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12 The Mohr-Coulomb criterion is widely used in geosciences and solid mechanics to relate the state of
13 stress at failure to the observed orientation of the resulting faults. This relation is based on the assumption
14 that macroscopic failure takes place along the plane that maximizes the Coulomb stress. Here, this
15 hypothesis is assessed by simulating compressive tests on an elastodamageable material that follows the
16 Mohr-Coulomb criterion at the mesoscopic scale. We find that the macroscopic fault orientation is not
17 given by the Mohr-Coulomb criterion. Instead, for a weakly disordered material, it corresponds to the most
18 unstable mode of damage growth, which we determine through a linear stability analysis of its
19 homogeneously damaged state. Our study reveals that compressive failure emerges from the coalescence
20 of damaged clusters within the material and that this collective process is suitably described at the
21 continuum scale by introducing an elastic kernel that describes the interactions between these clusters.
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23 In 1773, Charles-Augustin de Coulomb proposed his
24 celebrated failure criterion for materials loaded under shear
25 or compression [1]. He postulated that failure occurs along
26 a fault plane when the applied shear stress τ acting on that
27 plane overcomes a resistance consisting of two parts of
28 different nature: a cohesion τc, which can be interpreted as
29 an intrinsic shear strength of the material, and a resistance
30 proportional to the normal pressure, σN . This results in the
31 Mohr-Coulomb (MC) failure criterion:

jτj ¼ τc þ μσN: ð1Þ

3233 Following the former work of Amontons [2], this depend-
34 ence upon pressure led Coulomb to call it friction, with μ
35 the corresponding friction coefficient and ϕ ¼ tan−1ðμÞ the
36 angle of internal friction. As a consequence, faulting should
37 occur along the plane that maximizes the Coulomb’s stress
38 jτj − μσN . Its orientation with respect to the maximum
39 principal compressive stress is given by the MC angle

θMC ¼ π
4
−
ϕ
2
: ð2Þ

4041 This work led to the so-called Anderson theory of faulting
42 [3], which is widely used in geophysics to interpret the
43 orientation of conjugate faults [4] and the orientation of
44 faults with respect to tectonic forces [5]. In this theory, θMC

45is uniquely a function of the internal friction angle ϕ and
46hence is independent of confinement and dilatancy.
47Solid mechanics models of compressive failure generally
48adopt the same point of view: fault formation is described
49as a localization instability in the constitutive inelastic
50response of the material [6,7]. As such, if the material
51behavior follows the Mohr-Coulomb criterion, the fault
52inclination observed at the macroscopic scale is expected to
53follow the MC angle prediction (2).
54However, important issues remain to be addressed
55regarding the applicability of this theory. Even though
56the MC criterion (1) describes accurately the failure
57envelope of quasibrittle solids like rocks [8,9] and ice
58[10,11], the ability of MC angle prediction (2) to capture
59fault orientation is still debated [12,13]. In particular,
60experiments have reported an increase of the fault angle
61with the lateral confinement, which is incompatible with
62the MC prediction [14–16]. Besides, while Coulomb’s
63theory provides a simple instantaneous criterion for failure,
64it says nothing about the process of damage spreading that
65precedes it. It is now widely accepted that the compressive
66failure of quasibrittle materials does not occur suddenly, but
67instead involves the nucleation and growth of microcracks,
68which interact and finally coalesce to form a macroscopic
69fault [21–23]. It is not clear at all if this phenomenology is
70compatible with the point of view that macroscopic faulting
71emerges from a local instability in the material constitutive
72response [3,6,7], nor with the assumption that fault
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73 orientation in materials that do follow the MC failure
74 criterion is given by the MC angle.
75 Damage spreading under compression and the progres-
76 sion towards macroscopic failure is well captured by
77 continuum damage models, wherein microcrack density
78 at the mesoscopic scale is represented by a damage variable
79 and is coupled to the elastic modulus of the material [24–
80 27] (Fig. 1). In these models, a failure criterion is
81 implemented at the local scale, that is, usually, the scale
82 of the mesh grid element. Material heterogeneity is
83 accounted for by introducing some noise in either the
84 elastic modulus or the local failure criterion. When the state
85 of stress over a given element exceeds this criterion, the
86 level of damage of this element increases, thereby decreas-
87 ing its elastic modulus. Long-range elastic interactions arise
88 from the stress redistribution initiated by the local drop in
89 the elastic modulus. This redistribution can induce damage
90 growth in neighboring elements and eventually trigger
91 avalanches of damaging events over longer distances.
92 Such models have been shown to reproduce many features
93 of brittle compressive failure, such as the clustering of
94 rupture events and the power-law distribution of acoustic
95 event sizes prior to the emergence of a macroscopic fault
96 [24,28–30]. They are thus relevant tools to study the
97 process of damage localization that leads to failure and,
98 in particular, the dependence of the angle of localization of
99 damage on the parameters involved in the damage criteria.
100 Here, we use such a tool to investigate how the macro-
101 scopic fault emerges from the accumulation of microscopic
102 damage events and test commonly usedmodels that describe
103 compressive failure as a local material instability [6,7]. In
104 particular, we simulate compression experiments of speci-
105 mens of an elastodamageable material that satisfy the MC
106 failure criterion at the mesoscopic scale and study the
107 inclination of the macroscopic rupture plane as a function
108 of the internal friction angle under different confinement
109 conditions. We show that the orientation of the simulated
110 fault is not given by the MC angle. Instead, we find that the
111 most unstable mode of damage growth, which is inferred
112 from a linear stability analysis at the specimen scale,
113 provides a good estimation of the fault orientation forweakly
114 heterogeneous materials. Our findings shed light on the
115 significance of elastic interactions and damage coalescence
116 on the fault formation during compressive failure of quasi-
117 brittle materials. It also suggests that the modeling strategy
118 that consists in damage localization from the homogenized
119 material response may be insufficient, but that this difficulty
120 may be overcome by addressing the stability of the damage
121 growth process at the macroscopic scale using the elastic
122 interaction kernel introduced in this study.
123 Following Refs. [26,28] and others, the model is based
124 on an isotropic linear-elastic constitutive law where the
125 elastic modulus,

EðdÞ ¼ ð1 − dÞE0; ð3Þ

(a)

(b)

F1:1FIG. 1. Compressive test simulation. (a) The prescribed boundary
F1:2conditions are superimposed to a snapshot of the field of the level of
F1:3damage d simulated after peak load [timing indicated by the red
F1:4vertical line in (b)]. Thematerial properties in this simulationareϕ ¼
F1:530° andν ¼ 0.3andthedisorderparameters,η ¼ 0.05anda ¼ 1.No
F1:6lateral confinement is applied. The orientation of the fault θloc is
F1:7determined by a projection histogram method [16]. (b) The corre-
F1:8spondingstress-strain(black)anddamagerate(gray)curvesaregiven
F1:9by the solid lines. The dotted lines show the same quantities for a

F1:10simulation using identical loading and material properties and a
F1:11stronger disorder (η ¼ 0.5 and a ¼ 1). [(b), inset] Macroscopic
F1:12maximum and minimum principal stresses, Σ1, Σ2, (colored dots)
F1:13estimatedat theonsetofdamagelocalization(i.e., atpeakload)inaset
F1:14of5simulationsusingthesamematerialpropertiesasin(a)and(b)and
F1:15different confining ratios (biaxial compression forR > 0 andbiaxial
F1:16compression tension for R < 0). The black solid lines represent the
F1:17MC criterion for a homogeneous material with cohesion τ̄c. Open
F1:18circles are used for the disorder parameters η ¼ 0.05 and a ¼ 1 and
F1:19filled circles for the parameters η ¼ 0.5 and a ¼ 1.
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126127 is a decreasing function of the scalar internal variable,
128 d ∈ ½0; 1&, which describes the level of damage in a material
129 element, with E0 the Young’s modulus of the undamaged
130 specimen. For sake of simplicity, Poisson’s ratio ν is
131 assumed constant and does not vary with d. Material
132 heterogeneities are introduced via the local critical strength
133 by assigning different cohesions τc to the constitutive
134 material elements. In the present simulations, we use E0 ¼
135 50 MPa and τ̄c ¼ 25 kPa. We checked that these specific
136 values do not affect our results as long as τ̄c ≪ E0 [16].
137 In the numerical simulations, a two-dimensional rectan-
138 gular specimen of an elastodamageable material with
139 dimensions L × L=2 is compressed with a stress Σ1 by
140 prescribing a constant velocity ucomp on its upper short edge
141 with the opposite edge fixed in the direction of the forcing
142 [Fig. 1(a)]. Plane stresses are assumed. A confining stress
143 Σ2 can be applied on the lateral sides; in this case, the
144 confinement ratio R ¼ Σ2=Σ1 is kept constant. We denote
145 σ0 the external stress tensor prescribed to the sample. At
146 each time step, the damage level of the material elements
147 for which the stress is overcritical with respect to the local
148 MC criterion is increased such that overcritical stresses are
149 projected back onto the MC envelope [16]. Both the
150 prescribed velocity on the upper edge of the specimen
151 and the lateral confinement are small enough to ensure a
152 quasistatic driving and small deformations. The simulations
153 therefore rely on the numerical resolution of the following
154 force balance and Hooke’s law:

∇ · σðrÞ ¼ 0; ð4Þ

155156
σðrÞ ¼ E

1þ ν
ϵðrÞ þ Eν

1 − ν2
tr½ϵðrÞ&1; ð5Þ

157158 where σðrÞ and ϵðrÞ are the planar stress and strain tensors
159 in the specimen.
160 Equations (4) and (5) are solved using variational
161 methods on a two-dimensional amorphous grid made of

162more than 33 000 triangular elements [16]. A typical stress-
163strain response is shown in Fig. 1(b) for no confinement,
164ϕ ¼ 30° and ν ¼ 0.3. Consistent with the failure in
165compression of quasibrittle materials monitored via acous-
166tic emissions [30,31] as well as with previous progressive
167damage simulations of this process [26], the simulated
168damage indicates some precursory activity. It is initially
169distributed homogeneously over the domain (not shown)
170and localizes progressively as the loading is increased.
171Fault formation is identified by the sudden rise of the
172damage rate and corresponds to peak load.
173As done in laboratory experiments on rocks [13,15] and
174ice [10], we measured the failure envelope by testing
175specimens under different confinement ratios [see inset
176of Fig. 1(b)]. We observe that the failure envelope of the
177specimen given by the principal stresses ðΣ1;Σ2Þ at peak
178load reproduces the MC criterion enforced at the material
179level. Therefore, in agreement with observations [11], μ
180appears to be a scale-independent property in our numeri-
181cal model.
182The damage field after peak load exhibits a localization
183band characteristic of compressive failure [Fig. 1(a)]. A
184projection histogram method is used to determine its
185orientation [16], hereinafter referred to as the localization
186angle, θloc. We observe that the value of θloc is robust and
187independent of both the mesh size and the aspect ratio of
188the specimen [16]. A first set of compression test simu-
189lations representing a minimum disorder scenario is ini-
190tialized with a field of cohesion that is uniform for all
191except one element chosen at random. For this inclusion, τc
192is initially 5% weaker and is reset to the uniform value of its
193neighbors after its first damage event. Figure 2(a) shows the
194mean localization angle as a function of the internal friction
195angle ϕ and Figs. 2(b), 2(c), the same results for different
196Poisson’s and confinement ratios, respectively. Neither the
197value nor the variation of θloc with ϕ agree with the MC
198prediction. In particular, the simulated fault orientation
199varies with Poisson’s ratio as well as with confinement, a
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F2:1 FIG. 2. (a) Mean localization angle θloc as a function of the internal friction angle ϕ for an ensemble of 25 simulations with minimal
F2:2 disorder using identical boundary and loading conditions. No confinement is applied and ν ¼ 0.3. The black dashed line shows the MC
F2:3 prediction θMC, the dotted line, the angle of the most unstable mode θLS, and the dashed-dotted line the angle of maximal stress
F2:4 redistribution θmax. The error bars represent '1 standard deviation from the mean. Mean localization angle for (b) different values of
F2:5 Poisson’s ratio without confinement and (c) different values of confinement ratio for ν ¼ 0.3.
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200 dependence that is not accounted for in the MC theory,
201 but that has been observed in laboratory experiments on
202 rocks [13–15].
203 To understand how macroscopic failure arises in the
204 model, we perform a linear stability analysis of the
205 homogeneously damaged solution. In our simulations,
206 the damage field follows the evolution law,

∂d
∂t ðr; tÞ ¼ F½σ0; dðr; tÞ&; ð6Þ

207208 where the damage driving force F is nonlocal: its value for
209 a material element depends on the damage level every-
210 where in the specimen. The linear stability analysis
211 amounts to linearizing this evolution equation around an
212 homogeneous damage field. Assuming an infinite speci-
213 men, the problem is translation invariant and the lineari-
214 zation can be written as a convolution product of the
215 damage field with the elastic kernel Ψσ0;d0 [32]:

F½σ0; dðr; tÞ&≃F½σ0; d0& þ Ψσ0;d0 (δdðr; tÞ; ð7Þ

216217 where δdðr; tÞ ¼ dðr; tÞ − d0 ≪ 1. The kernel Ψ is remi-
218 niscent of the Eshelby solution for the mechanical field
219 around a soft inclusion embedded in an infinite 2D elastic
220 medium, which also decays as 1=r2 [33]. It provides the
221 redistribution of the driving force F following a localized
222 (δ-distributed) damage growth and as such, describes the
223 elastic interactions between material elements during dam-
224 age spreading. In Fourier space, it does not depend on the
225 magnitude of the wave vector q, but only on its polar angle,
226 ω [16]:

Ψ̃ðωÞ ¼ A
!
sinðωÞ2 − 1þ sinðϕÞ

2

"
½δ − sinðωÞ2&; ð8Þ

227228 with A ¼ 2Σ1f½ð1 − νÞð1 − RÞ&=ð1 − d0Þg and δ ¼
229 ðν − RÞ=½ð1þ νÞð1 − RÞ&. The evolution of the damage
230 field perturbations is inferred from Eqs. (6), (7).
231 Considering harmonic modes δdðrÞ ∝cosðq · rÞ, their
232 growth rate is given by Ψ̃ðωÞ. Since the kernel is maximal
233 and positive for sinðω(Þ2 ¼ ½1þ sinðϕÞ þ 2δ&=4, one con-
234 cludes that (i) a homogeneous damage field is unstable and
235 (ii) all the wave vectors with the orientation ω( diverge at
236 the same rate as Ψ̃ is independent of the magnitude of the
237 wave vector. Hence, any linear combination of these modes
238 also diverges at the same rate, corresponding to a locali-
239 zation band that is perpendicular to q, leading to an
240 inclination θLS ¼ π=2' ω( or

θLS ¼ arccos
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinðϕÞ þ 2δ
p

2

"
; ð9Þ

241242 with respect to the direction of maximum principal com-
243 pressive stress. For the sake of simplicity, only the solution

244lying in ½0; π=2& is kept here, but both inclinations are
245actually possible in agreement with the orientation of the
246secondary faults observed in Fig. 1(a).
247We compare the predicted inclination θLS with the
248localization angle θloc from the simulations. We find that
249the prediction is in excellent agreement with the results of
250the minimal disorder numerical simulations [Fig. 2(a)]
251and reproduces the observed dependence on Poisson’s
252ratio [Fig. 2(b)]. The increase of θloc with confinement
253[Fig. 2(c)] is also well captured, in qualitative agreement
254with experimental observations [15,16].
255Alternatively, the fault orientation may be compared
256to the direction along which stress redistribution is
257maximal after a damage event [34]. This angle, θmax ¼
258arccosf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½3þ sinðϕÞ þ 2δ&=8

p
g, which maximizes the

259angular part of the elastic kernel in real space [16], is
260significantly different from the orientation of the most
261unstable mode, θLS. Recent compression experiments on
262granular materials [35,36] have suggested that θmax may
263correspond to the preferred orientation of the precursory
264damage cascades prior to failure while θLS provides the
265final macroscopic fault inclination. As shown in Fig. 2(a),
266θLS clearly provides a better agreement with the simulations
267than θmax in the case of a single evanescent heterogeneity.
268Real and, especially, natural materials are heterogeneous
269and comprise many randomly distributed impurities that
270can serve as local stress concentrators, initiating micro-
271cracking and leading to an extended regime of diffuse
272damage growth prior to localization [21,23,37,38]. To
273determine if and how this regime affects the final orienta-
274tion of the macroscopic fault, we introduce disorder in the
275critical strength by drawing randomly the cohesion of a
276proportion a of the material elements in the range
277τ̄c½1 − η; 1þ η&, with the cohesion of the remaining pro-
278portion 1 − a of the elements set to the average cohesion,
279τ̄c. We consider cases of weak [η ¼ 0.05, Fig. 3(a)] and
280strong [η ¼ 0.5, Fig. 3(b)] disorder. In both cases, the value
281of a is varied between 10−4, corresponding to a few (≃3)
282inclusions in a homogeneous matrix, and a ¼ 1, for which
283all elements have a different critical strength. Consistent
284with the minimum disorder case investigated above, the
285agreement with the orientation obtained from the linear
286stability analysis, θLS, is best for a¼10−4 [Figs. 3(a), 3(b)].
287The deviation from θLS increases with both the density a of
288inclusions and the strength η of the disorder, indicating that
289disorder significantly affects the fault orientation θloc. In all
290cases however, θloc remains well above θMC, and a clear
291dependence on Poisson’s ratio and on confinement is still
292observed [see Figs. 3(c), 3(d)]. These departures from the
293MC theory are in qualitative agreement with the exper-
294imental observations reporting the localization angle and its
295dependence on confinement [10,13–16]. As a direct con-
296sequence, our findings question the estimation of internal
297friction or of applied stresses from faults orientation in
298natural settings [3–5]. To go further in the comparison of
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299 experimental observations with the newly developed
300 theory, triaxial loading as well as a possible dependence
301 of Poisson’s ratio on damage should be introduced.
302 To conclude, the discrepancy between the fault angle and
303 the Mohr-Coulomb prediction indicates that compressive
304 failure, even when it is not preceded by an extended regime
305 of stable damage growth, results from the collective
306 spreading of damage within the specimen. As such, the
307 fault angle observed in our simulations is successfully
308 captured from a stability analysis performed at the macro-
309 scopic scale. The role of elasticity, which is responsible for
310 the redistribution of the stress after a damage event and for
311 interactions between microcracks, reflects in the depend-
312 ence of the localization angle on the Poisson’s ratio. The
313 fact that the MC criterion, derived from the stability of a
314 single material element, fails to predict the fault angle
315 suggests commonly used modeling approaches to com-
316 pressive failure [6,7] that do not account for the long-range
317 elastic interactions between damage events may not predict
318 accurately the localization threshold, the resulting band
319 inclination, and their relation with the material and loading
320 parameters.
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I. EXPERIMENTAL DATA

A precise determination of the fault orientation (✓loc,
according to our notations) during compressive failure
tests was rarely reported in the literature. Table I sum-
marizes available experimental results on rocks and ice
that allow comparing ✓loc with the Mohr-Coulomb (MC)
prediction, ✓MC. These were obtained from series of mul-
tiaxial compressive tests with varying levels of confine-
ment. In this table, the corresponding MC prediction,
✓MC, was either reported directly by the authors [1, 2],
or calculated from the reported values of ⌃1 (there, the
macroscopic principal stress at failure, see Fig. 1 of
the main text) and ⌃2 (macroscopic minimum princi-
pal stress or confining pressure) [3, 4]. In all cases, an
excellent agreement with a linear relation of the form

⌃1 = q⌃2 + �c (1)

is obtained, which corresponds to the macroscopic Mohr-
Coulomb failure enveloppe in such 3d loading configura-
tion. The angle of internal friction � can therefore be
calculated from:

� = arcsin

✓
q � 1

q + 1

◆
, (2)

which yields ✓MC from Eq. (2) of the main text.

From Table I, two results stand out:

• With the exception of siltstone under low confine-
ments [1], Coulomb’s prediction ✓MC generally un-
derestimates the observed fault angle ✓loc. It is
worth noting that a similar conclusion was obtained
from a compilation of data on soils [5].

• ✓loc is generally observed to increase with increas-
ing confinement, an evolution not accounted for by
Coulomb’s theory.

II. CALCULATION OF THE ELASTIC KERNEL

In our model, we assume that the damage field, d, fol-
lows the evolution law

↵
@d

@t
(r, t) = max(Y (�(r)), 0), (3)

where Y (�) is a driving force that encodes the Mohr-
Coulomb (MC) criterion:

Y (�) = �1 � �2 � (�1 + �2) sin(�) � 2⌧c cos(�), (4)

where �1 > �2 are the eigenvalues of �� (they are posi-
tive for compression). The parameter ↵ in this equation
can be absorbed in a redefinition of the time, hence it is
omitted in the following. Computing the elastic kernel
amounts to linearizing Eq. (3) around a homogeneous
damage field, i.e., assuming weak damage fluctuations,
d(r) = d0 + d1(r), with d0 the spatial average of the
damage field.

A. Elastic moduli and damage driving force

First, we linearize the Lamé parameters:

G(d0 + d1(r)) ' G(d0) + G0(d0)d1(r) = G0[1 + g1(r)],
(5)

�(d0 + d1(r)) ' �(d0) + �0(d0)d1(r) = G0[`0 + `1(r)],
(6)

where we have defined

G0 = G(d0), (7)

`0 =
�(d0)

G(d0)
=

2⌫

1 � ⌫
, (8)

g1(r) =
G0(d0)

G(d0)
d1(r) = � d1(r)

1 � d0
, (9)

`1(r) =
�0(d0)

G(d0)
d1(r) = �`0d1(r)

1 � d0
. (10)
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Material/Experiment Ref. � ✓MC ✓loc,min ✓loc,max Dependence of ✓loc on confinement

Fontainebleau sandstone [3] 49 20,5 29 32 Increases with confinement

Pennant sandstone [4] 44 23 30 31 No trend

Darley Dale sandstone [4] 34 28 24 36 Increases with confinement

Siltstone Core I [1] 34.6 27.7 17 31 Increases with confinement

Siltstone Core II [1] 30.3 29.9 14 38 Increases with confinement

Ice at �3�C [2] 34 28 29 29 Not reported

Ice at �10�C [2] 44 23 26 26 Not reported

TABLE I. Experimental measurements of the internal friction angle � from the failure enveloppe, and range [✓loc,min, ✓loc,max]
of localization angles for different values of the confinement, compared to the Mohr-Coulomb angle ✓MC deduced from �.

The last equation emerges from the fact that the Poisson
ratio does not depend on damage, hence the ratio of the
two Lamé parameters remains constant.

Second, we linearize the driving force for weak stress
perturbations �

1(r) = �(r) � �
0, where �

0 is the ex-
ternal stress applied on the sample. If the eigenvalues of
��

0 are �1 > �2, to the first order in �
1, the eigenvalues

of �� are given by �i � �1
ii, 1  i  2. The driving force

(4) can thus be expanded as

Y (�0 + �
1) ' Y (�0) � �1

11 + �1
22 + (�1

11 + �1
22) sin(�)

= Y (�0) + � : �1, (11)

where the colon denotes the contraction, � : �1 = �ij�1
ij

(summation over repeated indices is assumed), and

� =

✓
�1 + sin(�) 0

0 1 + sin(�)

◆
. (12)

B. Stress distribution due to heterogeneous elastic
moduli

Here, we compute the stress variations, �
1(r), as a

function of the variations in the elastic moduli, g1(r) and
`1(r) (Eqs. (5, 6)), assuming an infinite domain. We use
the same notation for the stress, �(r), the strain, ✏(r),
and the displacement, u(r): the quantity with exponent
0 refers to the zeroth order term, which corresponds to
the homogeneous solution, and the quantity with expo-
nent 1 refers to its perturbations.

We expand the elasticity equations to the first order —
discarding second order terms of the form g1(r)u1(r)—

and write it in components form as

@i�
1
ij = 0, (13)

�1
ij

G0
= 2g1✏0ij + `1✏0kk�ij + @iu

1
j + @ju

1
i + `0@ku1

k�ij ,

(14)

where we drop the argument r of the different fields to
simplify the writing and use the definition of the first
order variations of the strain: ✏1ij = (@iu1

j + @ju1
i )/2.

We substitute for �1
ij (Eq. (14)) in Eq. (13) and obtain

@i@iu
1
j +
�
1 + `0

�
@j@iu

1
i = �2(@jg

1)✏0ij � (@j`
1)✏0ii. (15)

This equation can be solved in Fourier space, the Fourier
transform of a function f(r) being defined by

f̃(q) =

Z
f(r)e�iq·rdr. (16)

The derivatives then become @i ! iqi and we obtain

q2ũ1
j +

�
1 + `0

�
qjqiũ

1
i = 2ig̃1qi✏

0
ij + i˜̀1qj✏

0
ii. (17)

Multipliying Eq. (17) by qj , we obtain

q2(2 + `0)qj ũ
1
j = 2ig̃1qiqj✏

0
ij + i˜̀1q2✏0ii, (18)

hence

qj ũ
1
j =

i

2 + `0

✓
2g̃1 qiqj

q2
✏0ij + ˜̀1✏0ii

◆
. (19)

Using this expression in Eq. (17), we now get

ũ1
j = 2ig̃1 qi

q2
✏0ij

+ i
qj

q2

✓
�2

1 + `0

2 + `0
g̃1 qiqk

q2
✏0ik +

1

2 + `0
˜̀1✏0ii

◆
. (20)
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Inserting Eq. (20) in Eq. (14), the stress reads:

�̃1
ij

G0
= 2g̃1✏0ij + ˜̀1✏0kk�ij + i(qiũ

1
j + qj ũ

1
i ) + i`0qkũ1

k�ij (21)

= 2g̃1

 
✏0ij �

qiqk✏0kj + qjqk✏0ki

q2
+

1

2 + `0
qkql

q2
✏0kl


2(1 + `0)

qiqj

q2
� `0�ij

�!
+

2˜̀1

2 + `0
✏0kk

✓
�ij �

qiqj

q2

◆
. (22)

We can rewrite this expression in tensorial form using the tensor

Qij(q) =
qiqj

q2
, (23)

which satisfies Q · q = q, Q ·Q = Q and Q : 1 = 1 (we denote [A ·B]ij = AikBkj). This leads to

�̃
1

G0
= 2g̃1

✓
✏
0 �Q · ✏0 � ✏

0 ·Q +
1

2 + `0
Q : ✏0

⇥
2(1 + `0)Q� `01

⇤◆
+

2˜̀1

2 + `0
(1 : ✏0) (1�Q) . (24)

This last expression can be further simplified by using the property (Q : �0)Q = Q · �0 ·Q and the Oseen tensor

O(q) = 1�Q(q), (25)

which is the projector on the plane orthogonal to q. Doing so, we obtain

�̃
1

G0
= 2g̃1

✓
O · ✏0 ·O +

`0

2 + `0
(O : ✏0)O

◆
+

2(˜̀1 � `0g̃1)

2 + `0
(1 : ✏0)O. (26)

Using the property `1 = `0g1, the last term cancels out
and the expression reads:

�̃
1

G0
= 2g̃1

✓
O · ✏0 ·O +

`0

2 + `0
(O : ✏0)O

◆
. (27)

The final step consists in expressing the stress varia-
tions, �̃1, as a function of the external uniform stress, �0

We invert Hooke’s law

✏
0 =

1

2G0


�

0 � `0

2(1 + `0)
(1 : �0)1

�
(28)

and insert it into Eq. (22):

�̃
1 = g̃1

✓
O · �0 ·O � `0

2 + `0
[(1�O) : �0]O

◆
. (29)

We note that q · O = 0, which implies q · �̃1 = 0, thus
satisfying the equilibrium condition.

C. Elastic kernel, most unstable direction and ✓LS

Combining Eqs. (9, 10, 11, 29), we obtain the varia-
tions of the damage driving force Y 1(r) = Y (�(r)) �

Y (�0) in Fourier space:

Ỹ 1(q) ' � : �̃1(q) (30)

= g̃1(q)� :

✓
O · �0 ·O � `0

2 + `0
[(1�O) : �0]O

◆

(31)

=  ̃(q)d̃1(q), (32)

where we have defined the elastic kernel

 ̃(q) =
�1

1 � d0

⇥ � :

✓
O · �0 ·O � `0

2 + `0
[(1�O) : �0]O

◆
. (33)

The tensor products in the expression (33) for the ker-
nel can be computed to obtain an explicit expression.
The stress applied on the sample is given by

�
0 = �⌃1

✓
1 0
0 R

◆
, (34)

where ⌃1 > 0 and R is the confinement ratio (|R| <
1). Denoting ! the polar angle of the wavevector q, the
Oseen tensor reads

O(!) =

✓
sin(!)2 � sin(!) cos(!)

� sin(!) cos(!) cos(!)2

◆
. (35)
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The kernel (33) can thus be expressed as

 ̃(!) = ↵
⇥
� � sin(!)2

⇤ ⇥
sin(!)2 � �

⇤
, (36)

where

↵ =
2⌃1(1 � R)

1 � d0

✓
1 +

`0

2 + `0

◆
, (37)

� =
1 + sin(�)

2
, (38)

� =
`0

2+`0 � R
⇣
1 + `0

2+`0

⌘
(1 � R)

=
⌫ � R

(1 + ⌫)(1 � R)
. (39)

It is maximal and positive for

sin(!⇤)2 =
� + �

2
=

1 + sin(�) + 2�

4
. (40)

This provides the most unstable mode of damage growth
that defines the most unstable direction

✓LS = arccos

 p
1 + sin(�) + 2�

2

!
(41)

with respect to the direction of maximum principal stress
(direction 1).

D. Elastic kernel in real space and ✓max

Reintroducing the wavevector q = (qx, qy) in the ex-
pression (36) of the kernel, we obtain

 ̃(q) = ↵

 
� �

q2
y

q2

! 
q2
y

q2
� �

!
(42)

= ↵
���q4

x + (� + � � 2��)q2
xq2

y + (� � 1)(1 � �)q4
y

q4
.

(43)

The three terms in this expression can be Fourier-
transformed individually. Their inverse Fourier trans-
forms are, up to a singular part proportional to �(r):

q4
x

q4
! �x4 � 6x2y2 + 3y4

8⇡r6
, (44)

q2
xq2

y

q4
! �x4 + 6x2y2 � y4

8⇡r6
, (45)

q4
y

q4
! 3x4 � 6x2y2 � y4

8⇡r6
. (46)

We thus get, in real space,

 (x, y) =
↵

8⇡r6

⇥
(�3 + 2� + 2� � ��)x4

+6x2y2 + (1 � 2� � 2�)y4
⇤
. (47)

We can re-write this expression in polar coordinates as

 (r, ✓) =
↵

8⇡r2

⇥
(�3 + 2� + 2� � ��) cos(✓)4

+6 cos(✓)2 sin(✓)2 + (1 � 2� � 2�) sin(✓)4
⇤
. (48)

First, we see that the kernel decays as  ⇠ 1/r2. Then,
the direction ✓max where this kernel is maximal for any
fixed distance r is given by

✓max = arccos

✓p
1 + � + �

2

◆

= arccos

 r
3 + sin(�) + 2�

8

!
. (49)

III. DAMAGE MODEL

The model is two-dimensional. It assumes plane
stresses and solves the momentum and constitutive equa-
tions given by Eq. (4) and (5) of the main text, with
the dependance of the elastic modulus on the level of
damage given by Eq. (3). The MC failure criterion is
implemented at the local scale (the scale of the model
element). It is extended to tensile stresses (Fig. 1).

At each numerical time step, the local state of stress,
(�1, �2) in the principal stresses space, is compared to
the critical stress set by the MC criterion. Where the
stress is over-critical, the local level of damage, d, is in-
cremented. This increment is chosen so that to project
the local state of stress back onto the failure envelope,
as indicated by the point (�0

1, �0
2) on Fig. 1. As the de-

formation is assumed to remain constant during damage
events, i.e., the first effect of damage is the initiation of a
stress redistribution between neighbouring elements that
modifies the local state of stress and not strains, this pro-
jection is made along the line passing through the origin,
in the principal stresses space. The numerical time step
is chosen sufficiently small so that damage propagation
does not evolve out of equilibrium and conditions remain
quasi-static in the simulations.

IV. NUMERICAL IMPLEMENTATION OF THE
DAMAGE MODEL

The domain and boundary conditions for the simu-
lations are described and represented in Fig. 1(a) of
the main text. Finite elements and variational meth-
ods are used to solve the time-discretized problem on
a Lagrangian grid within the C++ environment RHE-
OLEF [6]. As the cumulative deformation of the simu-
lated specimen is small (0.01%), the position of the grid
nodes is not updated in time. This means that the forc-
ings and shape coefficients used for the spatial discretiza-
tion are defined relative to the initial position of the grid
nodes. This simplification does not impact the results
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�2

(�1, �2)

(�0
1, �

0
2)

� 1
=

� 2

FIG. 1. MC damage criterion in the principal stresses plane
(solid line). In the simulations performed here, the MC crite-
rion is extended to tensile stresses and no truncation is used
to close the envelope towards biaxial compression. The calcu-
lation of the distance to the damage criterion dcrit, defined by
the intersection (�0

1, �0
2) of the line relating the state of stress

(�1, �2) of a given element to the origin of the principal stress
plane, is represented in red.

reported here. Meshes with triangular elements are built
using the Gmsh grid generator [7] and are chosen un-
structured to avoid introducing preferential orientations
in the damage localization. The average spatial resolu-
tion, �x, is set by choosing the number N of elements
along the short side of the domain, of length L, such that
�x = L/(2N). In all simulations, N is set to 80 and the
mesh grid counts 33858 elements.

The ratio of the undamaged elastic modulus, E0, and
of the mean (or median) value of cohesion, ⌧c (see main
text), is the same in all simulations and is chosen to be
representative of a natural quasi-brittle material (rock
or ice). We have used E0 = 50MPa and ⌧̄c = 25 kPa
in our simulations. The specific values of these param-
eters do not affect our results with respect to the angle
of localization, as long as they ensure that the simulated
mechanical behavior is quasi-brittle (see Fig. 2).

Three mechanical parameters are varied in the simu-
lations presented in the main text: (1) the local inter-
nal friction angle, �, (2) Poisson’s ratio, ⌫ and (3) the
confinement ratio, R. Additionally, the level of disorder
introduced in the local critical strength of the material
(i.e., the local value of the material’s cohesion, ⌧c) is var-
ied via the proportion, a, of model elements for which ⌧c

is drawn randomly from a uniform distribution of values
(referred to in the main text as the proportion of in-
clusions) and the width, ⌘, of that uniform distribution
(referred to as the strength of the disorder). The range
of values for each parameter is summarized in Table II.
For each set of parameters, an ensemble of 25 simula-

�(�)
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FIG. 2. Comparison of the mean localization angle, ✓loc, as a
function of the internal friction angle, �, in simulations using a
minimal disorder and E0 = 50 MPa and ⌧c = 25 kPa, as in all
model experiments presented in this paper (black solid curve),
and E0 = 13.7 GPa and ⌧c = 63.4 MPa, as in the laboratory
experiments on siltstone (core I) of [1] (cyan dashed curve).
The error bars represent ± 1 standard deviation from the
mean. In both cases, ⌫ = 0.3 and no confinement is applied.

tions is run to estimate the average orientation of the
fault. All simulations are initialized with an undamaged
material with uniform elastic modulus and stopped after
the formation of a macroscopic fault and cessation of the
damage activity (see Fig. 1(b) of main text).

We checked that neither the chosen model resolution
nor the domain aspect ratio (1 or 2; square or rectangu-
lar domain) impacts the damage initialization, propaga-
tion and localization and the numerical experiments pre-
sented here. Figure 3(a) compares ✓loc(�) for a square do-
main (L⇥L, red lines) and rectangular domain (L⇥L/2,
black lines) in the case of minimal disorder (solid lines)
and of a weak disorder (⌘ = 0.05, a = 1, dashed-dotted
lines). The case of minimal disorder are related param-
eters ⌘ and a is described in the main text. The results
are equivalent in the limits of the calculated error bars
(equivalent to 2 standard deviations of the mean ✓loc).
The same is true when changing the model resolution be-
tween N = 40, 80, 160, which is represented on Fig. 3(b)
also for the cases of minimal disorder (solid lines) and
weak disorder (⌘ = 0.05, a = 1, dashed-dotted lines).

V. DETERMINATION OF THE FAULT
ORIENTATION

The orientation of the simulated localization pattern in
the post-macro-rupture regime is estimated using a pro-
jection histogram method, similar to the Hough trans-
form used to analyze the position and direction of linear
structures in various types of imaging [e.g., 14, 15]. With
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Parameters Values

Internal friction angle � 15�, 30�, 45�, 60�

Poisson’s ratio ⌫ 0, 0.1, 0.2, 0.3, 0.4, 0.5

Confinement ratio R 0%, 10%, 20%

Disorder - strength ⌘ 0.05 (“weak”) and 0.5 (“strong”)

Disorder - proportion of inclusions a 10�4, 10�3, 10�2, 10�1, 1

TABLE II. List of parameters varied in the simulations and their range of values.

this approach, the distribution histogram of a field value
is calculated when projecting that field in a particular
direction, �. By calculating projection histograms in all
directions, the method allows detecting the principal ori-
entations of linear features. Projection histograms of the
field of damage are calculated as follow.

The instantaneous field of damage d(r) simulated on
an unstructured grid is first interpolated onto a struc-
tured square elements grid of similar size (N ⇥ 2N) us-
ing a nearest neighbor interpolation. The origin of the
rectangular image is defined as the lower left corner of
coordinates (x, y) = (0, 0) and the direction, �, is de-
fined relative to the axis y = 0. Hence the position of the
center of any grid element (x, y) can be written in polar
coordinates as (r cos(�), r sin(�)), where r =

p
x2 + y2

(Fig. 4(a)).
Any given direction 0�  �  180� defines a line D

(Fig. 4(a), dashed white line) passing through the origin.
For all positions r along that line, the average level of
damage of the grid elements found along the line D0 per-
pendicular to D is calculated (solid white line, Fig. 1a,
main text). The result, denoted d̄p(�, r), is the projec-

tion histogram in the direction �. The number of grid
elements over which d̄p(�, r) is calculated is not constant
with r and is smaller near the corners of the domain.
Hence a minimum number of points N/4 is imposed as a
threshold for the calculation of d̄p(�, r). We checked that
(1) the resolution of the regular square grid onto which
the simulated fields of damage are interpolated and (2)
our choice of threshold for the minimum number of points
for the calculation of d̄p(�, r) have no effect on the results
presented here.

The localization angle, ✓loc, is calculated using the ab-
solute maximum value of the projection histogram for all
values of � and r, as

✓loc = � if � < 90�, (50)
= 180� � � if � > 90�. (51)

In the case of conjugate or multiple linear features, ✓loc

corresponds to the orientation of the one linear feature
that returns the maximum in d̄p (i.e., the most localized
or most damaged feature).
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FIG. 3. (a) ✓loc(�) for ⌫ = 0.3 and no confinement calculated
for simulations using a square (L⇥ L) and a rectangular do-
main of aspect ratio 2 (L ⇥ L/2) with the same number of
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� = 60�
<latexit sha1_base64="JihqFdN29km9I/BUhfoGuYwudHE=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5KIVC9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2imnOfeYRJMunZFafqzICWiZuTCuRo9Owvrx+TNKJCE46V6rpOov0MS80Ip5OSlyqaYDLCA9o1VOCIKj+bnT5Bx0bpozCWpoRGM/X3RIYjpcZRYDojrIdq0ZuK/3ndVIcXfsZEkmoqyHxRmHKkYzTNAfWZpETzsSGYSGZuRWSIJSbapFUyIbiLLy+T1mnVdaru7VmlfpXHUYRDOIITcOEc6nADDWgCgUd4hld4s56sF+vd+pi3Fqx85gD+wPr8AfdVkyg=</latexit><latexit sha1_base64="JihqFdN29km9I/BUhfoGuYwudHE=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5KIVC9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2imnOfeYRJMunZFafqzICWiZuTCuRo9Owvrx+TNKJCE46V6rpOov0MS80Ip5OSlyqaYDLCA9o1VOCIKj+bnT5Bx0bpozCWpoRGM/X3RIYjpcZRYDojrIdq0ZuK/3ndVIcXfsZEkmoqyHxRmHKkYzTNAfWZpETzsSGYSGZuRWSIJSbapFUyIbiLLy+T1mnVdaru7VmlfpXHUYRDOIITcOEc6nADDWgCgUd4hld4s56sF+vd+pi3Fqx85gD+wPr8AfdVkyg=</latexit><latexit sha1_base64="JihqFdN29km9I/BUhfoGuYwudHE=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5KIVC9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2imnOfeYRJMunZFafqzICWiZuTCuRo9Owvrx+TNKJCE46V6rpOov0MS80Ip5OSlyqaYDLCA9o1VOCIKj+bnT5Bx0bpozCWpoRGM/X3RIYjpcZRYDojrIdq0ZuK/3ndVIcXfsZEkmoqyHxRmHKkYzTNAfWZpETzsSGYSGZuRWSIJSbapFUyIbiLLy+T1mnVdaru7VmlfpXHUYRDOIITcOEc6nADDWgCgUd4hld4s56sF+vd+pi3Fqx85gD+wPr8AfdVkyg=</latexit><latexit sha1_base64="JihqFdN29km9I/BUhfoGuYwudHE=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5KIVC9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2imnOfeYRJMunZFafqzICWiZuTCuRo9Owvrx+TNKJCE46V6rpOov0MS80Ip5OSlyqaYDLCA9o1VOCIKj+bnT5Bx0bpozCWpoRGM/X3RIYjpcZRYDojrIdq0ZuK/3ndVIcXfsZEkmoqyHxRmHKkYzTNAfWZpETzsSGYSGZuRWSIJSbapFUyIbiLLy+T1mnVdaru7VmlfpXHUYRDOIITcOEc6nADDWgCgUd4hld4s56sF+vd+pi3Fqx85gD+wPr8AfdVkyg=</latexit>

� = 45�
<latexit sha1_base64="MKFYnxfcycbP92R+pdlO9kqMiKY=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5JIRS9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2i2tl95hEmyaRnV5yqMwNaJm5OKpCj0bO/vH5M0ogKTThWqus6ifYzLDUjnE5KXqpogskID2jXUIEjqvxsdvoEHRulj8JYmhIazdTfExmOlBpHgemMsB6qRW8q/ud1Ux1e+BkTSaqpIPNFYcqRjtE0B9RnkhLNx4ZgIpm5FZEhlphok1bJhOAuvrxMWqdV16m6t7VK/SqPowiHcAQn4MI51OEGGtAEAo/wDK/wZj1ZL9a79TFvLVj5zAH8gfX5A/v3kys=</latexit><latexit sha1_base64="MKFYnxfcycbP92R+pdlO9kqMiKY=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5JIRS9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2i2tl95hEmyaRnV5yqMwNaJm5OKpCj0bO/vH5M0ogKTThWqus6ifYzLDUjnE5KXqpogskID2jXUIEjqvxsdvoEHRulj8JYmhIazdTfExmOlBpHgemMsB6qRW8q/ud1Ux1e+BkTSaqpIPNFYcqRjtE0B9RnkhLNx4ZgIpm5FZEhlphok1bJhOAuvrxMWqdV16m6t7VK/SqPowiHcAQn4MI51OEGGtAEAo/wDK/wZj1ZL9a79TFvLVj5zAH8gfX5A/v3kys=</latexit><latexit sha1_base64="MKFYnxfcycbP92R+pdlO9kqMiKY=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5JIRS9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2i2tl95hEmyaRnV5yqMwNaJm5OKpCj0bO/vH5M0ogKTThWqus6ifYzLDUjnE5KXqpogskID2jXUIEjqvxsdvoEHRulj8JYmhIazdTfExmOlBpHgemMsB6qRW8q/ud1Ux1e+BkTSaqpIPNFYcqRjtE0B9RnkhLNx4ZgIpm5FZEhlphok1bJhOAuvrxMWqdV16m6t7VK/SqPowiHcAQn4MI51OEGGtAEAo/wDK/wZj1ZL9a79TFvLVj5zAH8gfX5A/v3kys=</latexit><latexit sha1_base64="MKFYnxfcycbP92R+pdlO9kqMiKY=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSyCp5JIRS9C0YvHCvYDmlg22027dLMJuxulxP4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z5f3WypOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORtdTv/1ApWKxuNPjhPoRHggWMoK1kXp22UuGDF2i2tl95hEmyaRnV5yqMwNaJm5OKpCj0bO/vH5M0ogKTThWqus6ifYzLDUjnE5KXqpogskID2jXUIEjqvxsdvoEHRulj8JYmhIazdTfExmOlBpHgemMsB6qRW8q/ud1Ux1e+BkTSaqpIPNFYcqRjtE0B9RnkhLNx4ZgIpm5FZEhlphok1bJhOAuvrxMWqdV16m6t7VK/SqPowiHcAQn4MI51OEGGtAEAo/wDK/wZj1ZL9a79TFvLVj5zAH8gfX5A/v3kys=</latexit>

FIG. 4. Fields of the level of damage, d, simulated with a = 1, ⌘ = 0.05 and (a) � = 15�, (b) � = 30�, (c) � = 45�, (d) � = 60�.
(e) Field of the level of damage simulated with a = 1, ⌘ = 1 and � = 45�. The white solid line indicates the fault and the value
of localization angle, ✓loc, estimated by the projection histogram method is given in each case.


