
PRL 96, 035506 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
Two-Dimensional Scaling Properties of Experimental Fracture Surfaces
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The self-affine properties of postmortem fracture surfaces in silica glass and aluminum alloy were
investigated through the 2D height-height correlation function. They are observed to exhibit anisotropy.
The roughness, dynamic, and growth exponents are determined and shown to be the same for the two
materials, irrespective of the crack velocity. These exponents are conjectured to be universal.
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Understanding the physical aspects of fracture in het-
erogeneous materials still presents a major challenge.
Since the pioneering work of Mandelbrot [1], a large
number of studies have shown that crack surface rough-
ening exhibits some universal scaling features, although it
results from a broad variety of material specific processes
occurring at the microstructure scale (see Ref. [2] for a
review). Fracture surfaces were found to be self-affine over
a wide range of length scales. In other words, the height-
height correlation function �h��r� � h�h�r��r� �
h�r��2i1=2

r computed along a given direction is found to
scale as �h� ��r�H, where H refers to the Hurst expo-
nent. The roughness exponent was found to be H 	 0:8,
weakly dependent on the nature of the material and on the
failure mode. This quantity was then conjectured to be
universal [3].

Since the early 1990s, a large number of theoretical
studies suggested scenarios to explain these experimental
observations. They can be classified into two main catego-
ries: (i) percolation-based models where the crack propa-
gation is assumed to result from a damage coalescence
process [4,5], and (ii) elastic string models that consider
the crack front as an elastic line propagating through
randomly distributed microstructural obstacles [6,7]. The
fracture surface corresponds then to the trace left behind
this crack front.

All these models lead to self-affine fracture surfaces
with various exponents. However, none of them has been
able to predict the measured value of the roughness ex-
ponent. The main difference between the predictions of
these two categories of theoretical descriptions is that
models (i) lead to isotropic fracture surfaces while
models (ii), where the direction of front propagation
clearly plays a specific role, predict anisotropic surfaces.
The analysis of such anisotropy on experimental examples
is the central point of this Letter.

We investigate the 2D scaling properties of fracture
surfaces in silica glass and metallic alloy, representative
of brittle and ductile materials, respectively. Those were
broken using various fracture tests (stress corrosion and
dynamic loading). Fracture surfaces observed for all these
materials/failure modes are shown to be self-affine, in
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agreement with results reported in the literature. How-
ever, their scaling properties are not isotropic as usually
believed but require the use of a 2D height-height correla-
tion function �h��~r��h�h� ~r��~r��h�~r��2i1=2

~r for a com-
plete description. This 2D description involves two inde-
pendent scaling exponents which correspond to the Hurst
exponents measured along the crack propagation direction
and the perpendicular one, the crack front direction. They
are found to vary insignificantly for the two materials and
from slow to rapid crack growth. Such observations are
interpreted within the framework of elastic line models
driven in a random medium.

Experimental setup.—Silica glass and a metallic alloy
are chosen as the archetypes of brittle and ductile materi-
als, respectively.

Fracture of silica is performed on DCDC (double
cleavage drilled compression) parallelepipedic (5
 5

25 mm3) samples under stress corrosion in mode I (see
Ref. [8] for details). After a transient dynamic regime, the
crack propagates at slow velocity through the specimen
under stress corrosion. This velocity is measured by imag-
ing in real time the crack tip propagation with an atomic
force microscope (AFM). In the stress-corrosion regime,
the crack growth velocity can be varied by adjusting prop-
erly the compressive load applied to the DCDC specimen
[8]. The protocol is then the following: (i) A large load is
applied to reach a high velocity; (ii) the load is decreased to
a value lower than the prescribed one; (iii) the load is
increased again up to the value that corresponds to the
prescribed velocity and maintained constant. This proce-
dure allows us to get various crack velocities ranging from
10�6 to 10�11 m s�1 corresponding to zones on the post-
mortem fracture surfaces which are clearly separated by
visible arrest marks. The topography of these fracture
surfaces is then measured through AFM with in-plane
and out-of-plane resolutions estimated of the order of 5
and 0.1 nm, respectively. To ensure that there is no bias due
to the scanning direction of the AFM tip, each image is
scanned in two perpendicular directions, and the analyses
presented hereafter are performed on both images. These
images represent a square field of 1
 1 �m (1024 by
1024 pixels).
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Fracture surfaces of the commercial 7475 aluminum
alloy were obtained from compact tension specimens
which were first precracked in fatigue and then broken
through uniaxial mode I tension. The crack velocity varies
during the fracture process but has not been measured. In
the tensile zone, the fracture surface has been observed
with a scanning electron microscope at two tilt angles. A
high resolution elevation map has been produced from the
stereo pair using the cross-correlation-based surface recon-
struction technique described in Ref. [9]. The recon-
structed image of the topography represents a rectangular
field of 565
 405 �m (512 by 512 pixels). The in-plane
and out-of-plane resolutions are of the order of 2–3 �m.

Experimental results.—A typical snapshot of silica
glass (metallic alloy) fracture surface is presented in
Fig. 1(a) [Fig. 1(b)]. In both cases, the reference frame
(x; y; z) is chosen so that axes x and z are, respectively,
parallel to the direction of crack propagation and to the
crack front. The in-plane and out-of-plane characteristic
length scales are, respectively, of the order of 50 and 1 nm
for the silica glass and of the order of 100 and 30 �m for
the aluminum alloy. In order to investigate the scaling
properties of these surfaces, the 1D height-height correla-
tion functions �h��z� � h�h�z��z; x� � h�z; x��2i1=2

z;x

along the z direction and �h��x� � h�h�z; x� �x� �
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FIG. 1. Topographic image of a fracture surface of (a) pure
silica glass and (b) aluminum alloy. x is the direction of crack
propagation. z is parallel to the initial crack front.
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h�z; x��2i1=2
z;x along the x direction were computed. They

are represented in Fig. 2(a) [Fig. 2(b)] for silica glass
(metallic alloy). For both materials, the profiles were found
to be self-affine in both directions. Moreover, these curves
indicate a clear anisotropy of the fracture surfaces. This
anisotropy is reflected not only in the correlation lengths
and the amplitudes but also in the Hurst exponents. Along
the crack front, the exponents are found to be 0:83� 0:05
for silica and 0:75� 0:03 for metallic alloy, i.e., fairly
consistent with the ‘‘universal’’ value of the roughness
exponent � ’ 0:8 widely reported in the literature [3]. In
the crack growth direction, the Hurst exponent is found to
be significantly smaller, close to 0:63� 0:04 and 0:58�
0:03 for silica glass and the aluminum alloy, respectively.
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FIG. 2. Height-height correlation function calculated along the
propagation direction and the crack front direction on a fracture
surface of (a) silica glass obtained with a crack velocity of
10�11 m s�1 and (b) aluminum alloy. The straight lines are
power law fits (see text for details).
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In all the following, the Hurst exponent measured along the
z axis, the crack front direction, and the x axis, the crack
propagation direction, will be referred to as � and �,
respectively.

The observation of two different scaling behaviors in
two different directions of the studied fracture surfaces
suggests a new approach based on the analysis of the 2D
height-height correlation function defined as:

�h��z;�x� � h�h�z� �z; x��x� � h�x; z��2i1=2
z;x :

This function contains information on the scaling prop-
erties of a surface in all directions. The variations of the
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FIG. 3. The insets show the 2D height-height correlation func-
tions �h�x��z� corresponding to different values of �x vs �z
for a fracture surface of (a) silica glass obtained with a crack
velocity of 10�11 m s�1 and (b) aluminum alloy. The data
collapse was obtained using Eq. (1) with exponents reported in
Table I.
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correlation functions �h�x are plotted as a function of �z
in the insets in Figs. 3(a) and 3(b) for silica glass and
aluminum alloy fracture surfaces, respectively. For ade-
quate values of� and z, it can be seen in the main graphs of
that same figure that a very good collapse of the curves can
be obtained by normalizing the abscissa and the ordinate
by �x1=z and �x�, respectively. The resulting master curve
is characterized by a plateau region and followed by a
power law variation with exponent � . In other words:

�h��z;�x� � �x�f��z=�x1=z�;

where f�u� �
� 1 if u� 1;

u� if u
 1:
(1)

The exponents� and z, which optimize the collapse, and
the � exponent determined by fitting the large scales re-
gime exhibited by the master curves are listed in Table I.
The three exponents are found to be � ’ 0:75, � ’ 0:6, and
z ’ 1:25, independent of the material and of the crack
growth velocity over the whole range from ultraslow
stress-corrosion fracture (picometer per second) to rapid
failure (some meters per second). The ratio of � to � is
given in the fourth column in Table I. It is worth noting that
the exponent z fulfills the relation z � �=�. The same
exponents have also been observed on fracture surfaces
of mortar and wood [10]. They are, therefore, conjectured
to be universal.

Discussion.—The experiments reported in this Letter
explored the 2D scaling properties of fracture surfaces of
two different materials. Three main conclusions can be
drawn: (i) 1D profiles scanned parallel to the crack front
direction and to the direction of crack propagation both
exhibit self-affine scaling properties, but those are charac-
terized by two different Hurst exponents referred to as �
and �, respectively; (ii) the 2D height-height correlation
function is shown to collapse on a single curve [Eq. (1)]
when appropriately rescaled. This scaling involves three
exponents � , �, and z; (iii) these three exponents are
independent of both the material considered and the crack
growth velocity over the explored range.

These conclusions enable a discussion on the various
competing models developed to capture the scaling prop-
erties of fracture surfaces [4–7]. The anisotropy clearly
evidenced in the scaling properties of fracture surfaces
cannot be captured by static models such as percolation-
TABLE I. Scaling exponents measured on fracture surfaces of
silica glass and metallic alloy. � , �, and z are, respectively,
interpreted as the roughness exponent, the growth exponent, and
the dynamic exponent z, while the fourth column contains the
ratio of � to �. Error bars represent an interval of confidence of
95%.

� � z �=�

Silica glass 0:77� 0:03 0:61� 0:04 1:30� 0:15 1.26
Metallic alloy 0:75� 0:03 0:58� 0:03 1:26� 0:07 1.29
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based models [5]. On the other hand, these results are
reminiscent of what is observed in kinetic roughening
models [11]. These models consider the time evolution of
an elastic manifold driven in a random medium. The
roughness development of the line h�z; t� starting from an
initially straight line h�z; t � 0� � 0 is then characterized
by a 1D height-height correlation function �h��z; t� that
scales as [11]:

�h��z; t� / t�g��z=t1=z�;

where g�u� �
� u� if u� 1;

1 if u
 1;
(2)

where � , �, and z refer to the roughness, growth, and
dynamic exponents, respectively. Signature of this rough-
ening scaling can also be found in the steady state regime
reached at long times when the roughness becomes time
invariant. In this regime, the 2D height-height correlation
function �h��z; t� is expected to scale as [12]:

�h��z;�t� � �t�f��z=�t1=z�;

where f�u� �
� 1 if u� 1;

u� if u
 1;
(3)

which is exactly the scaling (1) followed by the experi-
mental surfaces after time t has been replaced by coordi-
nate x measured along the crack propagation direction.
This provides a rather strong argument in favor of models
such as Refs. [6,7] that describe the fracture surface as the
juxtaposition of the successive crack front positions—
modeled as a pseudoelastic line—moving through materi-
als with randomly distributed local toughness. In this sce-
nario, the Hurst exponents � ’ 0:75 and � ’ 0:6 measured
along the crack front direction and the direction of crack
propagation, respectively, coincide with the roughness ex-
ponent and the growth exponent as defined within the
framework of elastic string models [11]. Let us note, more-
over, that in such models the dynamic exponent z is ex-
pected to be related to � and � through z � �=� [13]. This
leads to a value of z � 1:25, in perfect agreement with the
value measured experimentally.

In elastic line models, the set of exponents � , �, and z
depends only on the dimensionality [11,14], the range of
the elastic interaction [14,15], and, to some extent, on the
line velocity [16]. It has been shown that, for a crack
propagating in a linear elastic solid, the restoring elastic
forces are long range rather than local [17]. Corresponding
elastic line models predict logarithmic correlations [7],
which is significantly different from � ’ 0:75 as reported
in this Letter. Let us note that the same model applied to the
interfacial crack problem leads to a roughness exponent
� ’ 0:39 [18] and z ’ 0:75 [15,19], while experiments [20]
reported values � ’ 0:6 and z ’ 1:2. These experimental
values are much closer to the ones expected in elastic line
models with short range elastic interactions, which predict
03550
roughness exponents � ’ 0:63 [21]. Understanding the
origin of the interaction screening in crack problems pro-
vides a significant challenge for future investigation.

Finally, it is worth mentioning that the scaling properties
exhibited by fracture surfaces may have interesting exper-
tise applications. It allows one indeed to determine the
direction of crack propagation from the analysis of post-
mortem fracture surfaces and, thus, to reconstruct the
history of the processes that have led to the failure of the
structure [22].
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