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Abstract. Crack velocity in rocks is very sensible to the external conditions and has been shown
to vary over several orders of magnitude with a slight change in the applied loading. Classical tensile
tests such as Compact Tension (CT), Double Torsion (DT) and Double Cantilever Beam (DCB)
explore these velocities with a stable crack growth but they are not easily adaptable for rocks. Here
we explore a new experimental specimen like a tapered double cantilever beam and we study the
kinetics of the crack growth on brittle materials like PMMA. We study systematically the influence
of the geometry on the fracture properties using finite elements. We propose a kinetic law relating
the fracture energy and the velocity of crack propagation in the form of a power law. Using the
kinetic law, we solve numerically the complete crack growth evolution and we are able to predict the
Force-displacement(F − δ) curve which is in good comparison with the experiments.

Keywords: Crack growth, Stress corrosion, Brittle fracture, Heterogeneous materials, Activation
energy

1. Introduction

The Tapered Double Cantilever Beam (TDCB) specimen has been quite popularly
used to perform fracture tests for adhesively bonded joints (Marcus and Sih, 1971,
Gallagher, 1971, Davalos et al., 1998) and due to the property of having a stable
crack growth, it has also been used to study the R-curve behavior in quasi-brittle
materials like wood (Coureau et al., 2013). In many experiments it has been observed
that for this geometry, the compliance increases linearly with the crack length which
have been supported by analytic calculations using beam theory (Davalos et al., 1998,
Qiao et al., 2003, Blackman et al., 2003). As the energy release rate (G) depends on
the derivative on the compliance (see Eq. 3), when the crack propagates, we have a
constant value of G. In our experiments, our focus is not to study the R-curve behavior
as our materials are brittle in nature but to have an experimental setup where it would
be possible to explore a range of velocities for different fracture energies in one simple
test. The classical test geometry used has a straight portion in front of the taper to
facilitate the application of the load and the ratio of the width to the length of the
specimen is usually less than 0.4. In our specimen we remove this straight portion as
having this narrow section for rocks is slightly tedious to machine and the specimen
is likely to break in the arms itself. We also explore ratio of width to length of the
specimen close to 1 which results in a exponential variation of the compliance with the
crack length and hence an exponential decay of fracture energy with crack length,i.e.
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increased stability of crack growth and allows us to measure a range of values of
fracture energy and velocities for different crack lengths.

2. Materials and methods

2.1. Tapered double cantilever beam

In this study, we focus on a transparent thermoplastic the so called Poly-methyl
methacrylate (PMMA) or Plexiglas, an archetype of homogeneous visco-elastic mate-
rial. Tapered double cantilever beam specimens are obtained machining 8 mm thick
PMMA sheets using a laser cutter. In order to help a stable crack propagation and
avoid high stress concentration surrounding the initial crack tip position, two ways
to sharpen the V shape notch - machined from the cutting process - were designed
to initiate fracture: (i) A straight prolongation of approximately 1 millimeter with a
razor blade of 0.2 mm thickness and; (ii) a straight prolongation of 3.5 millimeters
using the laser cutting process allied to a pre-loading procedure of the sample under
a constant 0.5 µm/s crack opening rate up to the exact moment when crack initiates.
The sample was then unloaded and the new initial crack length was recorded.

Geometry details are shown in Figure 1(a). As the width of our specimen is rela-
tively thicker (higher width/length ratio), beam theory cannot be effectively applied
and we use finite elements (FE) to analyze the sample. We adopt a system where we
write the dimensions of the geometry as a multiple of the mesh size of the system. In
the FE geometry we use quadrilateral square elements and the mesh size in both - X
and Y - directions are denoted as ex = ey. The geometry of the sample which we have
used for our experiments have dimensions h1 = 120ey (30 mm), h2 = 180ey (45 mm),
L = 400ex (100 mm), lx = 51.2ex (12.8 mm) ly = 56ex (14 mm) and R = 10ey (2.5
mm)

For the simulations we use CASTEM an open-source finite element package de-
veloped by CEA, France. Exploiting the symmetry in the system, we carry out the
simulation just on the upper half of the sample. A typical mesh configuration used in
the analysis is shown in Fig. 1. Unit force is applied on the hole for the pins and the
displacement is constrained in the Y-direction in the ligament (OA in Fig. 1(a)) to
ensure Mode-1 fracture in the specimen. Crack length is increased incrementally and
the system is solved for displacements under plane stress and linear elastic conditions.
We extract the displacements at the point of application of the force,A (δF ) and at
the location of the clip gauge (δ, B’ in Figure 1(a)) and we define a ratio, r = δF /δ.
The compliance at these locations are calculated as λF and λ and they are related by
the same ratio r. We perform all our calculations in our numerical model using the
compliance at the point of application of force, but in the experiments, we position
the clip gauge at the jaws and hence the displacement and compliance are measured
at the jaws of the sample (BB’). We use the ratio , r, to calculate the correspond-
ing displacement at the point of application of the force. We denote by ∆F and ∆
the relative displacements (AA’ and BB’) and we have assumed a Poisson’s ratio of
ν = 0.3 in the calculations. However, as we have plane stress conditions, the results of
compliance (λF )and stress intensity factor(KI) are independent of the Poisson’s ratio.
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Figure 1. TDCB specimen geometry details: (a) Schematic of the sample with the FE mesh superposed
on the upper-half. The mesh is a coarse mesh used for the analyses that has ∼ 9x103 nodes and
∼ 1.8x104 dof. The fine mesh used for the analysis has ∼ 1.4x105 nodes and ∼ 2.5x105 dof . Figure
(b) shows the refinement strategy while (b1) shows the mesh refinement closer to the initial crack
tip position of the order of 1e−11mm. Figures (b2) and (b3) represent the two different strategies
for sharpen initial notch: razor blade prolongation and laser prolongation plus pre-load cracking,
respectively.

2.2. Finite Element results

A semi-log plot of the non-dimensional compliance and crack length obtained from the
finite element solution is shown in Fig. 2. Clearly we see that for a certain range of
crack lengths, the dependence of the compliance on the crack length can be fit using
an exponential function such as (blue line in Fig. 2):

λF =
λ0
Eb

ec/c0 (1)

where E is the Young’s modulus of elasticity, b the thickness of the specimen and
λ0 and c0 are the parameters of the fit. The compliance follows an exponential fit
approximately in the mid-range of crack lengths from L/3 . c . 2L/3. Once the
crack reaches close to the boundary, the ligament is already quite small and the
compliance increases very rapidly and it deviates away from an exponential curve
(see Fig 2 ). An alternative route is also suggested to build the compliance vs crack
length experimentally by unloading and reloading the experiment as soon as the crack
propagates by a few mm. The inverse of the slope in the elastic limit provides the
compliance at that respective crack length. The comparison between the normalized
compliance results obtained from the experiment and FE result is shown in Figure 2.

We then perform a systematic analysis on the scaling of the parameters of the fit by
performing simulations for different geometries. We choose two different geometries
(for dimensions see Figure 3) and we vary the length of the specimen. From the
inset in Figure 3 we find the parameter c0 scales only with L and it scales as c0 =

0.3886L− 91.5696 where L is given as a multiple of ex and λ0 scales as
c20
h1lx

. We also
observe that this scaling is followed only for a limited range being, 60ex 6 lx 6 90ex
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Figure 2. Figure shows the variation of the normalized compliance with crack length. The red circles
are the FE results, while the blue line is the exponential fit of the compliance.(Inset) shows the
Force-displacement curve for different loaded/unloaded states for the experimental geometry with E
= 3 GPa, b = 8mm and the inverse of the slope in the elastic limit gives the compliance which are
shown with the respective color in the main plot.
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Figure 3. Figure shows the variation of the non-dimensional specimen compliance with non-dimen-
sional crack length for different length of specimens. The simulations are carried out for two different
geometries with the same tapering angle α but with different lx and h1. Geometry 1 is represented
by triangles and has dimensions lx = 90ex, h1 = 160ey while geometry 2 is represented by circles
with dimensions lx = 60ex, h1 = 120ey. The dashed line shows the exponential fit for geometry 2 and
length L = 400ex
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Figure 4. Variation of non-dimensional g as a function of the crack length using different approaches.
The figure is plotted for a specimen with lx = 22.5mm, L = 100mm and h1 = 40mm

, 120ex 6 h1 6 160ex and 400ex 6 L 6 1200ex. With this scaling, we see that for
different geometries in a given range all the curves for the compliance collapse in the
region containing the exponential fit. The compliance for any geometry in this range
is then given by

λF '
1

Eb
β
c20
h1lx

ec/c0 (2)

where β ∼ 3.0 from the numerical fit. This is plotted as a dashed line in Figure 3.
From the definition of mechanical energy release rate and simplifying it for a linear

elastic material, G is given by the compliance formula, also referred to in literature as
the Irwin-Kies equation

G =
F 2

2b

dλF
dc

= F 2g (3)

where g is defined as:

g =
1

2b

dλF
dc

(4)

On substituting Eq. 1 in Eq. 4,

g =
λ0

2Eb2c0
ec/c0 (5)

The inspiration to define a new parameter comes from the fact that g only depends
on the geometry of the specimen and G can be decomposed into a product of a term
depending on the loading conditions and the geometry. For a unit force and thickness,
we have G = g. We again plot the non-dimensional value of g on a semi-log scale using
the scaling observed with Fig. 3. To verify the value of g we compare it with two
other methods viz. the J-integral method and the Crack Opening displacement (COD)
method. In the J-integral method, we calculate the energy release rate using the con-
tour integral developed by Rice (Rice, 1968). The contour integral is calculated using
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the displacement solution from finite elements and we find the value of G calculated
is in accordance with the compliance method. In the COD method we calculate the
stress intensity factor by fitting numerically the finite element displacement solution
very close to the crack tip. From LEFM, we know that u(x) ∼ KI

√
x, so the stress

intensity factor is given by fitting the displacement solution, u(x) with x on a semi-log
plot and the intercept of the straight line with slope 0.5 is the stress intensity factor.
The energy release rate G is then given by G = K2

I /E and these values are calculated
for different crack lengths and they are in good agreement with the other methods.

As we measure the compliance, we can go from force constant (dead-weight) loading
to displacement constant (fixed-grips) loading and back. If we convert equation to fixed
grip loading, then we replace F in equation 3 with δ/λ and substituting for λ from
Eq. 1, we have

G =
δ2F
λ2F

g = δ2F
Ee

−c
c0

2λ0c0
(6)

From this equation we observe that G decreases exponentially with the increase in
crack length, thus allowing us to explore different velocities and fracture energy. Let us
now consider other classical fracture tests like Double Cantilever Beam (DCB), Double
Torsion and Compact Tension (CT). In DCB and TDCB, the compliance varies as
the cube of crack length, and from equation 6 we have the energy release rate varying
inversely as the fourth power of crack length (give citation). For the Double Torsion
(DT) test, the compliance varies linearly with crack length and the energy release rate
varies inversely as the square of crack length (give citation). To have a stable crack
growth, it is important that the energy release rate decreases as fast as possible and
as the exponential decreases the fastest in comparison to a polynomial function, we
will have an extremely stable crack growth.

2.3. Experimental Results

Experiments were carried out in direct uni-axial tension using a Shimadzu (model
AG-Xplus) universal testing machine of 10kN maximum load capacity. In this setup,
we have a force gauge, i.e. a 1kN load cell, measuring the force at the point of its
application (the two holes of diameter 2R in Fig. 2.1(a)) and a clip gauge that measures
the displacements between the lips of the crack (∆ in Fig. 2.1(a)). Two steel grips were
connected to the specimen by pins placed on its both holes, and the top one pushed
up. Experiments were controlled by the the clip gauge opening rate, i.e. by the crack
opening displacement (COD) at constant velocity. In this TDCB geometry, the SIF
K decreases with the crack length c. A typical F − δ curve obtained for a PMMA
specimen tested at 2.5 µm/s COD rate is shown in Figure 5.

2.3.1. Calculation of crack length and velocity
To measure the crack length (c(t)) at each time, we use the finite element solution of
the specimen, in which we obtain the compliance λFE(c) at the clip gauge location for
different crack lengths. On comparing the compliance obtained from the experiment,
λ(t) = δ/F with the FE solution ( λFE(c) ) we can interpolate it to obtain the crack
length (c(t)) at each time in the experiment. The crack length normalized w.r.t the
length of the sample versus displacement ( δ) is plotted in Figure 6. Along with the
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Figure 5. Mechanical behavior of the specimen. Typical load-crack opening displacement curve ob-
tained for the TDCB specimen with the experimental geometry under mode I tensile fracture for
PMMA. The blue curve is the experimentally measured curve while the red curve is the theoretically
predicted curve with the error bars in red dotted lines.

full FE result, we also plot the crack length predicted by the analytical formula (Eq. 2)
and observe a good agreement only till c

L = 0.7, which is due to the fact that the
compliance as an exponential function of crack length can be written only in a limited
range of crack length values (L/3 . c . 2L/3) The crack growth velocity is then
calculated as v(t) = dc

dt which is shown in Figure 7(a). We observe an almost constant
crack growth velocity with a slight variation, suggesting the TDCB test is indeed a
stable test.

2.3.2. Calculation of energy release rate (G)
Once we have the value of crack length, we then have two different methods to calculate
the energy release rate, G. In the first method, let us assume at B (in Figure 5) the
crack length is c and after time ∆t it is c+ ∆c at B’. The mechanical energy release
rate is then given by the energy dissipated per unit area of new fracture surface. The
energy dissipated during this time interval ∆t is equal to the area OBB’O in Figure 5
and the newly created fracture surface area is ∆cb where b is the width of the specimen
(Morel et al., 2005). Thus, G(t) is then given by

G(t) =
Ed(t)

∆c(t)b
(7)

where Ed(t) is the energy dissipated (OBB’O). In the second method, we use the full
Finite Element solution and use the J-integral method (as elucidated in section2). We
compute the energy release rate from both these methods and they are shown in the
G-c curve (Fig. 7 (b)). For further analysis, we continue to use the full FE solution
from the J-Integral method to calculate the energy release rate (G).
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Figure 6. Calculation of crack length by different methods

2.3.3. Variation of fracture energy, G ( J/m2) with crack velocity vm

In polymeric materials like PMMA, for slow crack propagation in polymers the poly-
meric chains are broken by first gradually elongating the chains which are then broken
one-by-one. This elongation process is a rate-dependent process and depends on the
velocity at which the crack is propagating in the material and thus the energy released
or fracture energy is also dependent on the velocity of crack propagation. The Gc − vm

characteristics is really a material property and for polymeric materials they usually
follow a power law. The Gc − vm dependence for PMMA is shown in Fig. 8 where we
clearly see the power law behavior with velocity. From the figure, we also note that with
three or four experiments we are able to capture the entire Gc − vm characteristics,
which normally with other classical tests require many more tests. It is also interesting
to observe that in one simple test, (for example say test in green dots ( vext = 50µm/s),
we explore a range of Gc − v values with the velocity varying atleast 2-3 fold.

2.4. Prediction of average crack velocity ( vm)

From the analytic formula of compliance as an exponential function of crack length,
we estimated the average crack growth velocity vm as a function of the loading rate
δ̇. At stable crack propagation, the energy release rate (G) does not vary much with
crack length and assuming it as a constant value in Equation 6 we can calculate the
crack growth velocity as :

vm =

√
2Ec0
λ0rGc

e
−c
2c0 δ̇ (8)

where λ0 and c0 are parameters obtained from the exponential fit of the compliance
(see Equation 1).

Figure 9 shows a log-log plot of the loading rate versus crack growth velocity where
we compare the analytical results from equation 8 - for 5e−7 ≤ δ̇ ≤ 1e−4 µm/s -
with experimental responses of the average crack growth velocity during stable crack
propagation for different loading rate tests. Theoretical and experimental results are
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Figure 7. (a) shows the semi-log plot of the variation of crack growth velocity with crack length,
comparing results obtained from crack opening displacement measurements plus finite element sim-
ulations and numerically predicted solution. (b) shows the G − c plot comparing the Energy release
rate calculated from COD+FE and compared with the theoretical curve. The dotted line in both the
plots are errorbars from the Gc − v fit.
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Figure 9. Log-log representation of the average crack velocity-external load correlation function of
the experiments. The straight line corresponds to Eq. 8, which the parameters were set to c0 = 0.021,
λ0 = 4.81, c = 60mm, Gc = 380J.m−2, E = 1.82GPa and r = 0.8.

in agreement proving, therefore, that the analytical formula can be a useful tool to
predict crack velocity according the experimental load rate.

3. Determination of the kinetic law Gc − v by optimization

By observing the nature of the Gc − v curve , we assume a power-law behavior of
Gc − v as

Gc(v) = Gc0v
γ (9)

where Gc0 and γ are parameters of the numerical fit. Thus given a set of parameters
Gc0andγ for Gc(v), and under static crack propagation we can solve numerically the
complete evolution of crack length with time. Using the compliance formula (Eq. 6,
we can write static crack propagation law as

G = Gc(vm) (10)

=⇒
δ2F

λF (c)2
dλF
dc

(c) = Gc0

(
dc

dt

)γ
(11)

where δ is the displacement imposed at the point of application of the force λF is
the compliance at the same location. Eq. 11 is a first order equation in time and crack
length which is solved numerically to calculate the complete crack growth evolution.
Here, for the compliance (λ(c) ), we use the curve obtained from finite elements. Once
the crack length is computed, using the compliance vs crack length relation, we can
obtain the force as a function of displacement (F − δ) and compare the theoretical
F− δ curve with the experimental curve and they are in good agreement.
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Figure 10. Plot of the error as a function of the optimization parameters

3.1. Calculation of the best parameters Gc0 and γ of the kinetic law

To have a good correlation between the numerical results and the experimental results,
it is important to have the best parameters which fit the Gc − v curve. A slight error
in the parameters of the kinetic law can induce a large error in the prediction of the
F −δ curve. We define εr as the relative error between the numerically predicted force
and the experimental value. We define the error in terms of the force as it gives us a
direct feedback on the quantities we measure and the quantities we predict. Thus,

εr =

√√√√∑
δi

[
Fnum(δi)− Fexp(δi)

Fp

]2
(12)

where Fp is the half of the peak value of the experimental force and is used to
normalize the error.

We choose three different experiments each belonging to a different part of the
Gc(v) (shown in different colors in Fig. 8) and define a cumulative error as

ε =

√
ε21 + ε22 + ε22

3
(13)

We then find a minimum value of the error and find the optimum values of the
parameters Gc0 and γ. The error as a function of γ and Gc0 is as shown in Figure
10 and we see that there exists a clear minimum, which help in determining the
parameters accurately. Once we have an optimum value of the parameters for the
kinetic law, using Eq. 11, we can solve for the crack length evolution and a comparison
of the numerical prediction and experimentally measured crack length is shown in
Figure 6, velocity and fracture energy in Fig. 7 and the dotted lines in each of these
graphs are the errorbars by assuming a 10 % error in the parameter optimization.
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4. Conclusion

This work reports a combined theoretical and experimental methodology using a new
simple geometry to study mode I tensile fracture in brittle materials. We show that the
tapering geometry makes the crack growth extremely stable and allows us to measure
the energy release rate accurately. Using FE elements, we also show that we have an
exponential dependence of compliance with crack length which is why this geometry
is really stable. This test is also useful to obtain the Gc − v kinetics of the material
as with just a few tests we are able to explore a good range of velocities and energy
release rates. We finally also propose an optimization based strategy to calculate
the parameters of the Gc − v characteristics using which we are able to predict the
fracture properties of the material numerically which are in good accordance with the
experiment.
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