the critical dimension dc, where d is the interface dimension 350

with dc = 2 and d = 1 for crack propagation problems. As 351

a result, we choose to solve the evolution equation (6) 352

numerically following the procedure described in the next 353

section, and to compare our results with the FRG predictions 354

and other numerical findings when possible. 355

B. Numerical resolution of the evolution equation 356

To predict the crack line dynamics, we focus on the 357

dimensionless evolution equation (6) and follow the numerical 358

procedure used by Bonamy et al. [9]. The crack front 359

position is discretized over Nz points with position ui = 360

ui/L = Lz/L × i/Nz for 1 ! i ! Nz where Lz = Nz × ξ is 361

the front length along the z axis. As a result, at a given 362

time τ , the front configuration is described by the Nz val- 363

ues {f1(τ ),f2(τ ), . . . ,fNz (τ )}. We impose periodic boundary 364

conditions along the z axis, so that a front of 2Nz points with 365

fbc = {fNz/2+1, . . . ,fNz ,f1, . . . ,fNz ,f1, . . . ,fNz/2} is actually 366

considered for the sake of the numerical calculation. Using 367

this discretization, the evolution equation leads to Nz linear 368

equations: 369

fi(τ + δτ ) = fi(τ ) + δτ × {Gi[f1(τ ) . . . fNz
(τ )]

− ηc[ui,fi(τ )]} (7)

with 1 ! i ! Nz where the unknown are the f1!i!Nz ’s 370

and the driving force is given by Gi = vm
v0

τ − fi(τ ) + 371

PV
π

∫ fi(τ )+Lz/L
fi(τ )−Lz/L

fbc(ũ,τ )−fi (τ )
(ũ−ui )2 dũ. This explicit scheme allows for 372

the rapid calculation of the front position at time τ + δτ from 373

its position at time τ , so that large systems of size Nz = 5000 374

could be investigated. 375

The disordered field ηc(ui,wi) that describes the local 376

resistance to failure is discretized on a square grid (1 : 377

Nz) × (1 : Nz) where the elementary steps are of size ξ/L. 378

The value of ηc in each node is drawn from a Gaussian 379

distribution with unit standard deviation and zero mean value. 380

The value of the toughness at the actual location of the front 381

{ui,wi = f (ui,τ )} is extrapolated from the toughness value of 382

the two neighboring nodes of same abscissa ui. The physical 383

discretization step along the front direction is kept equal to the 384

heterogeneity size ξ . This choice is motivated by our interest 385

in the properties of the front at scales larger than the disorder 386

correlation length ξ . At smaller scales, the front dynamics 387

might be governed by failure processes such as microcracking 388
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that are not taken into account in our model. The effect of389

such a damage percolation process on the crack dynamics has390

recently been studied through an alternative computational391

fracture model [53] and the comparison of their results with our392

predictions will be used in the discussion section to interpret393

the experimental observations.394

The crack evolution is calculated incrementally by starting395

from a straight crack front at time τ = 0 and then computing396

f (τ + δτ ) from the geometry f (τ ) of the front at time τ397

using Eq. (7). We can then come back to the quantities of398

interest in physical units such as the crack length δc or the399

time t by multiplication by the normalization constants ξ and400

L/v0. The front position is calculated over a large number of401

time steps, typically 106, which corresponds to a propagation402

distance Lx = Nx ξ of about Nx = 100 ξ heterogeneity sizes.403

This distance is several times larger than the one crossed by the404

crack during the experiments of Tallakstad et al. [24], as we405

want to ensure an accurate determination of the crack statistical406

features through a large sampling. However, the propagation407

distance δc(z,τ + δτ ) − δc(z,τ ) $ ξ between each time step408

remains small for any position z, ensuring the convergence409

of our numerical scheme. For the postanalysis, only 10% of410

the computed profiles are kept. This corresponds to about411

Nt ' 10 000 crack positions that are separated by the time412

step +τ . +τ is small enough to ensure that the front spent413

at least one time step on each pixel of the grid. This choice414

takes inspiration from the experimental procedure where the415

acquisition rate of the camera is set so that the waiting416

time matrix that counts the time spent by the front in every417

pixel does not contain any zeros. Finally, the transient regime418

where the front geometry keeps memory of the initial straight419

condition is systematically removed for the post-treatment.420

This zone extends over a few tenths of heterogeneity size in421

the propagation direction.422

For each numerical simulation, we extract three quantities423

that will be used later for the statistical characterization of the424

front dynamics.425

(i) The spatiotemporal evolution of the front is stored in426

the matrix [fi(τj )]1!i!Nz,1!j!Nt
.427

(ii) The local velocity of the crack front is stored in the428

matrix (vfront
i,j )

1!i!Nz,1!j!Nt−1
where vfront

i,j = v0
fi (τj ++τ )−fi (τj )

+τ
.429

The driving velocity sets the average front velocity 〈vfront
i,j 〉i,j =430

vm.431

(iii) The time spent by the front in each pixel (zi , xi)432

of the grid is stored in the so-called waiting time matrix433

(wi,j )1!i!Nz,1!j!Nx
. This quantity has been introduced in434

Ref. [30] to characterize the avalanche dynamics of the crack435

front. From it, we define the velocity matrix (vi,j )1!i!Nz,1!j!Nx
436

where vi,j = 1/wi,j . This quantity is different from the front437

velocity vfront
i,j introduced previously, even though a relation-438

ship can be established between their probability density439

function [24].440

Following the experimental procedure, we performed441

simulations at four different imposed velocities ranging442

in 5 × 10−4 ! vm/v0 ! 2.5 × 10−2. The relevant parameters443

corresponding to each velocity are listed in Table I. This range444

corresponds about to the smallest crack speeds investigated by445

Tallakstad et al. [24], as the experimental range is 2 × 10−4 "446

vm/v0 " 1 where the characteristic velocity v0 ' 140 µm.s−1
447

TABLE I. Numerical parameters and loading conditions used
for each simulation: imposed driving velocity vm normalized by
the characteristic velocity introduced in Sec. II A 3, time step +τ

between two successive recorded front positions, average distance +x

crossed during the time step +τ , total number Nt of recorded profiles,
and distance Lx crossed during the whole simulation expressed in
heterogeneity size ξ . For all the simulations, the structural length
L = 1000 ξ and the disorder strength σ = 1 are kept the same.

vm/v0 +τ +x/ξ Nt Lx/ξ

5.0 × 10−4 1.0 × 10−2 5 × 10−3 20 000 100
2.5 × 10−3 3.2 × 10−3 8 × 10−3 10 000 80
5.0 × 10−3 1.6 × 10−3 8 × 10−3 10 000 80
2.5 × 10−2 3.2 × 10−4 8 × 10−3 10 000 80

has been estimated in Sec. II A 3. In particular, it includes 448

the specific experiment used to investigate the local avalanche 449

statistics that corresponds to vm ' 1 × 10−2 v0 [24] and that 450

we will use in the following. 451

III. STATISTICAL CHARACTERIZATION OF THE 452

CRACK EVOLUTION 453

In this section, we compare the statistical properties of 454

the crack front predicted by the depinning model with the 455

experimental observations. We first study the geometrical 456

properties of the crack front through the scaling properties 457

of its roughness. Then, we move to the dynamical properties 458

and investigate the correlations between local front velocities, 459

the size distribution of local avalanches and finally the crack 460

speed distribution. 461

A. Height correlations 462

Spatial variations of the local resistance result in geomet- 463

rical perturbations of the crack front that we study here. The 464

computed crack evolution provides the dimensionless front 465

fluctuations δf (u,τ ) = f (u,τ ) − vm/v0 τ with respect to the 466

mean drift, and hence the physical fluctuations δc(z,t) = 467

f (z,t) − vm t , from which we compute the autocorrelation 468

functions 469

+zf (δz) = 〈[δc(z + δz,t) − δc(z,t)]2〉1/2
z,t

(8)
+xf (δx) = 〈[δc(z,t + δx/vm) − δc(z,t)]2〉1/2

z,t

These correlations are investigated in Fig. 2 along the crack 470

front and the propagation direction. We observe power-law 471

behaviors 472

+zf (δz) ∝ δzζ

(9)
+xf (δx) ∝ δxβ

with exponents ζ = 0.38 ± 0.02 and β = 0.45 ± 0.05. This 473

result is consistent with the theoretical and numerical pre- 474

dictions for an elastic line with long-range elasticity driven 475

in a disordered medium both for the roughness exponent 476

ζ th ' 0.388 [18,54–57] and the so-called growth exponent 477

β th ' 0.495 [49,54,55]. The value of the roughness exponent is 478

also consistent with the experimental value ζ exp ' 0.35 ± 0.05 479
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FIG. 2. Correlation functions of the geometrical perturbations of
the crack front for the driving velocity vm = 5.0 × 10−4 v0. We
observe a self-affine behavior both along the crack front direction
(in inset) and the propagation direction (main panel) with exponents
ζ ' 0.38 ± 0.02 and β ' 0.45 ± 0.05, respectively.

measured at large scales from images of the crack front as it480

propagates between the two Plexiglas plates [21].481

The growth exponent, classically measured from the tran-482

sient roughening of the interface from an initial straight front483

condition [58], can also be measured in the stationary regime484

by computing the autocorrelation function of Eq. (8) in the485

propagation direction [8,59]. In our simulations, we use the486

smallest driving velocity vm = 5 × 10−4 v0 that turned out to487

give a reliable measurement β ' 0.45. It is found to take488

a larger value than the roughness exponent, in agreement489

with the theoretical predictions of depinning model and the490

experimental values βexp ' 0.5 − 0.55 [4,24].491

B. Velocity correlations492

In the strong pinning regime, the motion of the crack493

is characterized by an alternation of stick periods during494

which the front is at rest with slip periods called avalanches495

corresponding to the rapid advance of some regions of the496

front [4,9,31]. The spatial structure of a typical avalanche497

as obtained in the crack growth simulation of Laurson et al.498

[31] is shown in Fig. 3. A striking feature is that the region499

crossed by the crack during an avalanche is not compact,500

but instead composed of several clusters. This complex501

morphology results from the long-range elasticity of the crack502

line described by the integral term in the expression (1) of the503

elastic energy release rate: an advance of the crack somewhere504

along the front results in a redistribution of the driving force in505

an extended region. This may trigger the detachment of some506

parts of the crack line that are not in the close vicinity of the507

initiation zone of the avalanche.508

The correlations between the local crack speed at different509

times may provide insights on this process, as we expect ve-510

locities corresponding to the same avalanche to be correlated.511

As a result, we seek in this paragraph to characterize the512

x
/ξ

z/ξ

30

15

00
0 300 600

ξav

FIG. 3. Spatial structure of a typical avalanche as observed during
the simulation of the propagation of a crack in a disordered material
for a vanishing front velocity vm → 0 (courtesy of Laurson et al.
[31]). ξav and - represent the lateral size along z of the avalanche and
its largest cluster, respectively. Their corresponding depth along the
propagation direction are noted ξav,x and -x.

temporal correlation of the velocity fluctuations defined as 513

δvfront(z,t) = vfront(z,t) − vm that we compare subsequently 514

with the experimental observations. Our approach consists in 515

exploring how the velocity fluctuation at time t correlates with 516

the velocity fluctuation at time t + δt for a fixed position z 517

along the front. The correlation function 518

C(δt) = 〈δvfront(z,t + δt) × δvfront(z,t)〉z,t
〈δvfront(z,t)2〉z,t

(10)

is thus computed for the four velocities vm investigated and 519

represented in Fig. 4. They all show an exponential decay with 520

a characteristic time δt. that decrease with vm, as shown in 521

inset. We observe in fact that δt. is inversely proportional to 522

vm, and hence 523

C(δt) ' e−δt/δt∗ with δt. ' l0

vm
, (11)

where l0 ≈ 0.2 ξ . This behavior is in excellent agreement with 524

the experimental observations of Ref. [24] where a similar 525
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v0 δt/ξ

C
(δ

t)

 

 

vr/v0 = 5.0 × 10−4
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/
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FIG. 4. Correlations between the velocity fluctuations at time t

and at time t + δt for a fixed position z along the front, as defined in
Eq. (10). It shows an exponential decay over a characteristic time δ.

that is represented in inset as a function of the driving velocity vm.
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variation of the velocity correlation function with l0 ≈ 0.1 × ξ526

were reported.527

How do we interpret this remarkable property? As reminded3 528

in Sec. II A 4, the driving velocity controls the distance to529

the critical point in the depinning transition. Therefore, as530

vm decreases, the size and duration of the largest avalanches531

increase, and in particular their depth ξav,x. To relate ξav,x to532

vm, we predict first the scaling of the avalanche lateral extent533

ξav ∼ v
−ν/θ
m using the definition of the velocity exponent θ534

reminded in Sec. II A 4 and the correlation length exponent535

ν that describes the divergence ξav = (Gexp − Gext
c )−ν of the536

avalanche size close to the depinning threshold. The avalanche537

depth ξav,x ∼ ξ
ζ
av ∼ v

−ζ ν/θ
m then follows using the roughness538

exponent ζ that characterizes not only the crack roughness (see539

Sec. III A), but also the aspect ratio of avalanches [58]. We can540

then determine the time δt. = ξav,x/v0 ∼ v
−ζ ν/θ
m required to541

the front to cross the largest cluster that corresponds to the542

correlation time of the velocity fluctuations. The predicted543

exponent takes the simplified form ζ ν/θ = β/(1 − β) after544

using the scaling relation θ = ν(z − ζ ) [60] that involves the545

dynamic exponent z = ζ/β. It takes a value β th/(1 − β th) '546

0.98 ± 0.02 close to unity using the numerically determined547

value of the growth exponent β th ' 0.495 ± 0.005 [49].548

Two important assumptions have been made here. First, the549

depth of the largest cluster has been approximated by the depth550

of the total avalanche. According to the numerical observation551

of Fig. 3, this looks like a fair assumption that relies on552

the anisotropic spatial structure of the avalanches that extend553

along the front direction rather than along the propagation554

direction. Second, we have assumed that the velocity during555

the propagation of the crack over one cluster is set by the556

velocity v0, as observed during the depinning from a single557

obstacle [43]. This must not be confused with the typical crack558

velocity ξav,x/ξ
z ∼ vm during the whole avalanche that scales559

linearly with the average speed.560

This last observation has an interesting consequence, as561

the macroscopic distance crossed by the crack over the562

characteristic time scale δt. follows δx. = vm δt. ' l0 that is563

very small compared to the heterogeneity size ξ [see Eq. (11)].564

This implies that the local front velocities along the propaga-565

tion direction are essentially uncorrelated if one investigate566

two successive positions separated of at least δx. ' l0 $ ξ .567

As noticed by Tallakstad et al. [24], this implies that the 568

height fluctuations of the front along the propagation direction 569

follow a random walk with exponent β = 1/2. This provides 570

a simple interpretation of the numerically determined value 571

of the growth exponent β ' 0.495 ± 0.005 [49]. Note that 572

this property is specific to long-range elasticity. For example, 573

the short-range depinning model exhibits a divergence of the 574

characteristic distance δx. in the limit of small driving velocity, 575

and so a nontrivial value of the growth exponent β ' 0.83 [61]. 576

To summarize, the divergence of the characteristic time 577

δt. ∼ 1/vm emerging from the velocity fluctuations in our 578

simulations and in the experiments of Tallakstad et al. [24] 579

is signature that the crack is brought closer to the critical 580

depinning transition as the driving velocity vanishes. 581

C. Statistics of pinning and depinning clusters 582

We now go further in the characterization of the avalanche 583

dynamics of the fracture front by exploring the size distribution 584

of the depinning clusters shown in Fig. 3. Inspired by 585

Tallakstad et al. [24], we also study the size distribution of 586

pinning clusters that reflect the pinned configurations of the 587

front during the stick phases. To study both type of clusters, we 588

apply the procedure proposed by Mäløy et al. [30]: We start 589

from the waiting time matrix defined in Sec. II B that provides 590

the time spent by the crack front on each pixel of the grid. The 591

inversion of each individual element of this matrix gives the 592

so-called velocity matrix V that is then thresholded following 593

the procedure 594

(i) depinning regime 595

V thres
d =

{
1 if vi,j # C vm
0 if vi,j < C vm

;

(ii) pinning regime 596

V thres
p =

{
1 if vi,j ! vm/C
0 if vi,j > vm/C

.

This procedure reveals both pinning and depinning clusters. 597

Typical thresholded velocity matrices corresponding to vm = 598

5 × 10−4v0 are represented in Fig. 5 in both regimes. The white 599

regions, representing about 35% of the total area, correspond 600

to unity while black ones correspond to zero. These maps ave 601

FIG. 5. Representation of the threshold velocity matrices V thres
d and V thres

p . For the depinning case, relatively large areas represented in white
correspond to rapid advances of the front, while for the pinning case, the rather thin lines corresponds to front position at arrest for some time.
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been obtained using a threshold value C = 0.6 for depinning602

and C = 10 for pinning. Note that both figures correspond603

to the same fractured area of 40 ξ × 1000 ξ that represents604

only a portion of the total domain 100 ξ × 5000 ξ actually605

computed and used for the following postanalysis. These606

cluster maps look qualitatively similar to the experimental ones607

shown in Fig. 9 of Ref. [24]. Note however two important608

differences: The computed maps are about ten times larger609

than the experiment ones after normalizing the distances by610

the heterogeneity size ξ . Note also that the spatial resolution611

of the experimental maps is about ten times smaller than612

ξ , while the computed map is resolved until ξ . This may613

explain why the depinning clusters look somehow bigger in614

the experiments. We now proceed to a quantitative comparison615

between the experimental and computed cluster maps.616

We focus in the following on the slowest driving velocity617

vm = 5 × 10−4v0. The depinning clusters are defined from618

the depinning cluster map from the domains of connected619

pixels for which the local velocity is greater than the threshold620

Cvm. They can be clearly identified on the depinning threshold621

velocity matrix of Fig. 5. Similarly, the pinning clusters are622

defined from the domains of connected pixels for which623

the local velocity is lower than the threshold vm/C. Each624

of these clusters is characterized by several quantities: their625

width -z along the crack front direction, their depth -x along626

the propagation direction and their size S corresponding to627

the total area of the cluster. The statistical distribution of628

these quantities is now used to quantify the intermittent629

crack dynamics and compare the simulation results with the630

experiments.631

Figure 6 shows the size distribution of pinning and632

depinning clusters for different values of the threshold C. We633

describe their variations with a power law with an exponential634

cutoff635

P (Sd) ∼ S
γd
d e−Sd/S

.
d with S.

d ∼ C−σd

(12)
P (Sp) ∼ S

γp
p e−Sp/S

.
p with S.

p ∼ C−σp

in both regimes and determine the values of the exponents γ636

and σ by optimizing the collapse of distributions with different637

C values on a same master curve. This procedure gives the638

exponents γd = 1.55 ± 0.05 for the depinning clusters and639

γp = 1.65 ± 0.10 for the pinning clusters. The behavior of640

Eq. (12) and the value of these exponents are compatible641

with the experiments where γ
exp
d ' γ

exp
p ' 1.56 ± 0.04 were642

measured [24]. It is also consistent with the results of643

Laurson et al. [31] who measured γd = 1.53 ± 0.05 through644

an independent numerical approach. Finally, it is compatible645

with the theoretical prediction γ th
d ' 1.56 obtained from the646

scaling relation γ th
d = 2τ − 1 [31] using the global avalanche647

exponent τ th = 2 − 1/(1 − ζ th) ' 1.28 [35,62].648

Interestingly, the exponents σd = 3.8 ± 0.2 and σp =649

1.3 ± 0.1 predicted by our simulations that characterize the650

variations of the cut-off sizes S.
d and S.

p with the threshold C651

do not match the experimental values σd = 1.77 ± 0.16 and652

σ
exp
p = 2.81 ± 0.23.653

To confirm this discrepancy, we propose to determine the654

predicted values of σd and σp through an independent method655

that will also shed light on their physical significance. We656

follow the idea of Ref. [24], and compute in Fig. 7 the number657
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FIG. 6. Normalized distributions of sizes of depinning clusters
(top) and pinning clusters (bottom) for various values of the threshold
C. Both families of distributions are well described by the power
law behavior of Eq. (12) with exponents γd = 1.55 ± 0.05 and γp =
1.65 ± 0.10 that are compatible with the experimental findings [24].
On the contrary, the scaling of the cutoffs S∗

d ∼ C−σd and S∗
p ∼ C−σp

lead to σd = 3.8 ± 0.2 and σp = 1.3 ± 0.1, in disagreement with the
values measured experimentally.

of depinning and pinning clusters as a function of the threshold 658

C. They show the following behaviors 659

Nd ∼ Cχd with χd ' 1.7 ± 0.2
(13)

Np ∼ Cχp ∼ N0 with χp ' 0

We compute then the total area covered by the depinning and 660

pinning clusters as a function of the threshold C. As shown in 661

Fig. 8, they vary as 662

Ad ∼ − log(C)
(14)

Ap ∼ C−κp with κp = 0.42 ± 0.03

The logarithmic variations of Ad with C indicates an exponent 663

value κd = 0 if one seeks to characterize the scaling relation 664

Ad ∼ C−κd . The ratio of the area covered by the clusters over 665

their total number gives the average cluster size 666

〈Sd〉 = Nd/Ad and 〈Sp〉 = Np/Ap. (15)
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FIG. 7. Variations of the number of depinning and pinning
clusters with the threshold C.

The latter can be related to the threshold C from the integrals667

〈Sd〉 =
∫ ∞

0 Sd P (Sd) dSd and 〈Sp〉 =
∫ ∞

0 Sp P (Sp) dSp of the668

cluster size distributions of Eq. (12). This gives the following669

scaling relations670

〈Sd〉 = (S.
d)2−γd ∼ C−σd(2−γd)

(16)
〈Sp〉 = (S.

p)2−γp ∼ C−σp(2−γp)

We can now introduce the scaling laws (13), (14), and (16) in671

Eq. (15) to relate these exponents together through672

κd = σd(2 − γd) − χd
(17)

κp = σp(2 − γp) − χp

These expressions simplify to673

σd = χd/(2 − γd)
(18)

σp = κp/(2 − γp)
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FIG. 8. Area covered by the pinning and the depinning clusters
on the activity maps of Fig. 5 normalized by the total area crossed by
the crack.

after taking into account that both κd and χp are equal to 674

zero. These last relations provide independent estimates of the 675

exponents σd ' 3.8 and σp ' 1.2 that are in good agreement 676

with their estimation made in Fig. 6 from the collapse of 677

the cluster size distributions computed at different threshold 678

values. And at the same time, it confirms the gap between the 679

numerically determined and experimentally measured value 680

of both exponents. 681

Before getting to the origin of this discrepancy, we provide 682

some insights on the physical meaning of the exponent σd 683

and a possible interpretation of its value as measured in our 684

simulations. Consider the size S∗
av of the largest avalanches 685

as we drive the crack at finite but small velocity vm. It 686

follows S∗
av ∼ ξ 1+ζ where ξ is the correlation length along the 687

crack line. Since the correlation length diverges as ξ ∼ v
−ν/θ
m 688

when the driving velocity vanishes, the typical size of the 689

largest avalanches diverges too, following the scaling behavior 690

S.
av ∼ v

−σ av
d

m ∼ v
−(1+ζ ) ν/θ
m . From the relations between critical 691

exponents already used in Sec. III B, one obtains σ av
r = (1/ζ + 692

1)/(1/β − 1) that simplifies to σ av
d = 1 + 1/ζ ' 3.58 ± 0.02 693

after using β = 1/2 determined previously and the value of the 694

roughness exponent ζ ' 0.388 [57]. This value is surprisingly 695

close of the exponent σd ' 3.8 that characterizes the variations 696

of cut-off cluster size when the velocity matrix is thresholded 697

at different levels C vm. 698

This observation calls for the following comment: in our 699

analysis, we considered a fixed velocity vm of the front, and 700

characterized the distribution of depinning clusters defined 701

from the regions where the local velocity was larger than 702

vthres = C vm. We observed that the smaller the threshold, 703

the larger the size of the depinning clusters, and we could 704

evidence the following scaling S.
d ∼ v−σd

thres. We believe that this 705

procedure reveals the depinning clusters as they would be ob- 706

served if the driving velocity was actually equal to vthres. From 707

this postulate, σd and σ av
d are then the very same exponent as 708

they both characterize the divergence of the size of the largest 709

depinning cluster or avalanche when the driving velocity goes 710

to zero. Note that we need to assume here that the largest 711

avalanche size S∗
av is proportional to the largest cluster size S∗

d . 712

This was indeed observed by Laurson et al. [31] who found 713

Sd ∼ Sav for the largest events. Overall, our result suggests an 714

interesting method for the analysis of depinning transition: 715

scaling relations depicting the divergence of quantities of 716

interest with the distance to the critical point can be determined 717

without performing several experiments or simulations at 718

different driving velocities. Indeed, they can be achieved from 719

a single study performed at some fixed velocity vm through the 720

thresholding of the obtained velocity field at different levels 721

vthres = C vm and the scaling behavior in terms of vthres. 722

D. Distribution of crack velocities 723

We now move to the study of the distribution p(v) of 724

local crack speeds. We consider the velocity values stored 725

in the velocity matrix V and compute their probability density 726

function that is shown in Fig. 9. It shows two scaling regimes 727

v $ vm ⇒ p(v) ∼ v−(ηd−1) with ηd = 2.0 ± 0.1
(19)

v $ vm ⇒ p(v) ∼ v−(ηp−1) with ηp = 1.6 ± 0.1
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FIG. 9. Distribution of local crack velocity as measured from the
waiting time matrix. The power-law fit of the pinning (v $ vm) and
depinning (v $ vm) regime using Eq. (19) provides the value of the
velocity distribution exponents ηp = 1.6 and ηp = 2.0.

Large velocities v > vm correspond to the depinning domains728

while lower speeds v < vm correspond to the pinned regions.729

To confirm the value of these exponents, we follow Tallak-730

stad et al. [24] and relate p(v) with the area covered by731

the clusters using Ad =
∫ vmax

Cvm
p(v)dv ∼ − log(C) and Ap =732

∫ vm/C

0 p(v)dv ∼ C−κp [see Eq. (14)]. This gives733

ηd = 2 + κd = 2
(20)

ηp = 2 − κp ' 1.58 ± 0.03

which are well satisfied using the values of κd = 0 and κp '734

0.42 determined in Fig. 8.735

How does the velocity distribution predicted by the de-736

pinning model compare to the experimental one? For the737

analysis of their experimental data, Mäløy et al. [7] considered738

the velocity vfront(z,t) along the front that they inferred739

from the values of the velocity matrix using the procedure740

described in Ref. [7]. Sampling over different times t and741

locations z, they obtained the velocity distribution P (vfront)742

that relates to the distribution computed directly from the743

velocity matrix through the relation p(v) = P (v) v/vm [24].744

The depinning regime vfront > vm was shown to display a745

remarkably robust behavior P (vfront) ∼ v
−η

exp
d

front that corresponds746

to p(v) ∼ v−(ηexp
d −1) with an exponent η

exp
d = 2.55 ± 0.15 that747

differs significantly from our theoretical prediction ηd = 2.748

We would like now to show that the abnormally large expo- 749

nent η
exp
d > 2 observed in the experiments is actually related 750

to the other disagreement between theory and experiments 751

reported in this study that concerns the exponential cutoff 752

S.
d ∼ C−σd of the cluster size distribution (see Sec. III C). 753

Using the scaling relations (17) and (20) together gives 754

ηd = 2 + σd(2 − γd) − χd, (21)

which relates the velocity distribution through ηd with the 755

cluster size distribution through σd and γd. This relation is 756

verified both for experiments and in our simulations, however 757

with different exponent values. With the exception of the size 758

distribution exponent σd ' σ
exp
d ' 1.55, the other exponents 759

show indeed significant differences as summarized in Table II. 760

We believe that the mismatch between these exponents results 761

from the basic crack growth mechanism assumed in our model 762

that is different from the one involved in the experiments. 763

IV. DISCUSSION 764

How do we interpret the discrepancy between theory and 765

experiment? We focus on the velocity distribution, and propose 766

first a physical interpretation of the scaling p(v) ∼ v−ηd with 767

ηd = 2 observed in the simulations. We will see later that 768

it sheds light on the abnormally large exponent η
exp
d ' 2.55 769

observed experimentally. We start from a simple situation and 770

consider the evolution of a crack as it recovers a straight 771

configuration after depinning from a single obstacle. As we 772

are interested by the front evolution after having passed the 773

obstacle, one can consider a homogenous medium and so 774

achieve an exact solution [43]. The front geometry prior to 4775

depinning follows 776

c(z,t < 0) = C d

π

[(
1 + z

d

)
ln

∣∣∣1 + z

d

∣∣∣

+
(

1 − z

d

)
ln

∣∣∣1 − z

d

∣∣∣
]
, (22)

which corresponds to the equilibrium configuration of a crack 777

trapped by an isolated obstacle of width 2d and strength 778

C = (GO
c − 〈Gc〉)/〈Gc〉 where GO

c > 〈Gc〉 is the toughness 779

of the obstacle [63,64]. Using Eq. (22) as initial condition, the 780

resolution of the evolution equation (6) with a homogeneous 781

toughness field ηc = 0 gives the velocity field [43] 782

∂c

∂t
= vm + Cv0

{
1 − 1

π

[
arctan

(
v0 t

d + z

)

− arctan
(

v0 t

d − z

)]}
(23)

TABLE II. Critical exponents measured numerically in both the depinning and pinning regime, and their comparison with the experimental
values of Refs. [4,24].

Depinning γd σd χd κd ηd

Sim. 1.55 ± 0.05 3.8 ± 0.2 1.7 ± 0.2 0 2.0 ± 0.1
Exp. 1.56 ± 0.04 1.77 ± 0.16 0.28 0.5 2.55 ± 0.15
Pinning γp σp χp κp ηp

Sim. 1.65 ± 0.10 1.3 ± 0.1 0 0.42 ± 0.03 1.60 ± 0.05
Exp. 1.56 ± 0.04 2.81 ± 0.23 ø ø ø
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valid in the central region of the front, |z| < d, and for783

small obstacles d $ L compared to the structural length.784

Interestingly, it provides a simple interpretation of v0 as the785

velocity jump ∂c
∂t

(z,0) − vm = Cv0 at the onset of depinning.786

After a short transient t . d/v0, Eq. (23) predicts a relaxation787

∂c/∂t ' 2dC/(π t) that goes as the inverse of time. The same788

behavior holds also for the regions of the front further away789

from the obstacle, in |z| > d [43]. We deduce from it the790

scaling of the velocity distribution p(v) ∼ 1/v2 during one791

avalanche resulting from the depinning of the front from792

a single obstacle. Depinning clusters observed during the793

evolution of the crack through disordered interfaces result794

from the depinning from several obstacles. However, our795

simulations show that the scaling of the velocity distribution796

remains unaffected and also follows P (v) ∼ 1/v2, irrespective797

of the cluster size and the number of obstacles involved in the798

depinning process (see Fig. 9). This provides interpretation for799

the statistics P (v) ∼ 1/v2 observed in our simulations in the800

depinning regime: It reflects the front relaxation between two801

pinned configurations.802

This observation raises the question of the origin of803

the abnormally large exponent ηd ' 2.5 characterizing the804

depinning regime in the experiments. Insightful observations805

could be recently made using a discrete model of fracture806

that goes beyond brittle fracture and the assumptions made807

in our model. Gjerden et al. [53] investigated the propagation808

of a crack at a weak disordered interface between two elastic809

blocks connected by an array of parallel brittle fibers. When810

the force applied to one of the fiber exceeds its failure811

threshold, the fiber breaks and tensile forces are redistributed812

through the intact region of the interface assuming that blocks813

behave elastically. This redistribution mechanism produces814

cascades of failure events, qualitatively similar to the avalanche815

dynamics described in this study. For a weakly disordered816

interface, the simulation even recovers quantitatively the817

predictions of the depinning models and in particular the value818

of the roughness exponent ζ ' 0.4 and the velocity distribution819

exponent ηd ' 2.0 [53,65]. But a more interesting regime820

takes place for strongly disordered interfaces. Indeed, the front821

dynamics is not governed anymore by the competition between822

the elasticity of the crack line and the disorder, but instead by823

the coalescence of the regions of broken fibers located ahead of824

the crack with the advancing crack itself. This transition from a825

brittle mechanism of crack growth to a quasibrittle one reflects826

on the scaling of the velocity distribution that follows P (v) '827

v−ηd with ηd ' 2.5 [65,66]. This good agreement with the828

experimental observations suggests that crack growth between829

Plexiglas plates in Ref. [7]’s experiments is governed at small830

scales by the process of damage coalescence schematized in831

Fig. 10.832

The existence of two distinct scaling regimes with exponent833

ηd ' 2.0 for brittle failure and ηd ' 2.5 for quasibrittle crack834

growth invites to discuss other experimental observations835

like the one of Barès et al. [67]. They investigated the836

fluctuations of the macroscopic crack speed 〈v(t)〉 = 〈v(z,t)〉z,837

measured at the scale of the specimen, and also observed838

a scaling behavior p(〈v〉) ∼ 〈v〉−η
exp
d with η

exp
d ' 2.5 in the839

depinning regime 〈v〉 > vm. As the scaling of the velocity840

distribution was shown to survive to upscaling [24], it is841

natural to interpret this behavior in terms of microscopic failure842

FIG. 10. Schematic representation of the damage coalescence
process that takes place during failure of heterogeneous materials
when the process zone size -pz is larger than the heterogeneity size
ξ . In that regime, various statistical features of the front evolution
are set by the process of damage coalescence, and do not agree with
the predictions of the depinning model that describes brittle crack
growth.

mechanism, and conjecture that microcracking does take place 843

at small scales in the sintered materials used in Ref. [67]’s 844

experiments. 845

However, many questions remain open. First, we have 846

mainly focused on the depinning regime, and proposed an 847

interpretation for the scaling behavior of the velocity distribu- 848

tion in terms of local crack growth mechanism. What about 849

the pinning regime? The observation of a scaling behavior 850

with an exponent η
exp
p ' 1.4 in Ref. [67]’s experiment, close 851

to the theoretical prediction ηp ' 1.6 derived here in Fig. 9 852

is indication that the depinning model might be relevant for 853

brittle, but also for quasibrittle crack growth. However, it does 854

not capture the value of the exponent σp that describes the 855

variations of the largest pinning clusters with the threshold 856

velocity (see Sec. III C). Second, the geometry of the clusters 857

and in particular their aspect ratio that displays a scaling 858

behavior -x ∼ -H exp
with an abnormally large exponent H exp ' 859

0.6 > ζ [24] remains still unexplained. These points should 860

certainly deserve further investigations. 861

To conclude, we showed that the model of brittle fracture 862

proposed in this study that builds on the concept of depinning 863

transition can be used as a an efficient tool to predict crack 864

evolution in disordered materials. Its success is conditioned 865

to the implementation of two system specific characteristics, 866

namely (i) the actual fracture properties of the material 867

through the characteristic velocity v0 and (ii) the specimen 868

geometry through the structural lengthL. However, the few but 869

significant mismatches with some experimental observations 870

suggest that an ingredient might be missing in the theoretical 871

approach proposed in this work. We proposed that it relates 872

to the mechanism of damage coalescence that takes place 873

at small scales within the process zone in some materials. 874

Back and forth between experiment and theory will certainly 875

help to better characterize this mechanism and ultimately 876

integrate it into the crack evolution equation proposed in this 877

study. 878
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Rev. E 84, 036104 (2011).

[45] M. Kardar, Phys. Reports 301, 85 (1998).
[46] D. Ertas and M. Kardar, Phys. Rev. E 49, R2532 (1994).
[47] O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030 (1993).
[48] H. Leschhorn, T. Nattermann, S. Stepanow, and L. H. Tang,

Ann. Phys. (N.Y.) 509, 1 (1997). 8
[49] O. Duemmer and W. Krauth, J. Stat. Mech. (2007) P01019.
[50] D. Bonamy and E. Bouchaud, Phys. Rep. 498, 1 (2011).
[51] D. Bonamy, J. Phys. D: Appl. Phys. 42, 214014 (2009).
[52] K. Wiese and P. Le Doussal, in Markov Processes and Related

Fields (Polymath, Moscow, 2007), Vol. 13, pp. 777–818.
[53] K. S. Gjerden, A. Stormo, and A. Hansen, Phys. Rev. Lett. 111,

135502 (2013).
[54] D. Ertas and M. Kardar, Phys. Rev. Lett. 69, 929 (1992).
[55] P. Chauve, P. Le Doussal, and K. J. Wiese, Phys. Rev. Lett. 86,

1785 (2001).
[56] A. Tanguy, M. Gounelle, and S. Roux, Phys. Rev. E 58, 1577

(1998).
[57] A. Rosso and W. Krauth, Phys. Rev. Lett. 87, 187002 (2001).
[58] A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface

Growth (Cambridge University Press, Cambridge, 1995).
[59] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889

(1986).
[60] T. Nattermann, S. Stepanow, S. Tang, and H. Leschhorn, J. Phys.

II 2, 1483 (1992). Q
[61] O. Duemmer and W. Krauth, Phys. Rev. E 71, 061601 (2005).
[62] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proc. Nat. Acad. Sci.

111, 14382 (2014).
[63] J. Chopin, A. Prevost, A. Boudaoud, and M. Adda-Bedia, Phys.

Rev. Lett. 107, 144301 (2011).
[64] M. Vasoya, J.-B. Leblond, and L. Ponson, Int. J. Solids Struct.

50, 371 (2013).
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