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1. Introduction 
 
The effect of materials heterogeneities onto their failure properties remains far 
from being understood (see [1] for a review of recent progresses in this field). In 
particular, in heterogeneous materials under slow external loading, cracks growth 
often displays a jerky dynamics, with sudden jumps spanning over a broad range 
of length-scales. Such a complex dynamics – also referred to as crackling noise 
[2] was also suggested from the acoustic emission accompanying the failure of 
various materials [3,4,5] and - at much larger scale - the seismic activity 
associated to earthquakes [6]. This intermittent dynamics can be qualitatively 
reproduced in simple numerical models such as Fiber Bundle Models (FBM) (see 
e.g. [7] for a review) or Random Fuse Models (RFM) (see e.g. [8] for a review) 
that schematize the material as a set of brittle fibers/network of electrical fuses 
with randomly distributed breakdown points. However, these descriptions remain 
phenomenological and fail to reproduce quantitatively the intermittent dynamics.  
 
Another approach - pioneered by Gao and Rice [9] and latter extended by 
Schmittbuhl el al [10] and Ramanathan et al. [11] - consists in extending the 
standard Linear Elastic Fracture Mechanics (LEFM) of homogeneous materials to 
the case of heterogeneous media by considering a random field of toughness. In 
this class of models, the competition between the destabilizing effect of toughness 
disorder and the smoothing effect of the crack front elasticity makes the onset of 
crack propagation to appear as a critical depinning transition. This approach 
succeeded to account for the effective toughness distribution in brittle disordered 
materials [12] or the large scale morphological scaling features of post-mortem 
fracture surfaces [13].  
 
We will show here how this approach can be extended to reproduce the crackling 
dynamics observed during slow stable crack growth in brittle heterogeneous 
materials. In this model, the slow failure appears as a self-organized critical 
dynamic phase transition and, as such, exhibit universal – and to some extend 
predictable – statistics and scaling laws. This description succeeds in reproducing 
quantitatively the intermittent crackling dynamics observed experimentally during 
the slow propagation of a crack along a weak heterogeneous plane of a 
transparent Plexiglas block [14]. 



 2 

2. Derivation of a linear elastic stochastic model 
 
Let us consider the situation depicted in Figure 1(left) of a crack front that 
propagates within a 3D elastic solid. Provided that the motion is slow enough, the 
local velocity of a point ))),(,(),,(,( tzfxzhytzfxzM ===  is proportional to 
the excess energy locally released )()( MMG Γ− . Material heterogeneities are 
then modeled by introducing a random component into the fracture energy: 

( )),(1)( 0 xzM η+Γ=Γ  where η is a short range correlated random term with zero 
mean and constant variance. This induces distortions of the front, which in turn 
generates perturbation in G(M). To first order, the variations of G(M) depends on 
the in-plane distortions f(z,t) only [9,15]: 
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 where G0 denotes the reference mechanical energy release which would result 
from the same loading with a straight front at the same mean position. The 
equation of motion then reduces to the one of an interfacial front propagating 
within a 2D random media [9,10,11]: 
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Where µ  is the effective mobility of the crack front. This equation has been 
extensively studied in the past. It was shown to describe systems as diverse as 
interfaces in disordered magnets [16,17] or contact lines of liquid menisci on 
rough substrates [18,19]. In particular, it was shown to exhibit a so called 

depinning transition controlled by the "force" 00 Γ−= GF . When F is smaller 
than a given threshold Fc, the front is trapped by the heterogeneities of the 
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Figure 1. Sketch and notations of a crack front propagating in a 3D 
heterogeneous material (Left). To first order, the equation of motion involves 
the in-plane component f(z,t) of the crack front and can be reduced to the one of 
a planar crack front propagating within a 2D material (Right). 
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material and its velocity is null everywhere. For F larger than Fc, the line is 
depinned from the last metastable state, and moves with an average velocity 

tfv ∂∂= / . 

Let us now imagine the situation of a stable crack growth under displacement-
imposed loading condition. This situation is the one encountered in earthquakes 
problems where a fault is loaded because of the slow continental drift, or in the 
experiments described in [14,20] where a crack front is made propagate along the 
weak heterogeneous interface between two Plexiglas block by lowering the 
bottom part at constant velocity. Then, G0 is not constant anymore, but increases 
slowly with time and decreases with the mean crack length 

z
f since the system 

compliance decreases with 
z

f  [22]. As a result, provided that the mean crack 

growth velocity is slow enough and the mean crack length is large enough, one 
can write 

z
fkctG −+≈ constant0   where c and k are constant depending on 

the precise geometry. Finally, Eq. 2 writes [22]: 
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The overall force { }
z

fkctftF −=),(  acting on the front is not constant 

anymore: When { } cFftF <),( , the front remains pinned and { }),( ftF  increases 

with time. As soon as { } cFftF >),( , the front propagates,
z

f  increases, and, as 

a consequence, { }),( ftF  is reduced until the front is pinned again. This 

retroaction process keeps { }),( ftF  always close to the depinning transition Fc 
and the system remains at the critical point during the whole propagation, as for 
self-organized-critical systems [21].  
 
3. Morphology of the crack front 
 
Eq. 3 is solved using a fourth order Runge-Kutta scheme for a front propagating 
in a 1024x1024 uncorrelated 2D random gaussian map with zero average and unit 
variance. The parameter 0Γµ  was set to unity while the two parameters c and k 

were varied from 510−  to 310− , and 310−  to 110− , respectively.  Figure 2(left) 
presents a typical motion of the resulting crack front. The crack propagation is 
predicted [22] to exhibit an intermittent crackling dynamics and progresses 
through scale-free avalanches, both in space and time, characterized by universal 
distributions or scaling laws. In particular, the morphology of the crack front is 
found to exhibit self-affine scaling features [10] characterized by a roughness 
exponent 39.0≈ς [23,24]. In other words, the structure function 

( )2)()()( zfzzfzG −∆+=∆  scales as ς2)( zzG ∆=∆  with 39.0≈ς  (Fig. 

2(right)). This observation is in good agreement with recent observations reported 
on the large scale roughness of an interfacial crack front propagating along the 
weak heterogeneous interface between two Plexiglas blocks [20]. 
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4. Crackling dynamics of the mean crack front 
As for other critical systems, some features of the distributions and the scaling 
laws can be predicted. In this context, we analyse the global crack front dynamics 
by computing the velocity of the crack interface

z
tzvtv ),()( =  spatially averaged 

along the front direction z (Fig. 3(a)). This signal is extremely jerky, with sudden 
bursts, signature of an intermittent “crackling noise” dynamics [2]. In order to 
characterize the statistics of these bursts, we develop the following procedure: (i) 
we impose a given reference level vCvr =  where 

tz
tzvv

,
),(= ; (ii) we define 

bursts as zones where )(tv  is above rv  and (iii) we compute the duration T  and 
the size S  of the bursts as the interval between two successive intersections of 

)(tv  with rv , and the integral of )(tv  between the same points, respectively. The 
distribution of S  and the scaling between S  and T  have been analytically 
derived for the motion of domains walls in disordered ferromagnets, in the 
context of Barkhausen effect [16,17]. This analysis leads to a power-law 
distribution τ−∝ SSP )(  [17], and a power-law relation aST ∝ , with critical 
exponents that can be predicted using functional renormalisation group 
calculations [18] leading to 25.1≈τ  and 58.0≈a . We show on Fig. 3b and c 
that these predictions are in good agreement with numerical simulations of Eq. 3 
with various values of the parameters c, k and C. This demonstrates how one can 
make use of the universality associated with this crack growth self-organized 
dynamic phase transition to use previous calculations performed for different 
systems belonging to the same universality class, here the motion of domain walls 
in disordered ferromagnets, to derive predictive laws for the failure of materials. 
 
5. Spatiotemporal avalanches dynamics of the crack front. 

 
Figure 2. Left: Five successive snapshots of the crack front equally distributed 
in time in the solution of Eq. (3). Right: Structure function G(∆z) as a function 
of ∆z (symbol o) together with a power-law fit (straight line) G(∆z) ~ ∆z2ζ  
with ζ ~ 0.39. 
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We then characterized the local dynamics of the crack front as predicted from Eq. 
4, and compared it to the experimental data performed in university of Oslo on the 
interfacial crack growth along the weak heterogeneous plane between two 
Plexiglas blocks [14,20]. We then adopted the analysis procedure proposed in 
[14] and computed at each point (z,x) of the recorded region the time w(z,x) spent 
by the crack front within a small 2pixel 11× region  as it passes through this 
position. A typical gray-scale image of this so-called waiting time map is 
presented in Fig. 4a. The numerous and various regions of gray levels reflect the 
intermittent dynamics, and look very similar to those observed experimentally 
(Fig. 1b of  [14]). From the inverse value of waiting-time map, we compute a 
spatial map of the local normal speed velocity v(z,x)=1/w(z,x). Avalanches are 
then defined as clusters of velocities v larger than a given threshold vCvc =  

where v  denotes the crack velocity averaged over both time and space within the 
steady regime. For all these avalanches, we computed their size A –defined as 
their area – and their duration D - defined as the difference between the times 
when the crack front leaves and arrives to the considered avalanche cluster. A 
typical map of these avalanches is represented in Fig. 4c. The area is found to be 

 
Figure 3. (a): An example of the spatially averaged crack front velocity 
v(t)=<v(t,z)>z. Bursts are then defined as zone where v(t) is larger than a given 
threshold C<v> (horizontal dash line) (b) Distribution of the normalized burst 
size S/<S>, and (c) scaling between the burst duration T/<T> and S/<S>. The 
symbols correspond to various values of vm, c0 and C. In these two graphs, the 
straight lines correspond to power-law P(S)~S-τ and T~Sa with the critical 
exponents τ=1.25, and a=0.58 predicted by RG approach. 
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power-law distributed with an exponent 65.10 =τ  (Fig. 4d), and the mean 

avalanche duration D is found to go as a power law with A, characterized by an 
exponent 4.0=γ  (Fig. 4e). Both results are found to be in very good agreement 
with experimental observations performed in the group of Oslo. 
 
6. Concluding discussion 
 
We have derived a description for planar crack growth in a disordered brittle 
material which succeeds to capture the statistics of the intermittent crackling 
dynamics recently observed experimentally [14,20]. In particular, we have shown 
that material failure appears as a critical system, where  the crack front progresses 
through scale-free avalanches signature of a dynamic depinning phase transition. 
As for other critical systems, microscopic and macroscopic details do not matter 
at large length and time scales and this simple Linear Elastic Stochastic 
description contains all the ingredients needed to capture the scaling statistical 
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Figure 4. (a) Typical activity map w(z,x) obtained by solving Eq. 4. the gray 
intensity is proportional to the time spent by the crack front in a given location. 
(b) Corresponding map of avalanches (in white) defined as clusters where 
1/w(z,x) is larger than a given threshold. (c) Corresponding map of avalanches 
coloured according to the colorscale given in inset. (d) Distribution )(AP  of 
avalanche areas together with a power-law fit (straight line) with an 
exponent 05.065.10 ±−=α . (e) Scaling between avalanche area and duration 

together with a power-law fit γAD ∝  (straight line) with an exponent 
05.04.0 ±=γ . 
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properties of more complex failure situations. To compare the predictions of this 
model with the statistics of earthquakes represents then interesting challenges for 
future investigations. Work in this direction is under progress. 
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