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This paper continues the study of the effective adhesion of thin films on rigid substrates in
the presence of spatial heterogeneities started in Xia et al. (2013). In this paper, we focus
on thin adhesive tape with spatial heterogeneity in the adhesive strength. This hetero-
geneity leads to a wavy peel front and consequently a complex corrugated shape in the
tape. We develop a theory for the evolution of the peel front that accounts for this
complex interaction, and an experimental method that is able to examine this in detail.
We show through theory and experimentation that spatial patterning of the adhesive
strength can lead to a very rich range of behaviors in the effective adhesive strength. In
particular we show that adhesive heterogeneity can be used to create asymmetry in that
the force required to peel the tape in one direction can be different from that in the other.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is the second part of our work on the effective adhesion of a heterogeneous thin film. In Part I of this work, we
focused on the effects of elastic heterogeneity and demonstrated remarkable enhancement of effective adhesive strength
through a combined theoretical and experimental study (Xia et al., 2013). In the present paper, we consider a different
scenario where the elastic properties of the thin film are uniform but the intrinsic adhesion energy of the adhesive interface
is heterogeneous.

Materials are inherently heterogeneous over a wide range of length scales: nano, micro and macro. Metallic alloys are
heterogeneous at the nanoscale due to the various atomic constituents including interstitials and defects. Metallic and
ceramic materials are heterogeneous at the microscale due to their polycrystalline nature and the presence of inclusions and
precipitates. Composite materials are classical examples of heterogeneity arising from different phases and reinforcements
in the form of particles and fibers. Heterogeneity is often linked to toughening of materials because of the ability of the
reinforcing phase to impede and/or deflect crack growth. While considerable progress has been made towards under-
standing the effective elastic and inelastic properties (constitutive laws) of heterogeneous solids (e.g., Milton, 2002; Nemat-
Nasser and Hori, 1999; Ponte Castañeda and Suquet, 1998, and references there), relatively little is known regarding their
effective toughness. A number of analytical and computational studies have contributed to our understanding of the role of
various heterogeneities on toughness of materials in specific examples (e.g., Bower and Ortiz, 1991, 1993; Hutchinson and
arya).
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Suo, 1992; Xu et al., 1998; Cox and Yang, 2006; Chen et al., 2008; Patinet et al., 2013b; Démery et al., 2014; Hossain et al.,
2014, and references there). Kesari et al. (2010) and Kesari and Lew (2011) recently investigated the enhancement of ef-
fective macroscopic adhesion of rough surface contact with the use of adhesion instability. This work was later extended by
Jin and Guo (2013) to understand the adhesion behavior of contact systems with both surface roughness and in-
homogeneous material properties. Hutchinson and Suo (1992) have provided a comprehensive review of the mechanics and
mechanisms of toughening of bi-materials and composites.

The present study develops insights concerning the role of heterogeneities on the overall toughness of materials using a
model system of peeling a thin film (tape) from a periodically patterned heterogeneous adhesive substrate. While recent
studies have focused on the role of random heterogeneity on effective toughness of materials, there has been no systematic
study exploring the effects of periodic heterogeneity on effective fracture toughness. The underlying mathematical problem
is that of a propagating front (discontinuity), which is impeded by obstacles. Such front propagation problems are important
in many areas of materials science including phase boundaries (Dirr and Yip, 2006; Dondl and Bhattacharya, 2010; Craciun
and Bhattacharya, 2004), dislocations (Hirth and Lothe, 1992; Patinet et al., 2011) and crack propagation (Rice, 1985; Legrand
et al., 2011; Ponson and Bonamy, 2010). In the present study, we explore further the problem of a propagating wavy front in
the context of peeling through a combined theoretical and experimental investigation.

The problem of peeling a homogeneous tape from a rigid substrate with uniform adhesive energy can be traced back to
the seminal work of Rivlin (1944). This problem provides a simple one-dimensional framework for exploring fracture or
front propagation problems. The problem of peeling is often modeled using either a one-dimensional membrane or Ber-
noulli–Euler beam theory. It was shown in Part-I of this work, that significant enhancement in peeling force can be attained
through elastic heterogeneity of the film (Xia et al., 2013). By patterning the substrate with varying adhesive energies, the
peel front is perturbed, i.e., no longer straight. The deviation of the peel front from being straight introduces additional
bending in the direction normal to the direction of peeling. By appropriate choice of the adhesive patterning of the sub-
strate, one can also introduce anisotropy and asymmetry in peeling that is reflected in the effective toughness of the system.
These interesting and novel characteristics offered by adhesive heterogeneity could be potentially exploited in biomedical
and engineering applications. Some early results of our study on adhesive heterogeneity were reported in Xia et al. (2012).

Problems in similar settings have been previously investigated mainly through experimentation. Ghatak et al. (2004)
studied the peeling of a flexible plate from a patterned elastomeric substrate and found enhancement in peel force when
compared to peeling from a uniform adhesive substrate. Chung and Chaudhury (2005) made similar observations who
attributed the significant toughening to the sequential crack nucleation at heterogeneities at the interface. Ramrus and Berg
(2006) conducted a series of experiments to characterize the adhesion of randomly patterned heterogeneous interfaces.
Compared to homogeneous control specimens, adhesion enhancement due to heterogeneous micro-patterning was ob-
served and attributed to arrest and confinement effects of crack propagation. Chan et al. (2007) used template-assisted
silane treatment to obtain adhesive interfaces with more regular, periodically arranged patterns. Peel tests on these pat-
terned interfaces showed that adhesion tuning was related to a characteristic length scale defined by the ratio of critical
energy release rate and elastic modulus. More recently, Dalmas et al. (2009) and Patinet et al. (2013a) studied the crack
arresting by tough pinning sites in a planar heterogeneous interface. They used a simple patterning technique to create a
fracture toughness contrast in a weak interface of a double cantilever beam (DCB) sample. The effective adhesion properties
of such heterogeneous interface, however, were not investigated in their work. Motivated by the biological structures such
as gecko's feet, there has been considerable effort in achieving enhanced adhesion strength through 3D structures such as
pillars and other features on the substrate (Greiner et al., 2007).

An exploration of adhesion directionality during peeling has been conducted in our study. It has been recognized that
one can introduce adhesion anisotropy in the sense that crack fronts propagating along different axes can have different
adhesion strengths. For example, the pull force along the spooling axis of a tape can be made different from the pull force
across the tape (i.e., perpendicular to the spooling axis). Furthermore, the adhesion strength can be made to depend not only
on the axis of the pull, but also on the direction with respect to the sense of the pull. This directionality of adhesion has been
demonstrated by using an array of tilted microfibrils (Santos et al., 2007) to develop gecko-like adhesives for vertical
climbing. Similar architectures were also used by others to achieve directional adhesion to water, for applications in in-
terfacial propulsion (Prakash and Bush, 2011) and directional water shedding-off (Guo et al., 2012). In this study, we will
show that it is not necessary to use such complex 3D microstructures to achieve directional adhesion; adhesive hetero-
geneity in a planar interface, if introduced at a right length scale, can give rise to the same adhesion behavior.

In Section 2, we describe a theoretical model for peeling of a thin film from a patterned adhesive substrate, which is
based on the Kirchhoff plate theory via a variational formulation. The model provides predictions for the non-local energy
release rate and its dependence on the peel-front perturbation. Section 3 describes the fabrication of a model material
system and an experimental setup used for peel testing. The results of the experiments on various patterned substrates and
comparison with theoretical predictions are presented in Section 4. The results for anisotropy and asymmetry in effective
adhesion are also presented. Finally, the conclusions, implications and limitations of the present study, and directions for
future study are summarized in Section 5.
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Fig. 1. Peeling of elastic thin films with (a) heterogeneous and (b) homogeneous distributions of intrinsic adhesion energy.
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2. Theory

2.1. Framework

Consider a film being peeled from a substrate by the application of a force per unit width F F cos , 0, sinp p pθ θ= { } at one
end, as shown in Fig. 1(a). We assume that the peel angle θp is held constant as the film is being peeled. We denote by 2Ω ∈
the flat reference configuration of the film, which is the union ofΩr (the released portion) andΩb (the bonded portion). We
also define the peeling front Γ and the extremity Γb of the film where the peeling force is applied (see Fig. 1(a)). Since the
film is being peeled at a finite angle, the released portion undergoes very large deformation, and we cannot directly use
small deformation plate theory. So we start with the finite deformation plate theory going back to Kirchhoff (1850). Spe-
cifically, we assume that the released portion of the film undergoes an isometric deformation y: 3Ω → : Material points of
the film initially located in x x x, , 01 2= { } before deformation are located in y y y y, ,1 2 3= { } after deformation. The potential
energy of the system is given by

D
dA F y dl dA

2
2 1

111
2

22
2

11 22 12
2

r b b
∫ ∫ ∫κ κ νκ κ ν κ γ= ( + + + ( − ) ) − · −

( )Ω Γ Ω

where ij i j1 , 2κ κ= ( ) ≤ ≤ is the curvature defined by y nT(∇ ) ∇ . Here ∇ denotes the gradient with respect to x and thus
y: 3 2Ω∇ → × or y y x/i j i j1 3,1 2∇ = (∂ ∂ ) ≤ ≤ ≤ ≤ . D Eh / 12 13 2ν= ( ( − )) is the bending stiffness of the film that depends on the film

thickness h, its Young's modulus E and Poisson's ration ν. γ is the excess surface energy density of the released region
compared to the bonded region. The first integral of Eq. (1) is the energy associated with bending the film while the second
term is the potential energy of the applied (dead) force.
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2.2. Scaling

We are interested in a situation where the adhesive interface is heterogeneous on a length-scale that is small compared
to the width and length of the film, but large with respect to the film thickness h so that the plate theory applies. If the
adhesive interface were homogeneous, we would expect the peel front to be straight as shown in Fig. 1(b). We can find the
shape of the film exactly by using a Euler–Bernoulli beam theory (with the modulus adapted for a plate), and these details
are presented in Xia et al. (2013). In the following, we will focus on heterogeneities introduced at small scales. So that we
expect the peel front to be a small but rapidly varying perturbation from a straight line, and the deformed shape of the
released portion of the film to be a small but rapidly varying perturbation of the singly bent surface. Therefore we linearize
our equations about this known solution by making a Kirchhoff–Love hypothesis.

To this end, we assume that our peel front Γ as well as the deformation has a multi-scale form

y x y x u x, , 20ξ ε ξ( ) = ( ) + ( ) ( )

x x x f x e: / 30
2 1Γ ε ε= { = − ( )^ } ( )

where x/ξ ε= is the fast variable. Notice that we have assumed that the amplitude of the deviation of the film from the
singly curved interface is much smaller at O ε( ) compared to the variation in the heterogeneities, the front and the wave-
length of the deviation all of which are at O ε( ). This is because the mechanics of the film is governed by bending (instead of
stretching), and thus we seek finite perturbations in the curvature.

Introducing the unit normal n y y,1 ,2= × and the unit tangent t y y e,= = (∇ )α α α to the film in the α-direction, one obtains

⎛
⎝⎜

⎞
⎠⎟t y y u u y u

1
4, ,

0
, , ,

0
,ε

ε
ε= = + + ≈ +

( )α α α α α α α∼ ∼

where the subscript ‘,α’ describes differentiation with respect to xα while the subscript ‘,α∼’ describes differentiation with
respect to the fast variable ξα . In approximating (4), only the leading term of order O ε( ) is kept. Similarly, up to the order of
O ε( ), we have

n y y

y u y u

y y y u u y O

n y u u y . 5
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,1
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,2
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≈ ( + ) × ( + )
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It then follows that

n n y u u y , 6, ,
0

,1
0

,2 ,1 ,2
0≈ + ( × + × ) ( )β β β β˜∼∼ ∼

and

y n y n y y u u y , 7T
, , ,

0
,
0

,1
0

,2 ,1 ,2
0κ κ= (∇ ∇ ) = ≈ + ·( × + × ) ( )αβ αβ α β αβ α β β˜∼∼ ∼

where we only attain the leading terms of order O 1( ).
Finally assume that the small perturbation u is always normal to the unperturbed film:

u x x w x n x u w n, / / so that . 80
, ,

0ε ε( ) = ( ) ( ) = ( )α α∼ ∼

Then, w0
,κ κ≈ +αβ αβ αβ∼∼. Scaling back w wε ↦ and x x/ ε ↦ , we have

w . 90
,κ κ= + ( )αβ αβ αβ

Similarly, using (2) and (8), we find

F y F wcos sin . 10p p p,1
0

,1
0θ θ ε θ θ· ≈ ( ( − ) + ( − )) ( )˜

Scaling back as before, we obtain

F y F wcos sin . 11p p p,1
0

,1
0θ θ θ θ· ≈ ( ( − ) + ( − )) ( )

Finally, we turn to the peel front Γ. Recalling (2) and (8), and using the Taylor expansion,

y x fe y x fy x e w x n/ , 121
0 0

,
0 0

1
0 0ε ε ε ε( − ^ ) ≈ ( ) − ( )(^ ) + ( ) ( )α α

y x fe y x fy x e w x n/ . 13, 1 ,
0 0

,
0 0

1 ,
0 0ε ε ε ε( − ^ ) ≈ ( ) − ( )(^ ) + ( ) ( )α α αβ β α∼
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At both the perturbed and the straight peel front, the deformation and the slope are zero

y x y y x y0 on , 0 on . 14,
0

,
0 0Γ Γ( ) = = ( ) = = ( )α α

Recalling that y n,11
0 0 0κ= , we conclude that in rescaled variables

w w f w0, , 0 on . 15,1
0

,2
0κ Γ= = = ( )

Finally, we require that

w 0 16→ ( )

as we go away from the peel front.

2.3. Governing equations

We apply the relations (9) and (11) to the potential energy (1) to obtain

⎧⎨⎩
⎫⎬⎭

D
w w w w w dA

F w dA F y dl dA

2
2 1

cos sin .
17

p p p

0
,11

2
,22
2 0

,11 ,22 ,12
2

0
,1

0

r

b b

∫

∫ ∫

κ ν κ ν

θ θ θ θ γ

= (( + ) + + ( + ) + ( − ) )

− ( ( − ) + ( − )) − · −
( )

Ω

Γ Ω

We regard the singly curved surface with the tangential angle θ0 and curvature κ0 to be known and seek equations for
the deformation w and the peel front. Therefore, we perturb them, w w vη↦ + , f f gη↦ + and compute the first variation.
Setting

w w dA F y dl dA,
18

2
r b b

∫ ∫ ∫ γ= (∇ ∇ ) − · −
( )Ω Γ Ω

where w2∇ denotes the second gradient (not Laplacian), it is a standard calculation to show
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κ κ
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∂
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∂
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+ +
( )

Ω αβ αβ α α

Ω αβ
α β

αβ β α
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Γ∂

where m is the unit outer normal toΩr. In this expression, the integral on the peeling front Γ results from the variations of
the domain integral Ωr. Since 0δ = for all v 0≠ on Ωr, it follows that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟t

0.
20, ,κ

∂
∂

− ∂
∂

=
( )αβ αβ α α

Now,

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

D w Dw D w

D w Dw D w

2 1

1 2
,

21

0
,11 ,22 ,12

,12 ,22
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,11κ
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ν ν κ
∂
∂

=
( + ) + ( − )
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t

F sin

0
,

22

p p
0θ θ∂

∂
= ( − )

( )α

and it follows that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ D w ,

23
,11
0 2

κ
κ Δ∂

∂
= ( + )

( )αβ αβ

⎛
⎝⎜

⎞
⎠⎟t

F cos .
24

p p
,

0
,1
0θ θ θ∂

∂
= − ( − )

( )α α

We also recall the governing equation of the singly bent membrane (Xia et al., 2013) is
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D F sin 0 25p p,11
0 0θ θ θ− ( − ) = ( )

or

D F cos 0. 26p p,111
0 0

,1
0θ θ θ θ− ( − ) = ( )

Substituting (23), (24) and (26) in (20), and recognizing that 0
,1
0κ θ= , we find that the governing equation for the

deformation of the film reduces to the usual small deflection bending equation:

w 0. 272Δ = ( )

Turning to the boundary conditions, we note that on the peel front

v v w g v0, , 0 28,1
0

,11 ,2κ= = ( + ) = ( )

analogous to (15). At the far surface, we expect w to decay and so v 0→ , v 0, →α as x2 → ∞. Therefore,

⎛
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⎜⎜
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⎟⎟⎟
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⎟⎟⎟
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vm dl
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0
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δ
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κ
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∂

− ∂
∂

− ∂
∂

+ − ∂
∂

( + ) +
( )

αβ
α β

αβ β α
α

Γ

where are the lateral surfaces. We obtain natural boundary conditions on and identify the driving force on the peel front
Γ to be

G w
3011

0
,11κ

κ γ= ∂
∂

( + ) − −
( )

Recalling the definition of and (23), noting thatw¼0 on Γ implies that all x2 derivatives vanish, recalling from Xia et al.
(2013) that

D F
G

2 1 cos
,

31

p

p

0 2κ
θ

( ) =
−

≔
( )

∞

and linearizing in w, we conclude that the driving force on the peel front Γ is given by

G G D w . 320
,11κ γ= + − ( )∞

Finally, we invoke a rate-dependent heterogeneous evolution law for the peel front Γ in the form of a kinetic relation

⎪

⎪⎧⎨
⎩

G G x x f

G G f x x f

0, , if 0,

, , if 0 33

c

c

1 2

1 2

γ

γ

+ ≤ ( ) ̇ =

+ = ( ̇ ) ̇ > ( )

where Gc is the rate-dependent critical energy release rate (due to both surface energy and dissipative effects). Combining
with (32), we obtain

⎧
⎨⎪
⎩⎪

G D w G x x f

G D w G f x x f

0, , if 0,

, , if 0. 34

c

c

0
,11 1 2

0
,11 1 2

κ

κ

+ ≤ ( ) ̇ =

+ = ( ̇ ) ̇ > ( )

∞

∞

In summary, the perturbation w on the film deformation is given by the (27) subject to (15) and natural boundary conditions
on while the evolution of the front is given by (34). Note that this is a coupled problem.

2.4. Governing equations for the peel front

We now seek to solve for w and write down an explicit equation for the evolution of the front. We solve (27) by
separation of variables:

w W x ikx dk
1

2
exp 35k 1 2∫π

= ( ) ( ) ( )−∞

∞

So, (27) reduces to

W k W k W2 0 36k k k
2 4⁗ − ″ + = ( )

where the prime denotes differentiation with respect to x1. The solution to (36) subject to the boundary conditions (15) and
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(16) is

W x x k x f kexp 37k 1
0

1 1κ( ) = ( − | | )^ ( ) ( )

where f k^ ( ) is the Fourier transform of the peel front increment f. It follows from (32) that the Fourier transform of the
energy release rate is given by

G k G k D k f G k k f2 2 2 4 . 380 2π δ κ πδ^ ( ) = ( ) + ( ) | |^ = ( ( ) − | |^) ( )∞ ∞

Taking the inverse Fourier transform of (38), we find

G x G
G

PV
f f x

x
d

4

39
2

2

2
2∫π

ξ
ξ

ξ( ) = −
( ) − ( )
( − ) ( )

∞
∞

−∞

∞

where PV denotes the Hadamard principal value of the integral. We substitute this in (34) to obtain an evolution equation
for f that is in general a nonlinear, nonlocal equation.

2.5. Comments

We make a series of comments before we proceed. First, the energy release rate (39) is non-local in the sense that it
depends on the entire shape of the peel front. The second term, the integral, may be regarded as the stiffness of the peel
front. Physically, this stiffness reflects the fact that a wavy interface leads to a corrugated film and in turn an increase in the
bending energy of the film.

Second, this result agrees with that of Legrand et al. (2011) who consider a crack lying on the mid-plane of a plate in the
context of a small deformation plate theory. Further, it also agrees up to a factor with that of Rice (1985) who considered a
perturbed crack front in an infinite medium, that of Hirth and Lothe (1992) who consider a perturbed dislocation and that of
Dondl and Bhattacharya (2015) who consider a perturbed phase boundary. Thus peeling of heterogeneous adhesive films
serves as a good model system to study various phenomena.

Third, if the critical energy release rate is linear in the velocity: i.e., if G G x x f,c c
0

1 2 μ= ( ) + ̇, then the evolution law can be
written in Fourier variables as

G k k f G f x x f2 4 , 40c
0

2 2πδ( ( ))− | |^) = ( ( ) )) + μ^̇
( )∞

Dondl and Bhattacharya (2015) have shown that if Gc
0
is periodic, then there is a critical effective adhesive strength Gc̄ such

that the interface is pinned whenever G Gc≤ ¯∞ . This effective adhesive strength depends on the microstructure and may both
be anisotropic and asymmetric.

2.6. Steady propagation for an invariant pattern

When the adhesive heterogeneity is only a function of x2 (i.e., it is uniform in the direction of propagation of the film) and
the peeling force is held constant, then the peel front propagates in a steady manner after an initial transient. In other
words,

f x t f x Vt, 412 0 2( ) = ( ) + ( )

where we take the average of f0 to be zero. It follows f V̇ = constant and G G V x,c c 2= ( ). We can now combine (34) and (38)
to obtain

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟f

k
k

G
G

1
4

2 .
42

c
0 πδ^ =

| |
( ) −

^

( )∞

We can evaluate this at k¼0, recall that f 0 00
^ ( ) = since f0 has zero average and conclude that

G G . 43c= ¯ ( )∞

In other words, the overall adhesive strength is equal to the average of the point-wise adhesive strength in this special case.

2.7. Displacement control

We derived the governing equations above assuming the applied F to be a dead load. Unfortunately, this is difficult to
pursue in experiment. So the experiments described below are displacement controlled where we prescribe the velocity at
the far end of the film and measure the load. The governing equations described above still hold; however, we need a
strategy to solve for Fp as a function of time. We do so by using the mechanics of the singly bent surface and specifically (25)
to derive a relationship between the rate of change of applied force Fp, velocity of the point of application of force vp and the
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velocity of the peel front vp. We assume that the displacement is applied in such a manner that the limiting angle far away is
held fixed.

We define

u y x y x x x dlcos , 0, sin cos 1
44

p
x

x
p

1 1
0 0 0

1 1
0 0

1
0

1∫θ θ θ θ= ( ( ) − ( ))·{ } − ( − ) = ( ( − ) − )
( )

∞ ∞
∞

where x1
0 is the position of the peel front and x1

∞ is the position of the application of the load. We can directly integrate Eq.
(25) – multiply by ,1

0θ to integrate once, solve for ,1
0θ and integrate again – and obtain

⎛
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p
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in the limit when x 01 →∞ . Differentiating with respect to time, we find,

⎛
⎝⎜

⎛
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⎞
⎠⎟

⎞
⎠⎟u D F F1 cos
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p

p
p p

3/2θ
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−

Similarly, differentiating (45) with respect to time and noting that v y x cos , 0, sinp 1
0 0θ θ= ( )̇ ·{ }∞ and v xf 1

0= − ̇
, we find

u v v 1 cos 47p p f pθ̇ = − ( − ) ( )

Equating the two and set vf to be the average over the peel front of the incremental peel-front velocity, we find

⎛
⎝⎜
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⎠⎟v f D F F1 cos 1 cos

2
.

48
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−

We are now in a position to solve the problem under displacement controlled conditions. We employ an explicit for-
ward-marching integration scheme as follows. Given vp,
0.
 Initialize: Start with a straight peel front f 0i = in a homogeneous region at ti¼0;
i

1.
 Calculate the Fourier transform of the energy release rate G k^ ( ) at ti according to (38) and take the inverse Fourier transform
of G k

i^ ( ) to obtain Gi;

2.
 Compute the peel-front velocity f i̇ according to the rate-dependent evolution law (34);

3.
 Compute the rate of change in peel force using (48);

4.
 Move forward by tΔ and compute new f and Fp at t t ti i1 = + Δ+ using the Euler forward method:

f f f t 49i i i1 1= + ̇ Δ ( )+ +

F F F t 50p
i

p
i

p
i1 1= + ̇ Δ ( )+ +
5.
 Calculate G F 1 cosi
p
i

p
1 1 θ= ( − )∞

+ + ;

6.
 Go to step 1 and continue the numerical integration until the peeling process is complete.

The step size used for the explicit integration is adjusted automatically so that the peel-front advance at each step is less
than 0.02% of the minimum feature size of the heterogeneous pattern. Additional numerical simulations are also performed
with finer step sizes and do not show noticeable change in the simulated peel-front evolution as well as the peel-force
response, thereby confirming the numerical stability and convergence of the integration scheme.
3. Experiment

3.1. Specimen preparation

Peel test experiments were carried out using a model thin film system with well-controlled adhesive heterogeneity. The
material system comprised of a polydimethylsiloxane (PDMS) sheet attached to a transparency film with an ink pattern. The
adhesion energies of PDMS on ink and bare transparency surface have a large difference, allowing for heterogeneous
patterning of interfacial adhesion with a spatial resolution of about 0.04 mm. Each heterogeneous test specimen was pre-
pared according to following procedure. A desired heterogeneous pattern was generated using MATLAB and printed onto a
transparency film with a commercial laser printer. The unpatterned side of the transparency film was then glued to a glass
plate and held flat with a strong spray-on adhesive. A PDMS sheet was prepared by mixing the elastomer and curing agent
of PDMS (Sylgard 184, Dow Corning Co.) at a weight ratio of 10:1 and degassing in a vacuum chamber for 30 min to remove
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Fig. 2. Photograph of a peel test setup used for studying the effective adhesion and peel-front dynamics of a heterogeneous thin film.
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trapped air bubbles. The liquid PDMS premix was subsequently casted over the rigidly supported transparency film, fol-
lowed by curing at room temperature for 24 h and then 80 °C for 1 h. This two-stage curing treatment was necessary to
minimize the residual stress in cured PDMS.

3.2. Peel testing

The effective adhesion between the PDMS sheet and patterned transparency was measured using a peel test setup as
shown in Fig. 2. The flat substrate was mounted on a rotatable table which was used for precisely controlling the peel angle.
Fig. 3. Peel front perturbation of a stripe-patterned interface. (a) Variations of the intrinsic adhesion energy along the front direction x2. The ink strips of
width w¼4 mm are aligned along the peeling direction, and have a higher adhesion energy GInk

c than the rest of the interface of adhesion energy GTrans
c .

(b) Snapshots of propagating peel fronts obtained from a finite element simulation and two independent experiments. The peel front positions are marked
with white arrows. (c) Comparison of the theoretical peel-front geometry to the simulation and experimental results. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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The PDMS sheet was peeled off from the substrate at a constant peel speed using a vertically mounted linear stage. The
corresponding peel force was recorded by a load cell with 200 g load capacity. The transparent nature of PDMS allowed
direct observation of the peel front during peeling. Two digital CCD cameras equipped with high-magnification lenses were
positioned in front and to the side of the PDMS sheet and used to record in situ the evolution of the peel-front profile. Peel
tests were also performed on homogeneous specimens with uniform adhesive strength to obtain the intrinsic adhesion
energies of the PDMS–ink and PDMS–transparency interfaces. The intrinsic adhesion energies were measured to be

v3.53 J/m0.25 2 for the PDMS–ink interface and v0.65 J/m0.25 2 for the PDMS–transparency interface. Here v is the peel-front
velocity in the unit of m/sμ .
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4. Results and discussion

4.1. Stripes

We begin with a simple one-dimensional (1-D) heterogeneous pattern made of a row of uniformly spaced ink stripes
with period λ¼10 mm that are oriented along the peeling direction x1. Fig. 3(a) shows the distribution of adhesion energy as
a function of x2. The stripes of width w¼4 mm are characterized by the adhesion energy GInk

C while the rest of the interface
is characterized by the adhesion energy GTrans

C . The bottom two images in Fig. 3(b) show the steady-state profiles of the peel
front obtained in two separate experiments. As the PDMS film (width b¼50 mm and thickness t¼1.2 mm) is peeled, the
peeling front becomes wavy as it tries to go ahead in the weaker transparency region but is held back in the tougher ink
region. The two experimental peel-front profiles are extracted through image processing and plotted along with the the-
oretical prediction in Fig. 3(c).

Fig. 3(c) also shows the theoretical curve obtained from (42). In this case, we can expand Gc and f0 in a Fourier series to
obtain

f x f f x f x C
m w

m
mz0

4
sin /

1
cos 2 /

51m
m2 2 0 2 2

1
1 2

∑δ λ
π

π λ π λ( ) = ( ) − ( ) = − ( ) = ( )
( − )

( )
( )=

+∞

+

The contrast is defined as C G G G/Ink
c

Trans
C

eff
C= ( − ) where Geff

C is the average adhesion energy of the interface (see Vasoya et al.,
2013 for the analogous result in fracture). We observe good agreement between the experiments and the theoretical model.

A finite element analysis was also carried out to further verify the model. The peeling process was simulated using a
cohesive zone model (CZM) in which a bilinear cohesive zone law (Camacho and Ortiz, 1996) was employed. The simulated
cohesive zone geometry is shown in the top image of Fig. 3(b) as a colored band. The color contour in the image indicates
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the opening displacement within the cohesive zone. The middle line of the cohesive zone is shown in Fig. 3(b), and a good
agreement with the theoretical result is again observed.

4.2. Strips of stripes

We turn to a more complex microstructure as shown in Fig. 4. A PDMS film (width b¼50 mm and thickness t¼0.2 mm)
was peeled from a substrate with a strips-of-stripes pattern. The pattern seen in Fig. 4(a) consists of periodically distributed
ink stripes of finite length (1 mm) and width (0.2 mm). The period of the stripes is λ¼0.4 mm. The far-field peel angle was
kept constant at 90°. The curvature of the film (side view) and the advancing peel front on the substrate (top view) were
continuously recorded using the two CCD cameras. The measured peel force/unit length vs. applied displacement is shown
in Fig. 4(c). The peel force exhibits an oscillatory behavior with a constant period. The snapshots of the top view and front
view at three different instants marked as A–C on the peel force curve are shown in Fig. 4(a) and (b), respectively.

At the instant A when the peel force is in a valley, we see from the snapshots that the peel front is almost straight and in
the middle of the region with no ink (recall that the bare transparency has lower adhesion). We also see from the side view
that the curvature of the film at the front is low compared to the other two instances. The peel force is close to that of a
homogeneous system with bare transparency (more on this comparison later). As the peel front reaches the printed stripes
of higher adhesion, the peel front becomes wavy, the curvature of the film viewed from the side increases and the peel force
increases as in the instant B. The peel force reaches its peak at the instant C. We note from the side view that the curvature
of the film at the peel front is extremely high, and from the top view that the front has penetrated the printed region. In a
perfectly rate-independent setting, we would expect the peak to occur as the front is pinned at the bare transparency –

printed stripes interface. The fact that the peak occurs slightly beyond this is a manifestation of rate effects. After the instant
C, the peel process becomes unstable and shows a snap-through behavior. Correspondingly, the peel force drops quickly as
the peel front passes through the inked region, exits the inked region and becomes straight. Each period in the peel force vs.
displacement curve corresponds to the front traversing through one row of stripes.

The peel force vs. displacement curve for peeling a PDMS film from a substrate with the pattern above (positive pattern)
is contrasted with that from a substrate with a negative pattern (i.e., stripes of bare transparency surrounded by ink) in
Fig. 5. Recall that the adhesive energy is higher for the inked region in comparison to the bare transparency. Therefore the
peel force oscillates at a higher level for the negative pattern. The valleys of the peel force for the negative pattern
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correspond to the instant D when the peel front is propagating through the striped region, while the peaks correspond to
the instant F when the peel front just penetrates into the fully inked region. Similar to the positive pattern case, a snap
through instability is observed after the peel force reaches its peak at the instant F. Once again, the peak occurs beyond the
interface as a manifestation of rate effects.

Note that the valleys of the peel force for the positive pattern match the force for peeling from a homogeneous bare
transparency. Furthermore, the peaks of the positive pattern correspond to the valleys of the negative pattern. This indicates
that the critically pinned peel-front shape at the instant C in the former case is identical to the peel-front configuration at
the instant D in the latter case. However, the peaks of the force for the negative pattern do not match the force for peeling
from a homogeneous fully inked substrate. This reflects the fact that the resistance of the peel front is nonlocal and depends
on the entire shape (rather than the local value) and the fact that the intrinsic adhesion strength of our material system has
a rate dependence. This phenomenon requires further investigation.

The results for peel force vs. displacement for a broken stripe pattern together with a continuous stripe pattern (similar
to Fig. 3(a)) are shown in Fig. 6. The width of the stripes in both cases is the same, w¼4 mm, and the center-to-center
spacing between the discrete stripes of the inked region is 2 mmwhile the thickness of the stripes is 1 mm. The width of the
PDMS film is b¼10 mm and its thickness is t¼1.2 mm. The peel angle at the far end is fixed at 45°. It is noted that in the case
of peeling from the continuous stripe, following an initial transient, a steady-state perturbed peel front propagates along the
strip direction and the corresponding peel force is constant. In the case of the discrete stripes, the peel force oscillates with a
regular period as the peeling progresses. The peaks of the peel force correspond to the instant at which the peel front is in
the middle of the discrete ink stripes. The valleys of the peel force correspond to the instant when the peel front is at a
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location in the middle of the bare transparency region. The period of the oscillating force corresponds to the distance
between the centers of neighboring ink stripes. The mechanistic explanation for the oscillatory force and the corresponding
value of the peak (valley) force is similar to the ones provided earlier. It is worth noting that the peak force for the discrete
pattern does not match the steady-state force for peeling from the continuous stripe pattern. This may be due to the small
thickness of the discrete stripe pattern, which does not allow the perturbed peel front to fully develop into the steady-state
configuration of the continuous stripe pattern as shown in Fig. 6(a).

4.3. Asymmetric pattern

We further demonstrate, through both modeling and experimentation, that remarkable adhesion directionality can be
achieved with an asymmetric 2-D pattern. Fig. 7 shows the geometry of the pattern, which has a circular arc shape of
constant thickness. A periodic heterogeneous microstructure was created by replicating the pattern along the vertical di-
rection at a spatial period of 1.0 mm. The geometric parameters of the pattern were: PDMS sheet width b¼10.0 mm,
thickness t¼1.2 mm, arc width w¼4.0 mm, arc radius R¼6.1 mm, and arc thickness h¼0.1 mm. The test specimen included
two microstructured regions with the arc pattern pointing in opposite directions as shown in the inset of Fig. 7(c). This
design allowed a quick examination of the effective adhesive strength in both directions using a single test and removed
artifacts due to variations in sample preparation and the like.

As shown in the Fig. 7(c), the peel force predicted by the model oscillates as it passes each column of the arc-shaped
areas of higher adhesion strength. A 25% higher effective adhesive strength is observed in the hard peeling direction for
which the convex portion of the arc touches the peel front first, compared to that in the opposite easy direction. The
experimentally measured peel force shows the same expected peeling behavior. The physical origin of the observed di-
rectionality is obvious from a close inspection of the peel-front evolution. Fig. 7(a) and (b) shows the experimental and
computational peel-front snapshots in the hard and easy peeling directions as the peeling process progresses. When the
front propagates in the hard direction, it first encounters the convex side of the arc and gets pinned against a large portion of
the arc, as seen in Fig. 7(a). Consequently, the arc is seen as a significant obstacle which requires a large peel force to
overcome. After the peel force reaches the maximum value, depinning of the front first occurs near the center of the arc and
spreads quickly towards the ends of the arc, resulting in a drop in the peel force. In contrary, the non-local negotiation of the
peel front with the same arc in the opposite direction leads to a different front pinning and depinning behavior, as seen in
Fig. 7(b). As the peel front encounters the arc in this direction, it first touches and bypasses the two arms of the arc in a
progressive manner. The critical pinning site in this case is located in the narrow central portion of the arc. Therefore, the
peel front sees the arc as a smaller obstacle which requires a smaller peel force to overcome.
5. Conclusions

We have presented results for the manipulation of effective adhesion strength through patterning of interfacial surfaces.
The effects of adhesive heterogeneity have been demonstrated for patterns of various shapes and sizes including periodic
one- and two-dimensional patterns. It has been demonstrated both theoretically and experimentally that the effective
adhesion is a collective response of the peel front perturbation to the overall pattern. A theoretical model based on the
Kirchhoff plate theory via a variational formulation has been developed to predict the peel-front distortion due to adhesive
heterogeneity, which agrees well with the experimental measurement performed on a model material system. By choosing
an appropriate pattern, it is possible to create anisotropy as well as asymmetry in effective adhesion strength. In the present
study, an arc-shaped pattern has been used to illustrate remarkable adhesion directionality. It is shown that varying ad-
hesion strengths can be attained depending on the direction of peeling with respect to the shape of the pattern. The
adhesion strength is higher when the peel front propagates towards the convex side of the arc pattern in comparison to
when the peel front propagates towards the concave side of the pattern. However, to achieve macroscopic effects through
adhesive heterogeneities, certain conditions must be fulfilled. First, the dissipative failure mechanisms taking place at the
peel front vicinity must be confined in a zone much smaller than the feature size of the heterogeneous pattern introduced at
the interface. In the other limit investigated in Chen et al. (2008), when the cohesive zone is larger than the heterogeneity
size, the details of the adhesion energy landscape are smoothed out and the macroscopic peeling response of the film
depends essentially on the average adhesion energy. Furthermore, the heterogeneities must be introduced at a scale suf-
ficiently small with respect to the characteristic bending radius of the film to create non-local interactions between the peel
front and heterogeneities. In other words, patterning the adhesion energy offers new venues for designing adhesives with
new and better properties, but this pattern must be introduced at the proper length scale.

While the effective adhesion strength for a selected set of heterogeneous patterns has been investigated in the present
study, a number of questions remain unanswered. Since the patterning considered here is two dimensional, there are
infinite choices for the shape, size and spacing of the patterns. A new optimization approach is required to identify optimal
patterns that will result in desired adhesion properties. The patterns that have been explored in this study have been mostly
oriented perpendicular to the peeling direction. For general applications, it may be necessary to explore the effect of the
directionality and orientation of the patterns with respect to the peeling direction. This will provide additional insights into
the mechanics of front propagation and adhesive heterogeneity. The present study has focused exclusively on periodic
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patterns and their effects on effective adhesion strength. It would be interesting to explore the effects of random or non-
periodic patterning and multi-shape patterning on peeling and potential optimization of patterns for desired properties
such as enhancement, anisotropy and asymmetry. The analytical model based on the Kirchhoff plate theory presented in
this paper is general enough to include both bending and twisting of the film but is limited to the treatment of problems
with negligible in-plane extensibility. At low angles of peeling, the effects of in-plane extensibility, friction and slip at the
adhesive interface could be important (Begley et al., 2013) and need to be accounted for in the model.

The peeling of heterogeneous thin films from a heterogeneous substrate serves as an excellent model system for studying
heterogeneous materials. It could be of value in furthering our understanding of various phenomena in heterogeneous
materials including, brittle fracture (Rice, 1985; Legrand et al., 2011), dislocations (Hirth and Lothe, 1992), phase boundaries
(Dondl and Bhattacharya, 2010) and wetting fronts (Joanny and de Gennes, 1984). A recent theoretical and computational
study has suggested mechanisms and architecture for toughening of composite materials (Hossain et al., 2014). The findings
from the present study can be extended to the design of realistic heterogeneous materials such as composites and failure
resistant materials with enhanced toughness. The recent advances in digital manufacturing techniques such as 3D printing
are providing new ability to synthesize materials with complex and precise heterogeneities. Integrated with these new
routes of material synthesis, the insights gained in this study could potentially provide new directions and paradigms for
design and fabrication of new materials with extraordinary properties.
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